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Solving a Maze 
A journey of a thousand miles begins with a single step. 

—Confucius, 5th century B.C.E. 

• The example most often used to 
illustrate recursive backtracking 
is the problem of solving a maze, 
which has a long history in its 
own right. 

• The most famous maze in history 
is the labyrinth of Daedalus in 
Greek mythology where Theseus 
slays the Minotaur. 

• There are passing references to 
this story in Homer, but the best 
known account comes from Ovid 
in Metamorphoses. 

. . . When Minos, willing to conceal the shame 

That sprung from the reports of tatling Fame, 

Resolves a dark inclosure to provide, 

And, far from sight, the two-form’d creature hide. 
 

Great Daedalus of Athens was the man 

That made the draught, and form’d the wondrous plan; 

Where rooms within themselves encircled lye, 

With various windings, to deceive the eye. . . . 

Such was the work, so intricate the place, 

That scarce the workman all its turns cou’d trace; 

And Daedalus was puzzled how to find 

The secret ways of what himself design’d. 
 

These private walls the Minotaur include, 

Who twice was glutted with Athenian blood: 

But the third tribute more successful prov’d, 

Slew the foul monster, and the plague remov’d. 

When Theseus, aided by the virgin’s art, 

Had trac’d the guiding thread thro’ ev’ry part, 

He took the gentle maid, that set him free, 

And, bound for Dias, cut the briny sea. 

There, quickly cloy’d, ungrateful, and unkind, 

Left his fair consort in the isle behind . . . 

Metamorphoses 

—Ovid, 1 A.C.E. 



The Right-Hand Rule 

 

 

• The most widely known strategy 
for solving a maze is called the 
right-hand rule, in which you put 
your right hand on the wall and 
keep it there until you find an exit. 

• If Theseus applies the right-hand 
rule in this maze, the solution path 
looks like this. 

• Unfortunately, the right-hand rule 
doesn’t work if there are loops in 
the maze that surround either the 
starting position or the goal. 

• In this maze, the right-hand rule 
sends Theseus into an infinite loop. 

 



A Recursive View of Mazes 

 

• It is also possible to solve a maze 
recursively.  Before you can do so, 
however, you have to find the right 
recursive insight.  

• Consider the maze shown at the 
right.  How can Theseus transform 
the problem into one of solving a 
simpler maze? 

• The insight you need is that a maze 
is solvable only if it is possible to 
solve one of the simpler mazes that 
results from shifting the starting 
location to an adjacent square and 
taking the current square out of the 
maze completely. 

 



A Recursive View of Mazes 

 

• Thus, the original maze is solvable 
only if one of the three mazes at 
the bottom of this slide is solvable. 

• Each of these mazes is “simpler” 
because it contains fewer squares. 

• The simple cases are: 

– Theseus is outside the maze 

– There are no directions left to try   

 

 
 

 



/* 

 * File: mazelib.h 

 * --------------- 

 * This interface provides a library of primitive operations 

 * to simplify the solution to the maze problem. 

 */ 
 

#ifndef _mazelib_h 

#define _mazelib_h 
 

#include "genlib.h" 
 

/* 

 * This type is used to represent the four compass directions. 

 */ 
 

enum directionT { North, East, South, West }; 
 

/* 

 * The type pointT is used to encapsulate a pair of integer 

 * coordinates into a single value with x and y components. 

 */ 
 

struct pointT { 

   int x, y; 

}; 

The mazelib.h Interface 



Enumerated Types in C 
• It is often convenient to define new types in which the 

possible values are chosen from a small set of possibilities.  
Such types are called enumerated types. 

enum name { list of element names }; 

• In C, you define an enumerated type like this: 

• The mazelib.h interfaces uses enum to define a new type 
consisting of the four compass points, as follows: 

enum directionT { 

   North, East, South, West 

}; 

• You can then declare a variable of type directionT and use it 
along with the constants North, East, South, and West. 



Structure Types in C 
• The other new type mechanism included in the mazelib.h 

interface is the creation of a structure type to hold the x and y 
components of a point within a maze.  That definition is 

struct pointT { 

   int x, y; 

}; 

• This definition creates a new type called pointT that has two 
fields: an int named x and another int named y. 

• You can declare variables of type pointT just as you would 
variables of any other type. 

• Once you have a variable of type pointT, you can refer to the 
individual components by using a dot to select the appropriate 
field.  For example, if currentLocation is a pointT, you 
can select its x component by writing currentLocation.x. 



/* 

 * File: mazelib.h 

 * --------------- 

 * This interface provides a library of primitive operations 

 * to simplify the solution to the maze problem. 

 */ 
 

#ifndef _mazelib_h 

#define _mazelib_h 
 

#include "genlib.h" 
 

/* 

 * This type is used to represent the four compass directions. 

 */ 
 

enum directionT { North, East, South, West }; 
 

/* 

 * The type pointT is used to encapsulate a pair of integer 

 * coordinates into a single value with x and y components. 

 */ 
 

struct pointT { 

   int x, y; 

}; 

/* 

 * Function: ReadMazeMap 

 * Usage: ReadMazeMap(filename); 

 * ----------------------------- 

 * This function reads in a map of the maze from the specified 

 * file and stores it in private data structures maintained by 

 * this module.  In the data file, the characters '+', '-', and 

 * '|' represent corners, horizontal walls, and vertical walls, 

 * respectively; spaces represent open passageway squares.  The 

 * starting position is indicated by the character 'S'.  For 

 * example, the following data file defines a simple maze: 

 * 

 *       +-+-+-+-+-+ 

 *       |     | 

 *       + +-+ + +-+ 

 *       |S  |     | 

 *       +-+-+-+-+-+ 

 * 

 * Coordinates in the maze are numbered starting at (0,0) in 

 * the lower left corner.  The goal is to find a path from 

 * the (0,0) square to the exit east of the (4,1) square. 

 */ 

 

void ReadMazeMap(string filename); 

The mazelib.h Interface 
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/* 

 * Function: ReadMazeMap 

 * Usage: ReadMazeMap(filename); 

 * ----------------------------- 

 * This function reads in a map of the maze from the specified 

 * file and stores it in private data structures maintained by 

 * this module.  In the data file, the characters '+', '-', and 

 * '|' represent corners, horizontal walls, and vertical walls, 

 * respectively; spaces represent open passageway squares.  The 

 * starting position is indicated by the character 'S'.  For 

 * example, the following data file defines a simple maze: 

 * 

 *       +-+-+-+-+-+ 

 *       |     | 

 *       + +-+ + +-+ 

 *       |S  |     | 

 *       +-+-+-+-+-+ 

 * 

 * Coordinates in the maze are numbered starting at (0,0) in 

 * the lower left corner.  The goal is to find a path from 

 * the (0,0) square to the exit east of the (4,1) square. 

 */ 

 

void ReadMazeMap(string filename); 

/* 

 * Function: GetStartPosition 

 * Usage: pt = GetStartPosition(); 

 * ------------------------------- 

 * This function returns a pointT indicating the coordinates of 

 * the start square. 

 */ 

 

pointT GetStartPosition(); 

 

/* 

 * Function: OutsideMaze 

 * Usage: if (OutsideMaze(pt)) . . . 

 * --------------------------------- 

 * This function returns true if the specified point is outside 

 * the boundary of the maze. 

 */ 

 

bool OutsideMaze(pointT pt); 

The mazelib.h Interface 
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/* 

 * Function: GetStartPosition 

 * Usage: pt = GetStartPosition(); 

 * ------------------------------- 

 * This function returns a pointT indicating the coordinates of 

 * the start square. 

 */ 

 

pointT GetStartPosition(); 

 

/* 

 * Function: OutsideMaze 

 * Usage: if (OutsideMaze(pt)) . . . 

 * --------------------------------- 

 * This function returns true if the specified point is outside 

 * the boundary of the maze. 

 */ 

 

bool OutsideMaze(pointT pt); 

/* 

 * Function: WallExists 

 * Usage: if (WallExists(pt, dir)) . . . 

 * ------------------------------------- 

 * This function returns true if there is a wall in the indicated 

 * direction from the square at position pt. 

 */ 
 

bool WallExists(pointT pt, directionT dir); 

 

/* 

 * Functions: MarkSquare, UnmarkSquare, IsMarked 

 * Usage: MarkSquare(pt); 

 *        UnmarkSquare(pt); 

 *        if (IsMarked(pt)) . . . 

 * ------------------------------ 

 * These functions mark, unmark, and test the status of the 

 * square specified by the coordinates pt. 

 */ 
 

void MarkSquare(pointT pt); 

void UnmarkSquare(pointT pt); 

bool IsMarked(pointT pt); 

 

#endif 

The mazelib.h Interface 
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/* 

 * Function: SolveMaze 

 * Usage: if (SolveMaze(pt)) . . . 

 * ------------------------------- 

 * This function attempts to generate a solution to the current maze from 

 * point pt.  SolveMaze returns true if the maze has a solution.  The 

 * implementation uses recursion to solve the submazes that result from 

 * marking the current square and moving one step along each open passage. 

 */ 
 

bool SolveMaze(pointT pt) { 

   if (OutsideMaze(pt)) return true; 

   if (IsMarked(pt)) return false; 

   MarkSquare(pt); 

   for (int i = 0; i < 4; i++) { 

      directionT dir = directionT(i); 

      if (!WallExists(pt, dir)) { 

         if (SolveMaze(AdjacentPoint(pt, dir))) { 

            return true; 

         } 

      } 

   } 

   UnmarkSquare(pt); 

   return false; 

} 

The SolveMaze Function 



Tracing the SolveMaze Function 

x  

 

bool SolveMaze(pointT pt) { 

   if (OutsideMaze(pt)) return true; 

   if (IsMarked(pt)) return false; 

   MarkSquare(pt); 

   for (int i = 0; i < 4; i++) { 

      directionT dir = directionT(i); 

      if (!WallExists(pt, dir)) { 

         if (SolveMaze(AdjacentPoint(pt, dir))) { 

            return true; 

         } 

      } 

   } 

   UnmarkSquare(pt); 

   return false; 

} 
dir 

  

i 

  

pt 

(3, 3) North 0 East 1 South 2 

bool SolveMaze(pointT pt) { 

   if (OutsideMaze(pt)) return true; 

   if (IsMarked(pt)) return false; 

   MarkSquare(pt); 

   for (int i = 0; i < 4; i++) { 

      directionT dir = directionT(i); 

      if (!WallExists(pt, dir)) { 

         if (SolveMaze(AdjacentPoint(pt, dir))) { 

            return true; 

         } 

      } 

   } 

   UnmarkSquare(pt); 

   return false; 

} 
dir i pt 

(3, 4)     

x 

x x 

x 

bool SolveMaze(pointT pt) { 

   if (OutsideMaze(pt)) return true; 

   if (IsMarked(pt)) return false; 

   MarkSquare(pt); 

   for (int i = 0; i < 4; i++) { 

      directionT dir = directionT(i); 

      if (!WallExists(pt, dir)) { 

         if (SolveMaze(AdjacentPoint(pt, dir))) { 

            return true; 

         } 

      } 

   } 

   UnmarkSquare(pt); 

   return false; 

} 
dir i pt 
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 

Don’t follow the recursion more than one level. 
Depend on the recursive leap of faith. 



Recursion and Concurrency 

1 

• The recursive decomposition of a maze generates a series of 
independent submazes; the goal is to solve any one of them. 

• If you had a multiprocessor computer, you could try to solve 
each of these submazes in parallel.  This strategy is analogous 
to cloning yourself at each intersection and sending one clone 
down each path. 

• Is this parallel strategy more efficient? 
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The P = NP Question 

• The question of whether a parallel solution is fundamentally 
faster than a sequential one is related to the biggest open 
problem in computer science, for which there is a $1M prize. 



Recursion and Games 

• In 1950, Claude Shannon wrote 
an article for Scientific American 
in which he described how to 
write a chess-playing computer 

program.  

• Shannon’s strategy was to have 
the computer try every possible 
move for white, followed by all 
of black’s responses, and then all 
of white’s responses to those 

moves, and so on.  
• Even with modern computers, it 

is impossible to use this strategy 
for an entire game, because there 

are too many possibilities.  

Positions evaluated: 1000 2000 3000 4000 5000 6000 7000 8000 9000 10 
5 

10 
10 

10 
20 

10 
25 

10 
30 

10 
35 

10 
53 

~ 

. . . millions of years later . . . 



Game Trees 

• As Shannon observed in 1950, most two-player games have 
the same basic form: 

– The first player (red) must choose between a set of moves 

– For each move, the second player (blue) has several responses. 

– For each of these responses, red has further choices. 

– For each of these new responses, blue makes another decision. 

– And so on . . . 



The Essential Idea about Recursive Games 

• If you take nothing else away from the discussion of games in 
Chapter 6, you should make sure you understand the recursive 
definition of the following terms: 

– A good move is one that leaves your opponent in a bad position. 

– A bad position is one that has no good moves. 

• That single idea is the essence of the minimax strategy, which 
has made it possible for computers, for example, to beat the 
world chess champion. 



The End 


