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Thanks to Eric S. Roberts, the author of our textbook, for providing all the slides for this chapter. 



Sorting 
• Of all the algorithmic problems that computer scientists have 

studied, the one with the broadest practical impact is certainly 
the sorting problem, which is the problem of arranging the 
elements of an array or a vector in order. 

• The sorting problem comes up, for example, in alphabetizing 
a telephone directory, arranging library records by catalogue 
number, and organizing a bulk mailing by ZIP code. 

• There are many algorithms that one can use to sort an array.  
Because these algorithms vary enormously in their efficiency, 
it is critical to choose a good algorithm, particularly if the 
application needs to work with large arrays.    



The Selection Sort Algorithm 
• Of the many sorting algorithms, the easiest one to describe is 

selection sort, which appears in the text like this: 

void Sort(int vec[], int n) { 

    for (int lh = 0; lh < n; lh++) { 

      int rh = lh; 

      for (int i = lh + 1; i < n; i++) { 

         if (vec[i] < vec[rh]) rh = i; 

      } 

      int temp = vec[lh]; 

      vec[lh] = vec[rh]; 

      vec[rh] = temp; 

   } 

} 

• Coding this algorithm as a single function makes sense for 
efficiency but complicates the analysis.  The next two slides 
decompose selection sort into a set of functions that make the 
operation easier to follow. 



/* 

 * Function: Sort 

 * -------------- 

 * Sorts a int Vector[] into increasing order.  This implementation 

 * uses an algorithm called selection sort, which can be described 

 * in English as follows.  With your left hand (lh), point at each 

 * element in the vector in turn, starting at index 0.  At each 

 * step in the cycle: 

 * 

 * 1. Find the smallest element in the range between your left 

 *    hand and the end of the vector, and point at that element 

 *    with your right hand (rh). 

 * 

 * 2. Move that element into its correct position by swapping 

 *    the elements indicated by your left and right hands. 

 */ 

 

void Sort(int vec[], int n) { 

   for ( int lh = 0 ; lh < n ; lh++ ) { 

      int rh = FindSmallest(vec, lh, n - 1); 

      Swap(vec[lh], vec[rh]); 

   } 

} 

 

Decomposition of the Sort Function 
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/* 

 * Function: Sort 

 * -------------- 

 * Sorts a Vector<int> into increasing order.  This implementation 

 * uses an algorithm called selection sort, which can be described 

 * in English as follows.  With your left hand (lh), point at each 

 * element in the vector in turn, starting at index 0.  At each 

 * step in the cycle: 

 * 

 * 1. Find the smallest element in the range between your left 

 *    hand and the end of the vector, and point at that element 

 *    with your right hand (rh). 

 * 

 * 2. Move that element into its correct position by swapping 

 *    the elements indicated by your left and right hands. 

 */ 

 

void Sort(Vector<int> & vec) { 

   for ( int lh = 0 ; lh < vec.size() ; lh++ ) { 

      int rh = FindSmallest(vec, lh, vec.size() - 1); 

      Swap(vec[lh], vec[rh]); 

   } 

} 

 

/* 

 * Function: FindSmallest 

 * ---------------------- 

 * Returns the index of the smallest value in the vector between 

 * index positions p1 and p2, inclusive. 

 */ 
 

int FindSmallest(int vec[], int p1, int p2) { 

   int smallestIndex = p1; 

   for ( int i = p1 + 1 ; i <= p2 ; i++ ) { 

      if (vec[i] < vec[smallestIndex]) smallestIndex = i; 

   } 

   return smallestIndex; 

} 

 

/* 

 * Function: Swap 

 * -------------- 

 * Exchanges two integer values passed by reference. 

 */ 
 

void Swap(int *x, int *y) { 

   int temp = *x; 

   *x = *y; 

   *y = temp; 

} 

Decomposition of the Sort Function 
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Simulating Selection Sort  
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skip simulation 

int main() { 

   Vector<int> vec = CreateTestVector(); 

   Sort(vec); 

   return 0; 

} 
vec 

void Sort(Vector<int> & vec) { 

   for ( int lh = 0 ; lh < vec.size() ; lh++ ) { 

      int rh = FindSmallest(vec, lh, vec.size() - 1); 

      Swap(vec[lh], vec[rh]); 

   } 

} 
rh vec lh 

0 1 2 3 4 5 6 7 8 9 10 3 6 7 8 9 

int FindSmallest(Vector<int> & vec, int p1, int p2) { 

   int smallestIndex = p1; 

   for ( int i = p1 + 1 ; i <= p2 ; i++ ) { 

      if (vec[i] < vec[smallestIndex]) smallestIndex = i; 

   } 

   return smallestIndex; 

} 

9 
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int main() { 

   Vector<int> vec = CreateTestVector(); 

   Sort(vec); 

   return 0; 

} 
vec 

void Sort(int vec[], int n) { 

   for ( int lh = 0 ; lh < n ; lh++ ) { 

      int rh = FindSmallest(vec, lh, vec.size() - 1); 

      Swap(&vec[lh], &vec[rh]); 

   } 

} 
rh vec lh 



Efficiency of Selection Sort 
• The primary question for today is how one might evaluate the 

efficiency of an algorithm such as selection sort. 

• One strategy is to measure the actual time it takes to run for 
arrays of different sizes. In C, you can measure elapsed time 
by calling the time function, which returns the current time in 
milliseconds.  Using this strategy, however, requires some 
care: 

– The time function is often too rough for accurate measurement.  
It therefore makes sense to measure several runs together and 
then divide the total time by the number of repetitions. 

– Most algorithms show some variability depending on the data.  
To avoid distortion, you should run several independent trials 
with different data and average the results. 

– Some measurements are likely to be wildly off because the 
computer needs to run some background task.  Such data points 
must be discarded as you work through the analysis. 

 



Measuring Sort Timings 
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Because timing measurements are subject to various inaccuracies, 
it is best to run several trials and then to use statistics to interpret 
the results.  The table below shows the actual running time for the 
selection sort algorithm for several different values of N, along 
with the mean (m) and standard deviation (s). 

The table entries shown in red indicate timing measurements that 
differ by more than two standard deviations from the average of 
the other trials (trial #8 for 1000 elements, for example, is more 
than five times larger than any other trial).  Because these outliers 
probably include background tasks, it is best to discard them.  

The following table shows the average timing of the selection 
sort algorithm after removing outlying trials that differ by more 
than two standard deviations from the mean.  The column labeled 
m  (the Greek letter mu, which is the standard statistical symbol 
for the mean) is a reasonably good estimate of running time. 



Selection Sort Running Times 
• Many algorithms that operate on vectors have running times 

that are proportional to the size of the array.  If you multiply 
the number of values by ten, you would expect those 
algorithms to take ten times as long. 
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N time • As the running times on the preceding slide 
make clear, the situation for selection sort is 
very different.  The table on the right shows 
the average running time when selection sort is 
applied to 10, 100, 1000, and 10000 values. 

• As a rough approximation—particularly as you work with 
larger values of N—it appears that every ten-fold increase in 
the size of the array means that selection sort takes about 100 
times as long. 



Counting Operations 
• Another way to estimate the running time is to count how 

many operations are required to sort an array of size N.  

• In the selection sort implementation, the section of code that 
is executed most frequently (and therefore contributes the 
most to the running time) is the body of the FindSmallest 
method.  The number of operations involved in each call to  
FindSmallest changes as the algorithm proceeds: 

N values are considered on the first call to FindSmallest.  
N - 1 values are considered on the second call.  
N - 2 values are considered on the third call, and so on.  

• In mathematical notation, the number of values considered in  
FindSmallest can be expressed as a summation, which can 
then be transformed into a simple formula: 

∑ 
i = 1 

N 

i 1  +  2  +  3  +  . . .  +  (N - 1)  +  N   =    =   
N x (N + 1)  

2  



A Geometric Insight 
• You can convince yourself that  

 by thinking about the problem geometrically. 

1  +  2  +  3  +  . . .  +  (N - 2)  +  (N - 1)  +  N   =   
N x (N + 1)  

2  

• The terms on the left side of the formula can be arranged into 
a triangle, as shown at the bottom of this slide for N = 6.   

• If you duplicate the triangle and rotate it by 180˚, you get a 
rectangle that in this case contains 6 x 7 dots, half of which 
belong to each triangle.  



Quadratic Growth 
• The reason behind the rapid growth in the running time of 

selection sort becomes clear if you make a table showing the 
xxx  
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• The growth pattern in the right column is similar to that of the 
measured running time of the selection sort algorithm.  As the 
x N  x (N + 1)  

2  
 value  of  N  increases  by  a  factor  of  10,  the  value  of  

xx  increases by a factor of around 100, which is 102.  Algorithms 
whose running times increase in proportion to the square of 
the problem size are said to be quadratic. 

 value of               for various values of N: 



Big-O Notation 
• The most common way to express computational complexity 

is to use big-O notation, which was introduced by the 
German mathematician Paul Bachmann in 1892. 

• Big-O notation consists of the letter O followed by a formula 
that offers a qualitative assessment of running time as a 
function of the problem size, traditionally denoted as N.  For 
example, the computational complexity of linear search is  

O ( N ) 

 and the computational complexity of selection sort is 

O ( N 

2
 ) 

• If you read these formulas aloud, you would pronounce them 

as “big-O of N ” and “big-O of N 

2
  ” respectively. 



Common Simplifications of Big-O 
• Given that big-O notation is designed to provide a qualitative 

assessment, it is important to make the formula inside the 
parentheses as simple as possible. 

• When you write a big-O expression, you should always make 
the following simplifications: 

Eliminate any term whose contribution to the running time 
ceases to be significant as N becomes large. 

1. 

Eliminate any constant factors. 2. 

• The computational complexity of selection sort is therefore 

O ( N 
2

 ) 

N x (N + 1)  

2  
O  ( ) 

 and not 



Deducing Complexity from the Code 
• In many cases, you can deduce the computational complexity 

of a program directly from the structure of the code. 

• The standard approach to doing this type of analysis begins 
with looking for any section of code that is executed more 
often than other parts of the program.  As long as the 
individual operations involved in an algorithm take roughly 
the same amount of time, the operations that are executed 
most often will come to dominate the overall running time.  

• In the selection sort implementation, for example, the most 
commonly executed statement is the if statement inside the 
FindSmallest method.  This statement is part of two for 
loops, one in FindSmallest itself and one in Sort.  The 
total number of executions is 

1  +  2  +  3  +  . . .  +  (N - 1)  +  N  

 which is O(N 

2). 



Exercise: Computational Complexity 
Assuming that none of the steps in the body of the following for 
loops depend on the problem size stored in the variable n, what is 
the computational complexity of each of the following examples: 

for (int i = 0; i < n; i++) { 

   for (int j = 0; j < i; j++) { 

      . . . loop body . . . 
   } 

} 

a) 

for (int k = 1; k <= n; k *= 2) { 

   . . . loop body . . . 
} 

b) 

c) for (int i = 0; i < 100; i++) { 

   for (int j = 0; j < i; j++) { 

      . . . loop body . . . 
   } 

} 

O ( N 
2

 ) 
This loop follows the pattern 
from selection sort. 

O ( log N  )  
This loop follows the pattern 
from binary search. 

O ( 1 ) 
This loop does not depend on 
the value of n at all. 



Finding a More Efficient Strategy 
• As long as arrays are small, selection sort is a perfectly 

workable strategy.  Even for 10,000 elements, the average 
running time of selection sort is just over a second. 

• The quadratic behavior of selection sort, however, makes it 
less attractive for the very large arrays that one encounters in 
commercial applications.  Assuming that the quadratic growth 
pattern continues beyond the timings reported in the table, 
sorting 100,000 values would require two minutes, and 
sorting 1,000,000 values would take more than three hours. 

• The computational complexity of the selection sort algorithm, 
however, holds out some hope: 

– Sorting twice as many elements takes four times as long. 

– Sorting half as many elements takes only one fourth the time. 

– Is there any way to use sorting half an array as a subtask in a 
recursive solution to the sorting problem? 



The Merge Sort Idea 
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Divide the vector into two halves: v1 and v2. 1. 

Sort each of v1 and v2 recursively. 2. 

Clear the original vector. 3. 

Merge elements into the original vector by choosing the smallest 
element from v1 or v2 on each cycle. 

4 



/* 

 * The merge sort algorithm consists of the following steps: 

 * 

 * 1. Divide the vector into two halves. 

 * 2. Sort each of these smaller vectors recursively. 

 * 3. Merge the two vectors back into the original one. 

 */ 
 

void Sort(Vector<int> & vec) { 

   int n = vec.size(); 

   if (n <= 1) return; 

   Vector<int> v1; 

   Vector<int> v2; 

   for (int i = 0; i < n; i++) { 

      if (i < n / 2) { 

         v1.add(vec[i]); 

      } else { 

         v2.add(vec[i]); 

      } 

   } 

   Sort(v1); 

   Sort(v2); 

   vec.clear(); 

   Merge(vec, v1, v2); 

} 

 

The Merge Sort Implementation 
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/* 

 * The merge sort algorithm consists of the following steps: 

 * 

 * 1. Divide the vector into two halves. 

 * 2. Sort each of these smaller vectors recursively. 

 * 3. Merge the two vectors back into the original one. 

 */ 
 

void Sort(Vector<int> & vec) { 

   int n = vec.size(); 

   if (n <= 1) return; 

   Vector<int> v1; 

   Vector<int> v2; 

   for (int i = 0; i < n; i++) { 

      if (i < n / 2) { 

         v1.add(vec[i]); 

      } else { 

         v2.add(vec[i]); 

      } 

   } 

   Sort(v1); 

   Sort(v2); 

   vec.clear(); 

   Merge(vec, v1, v2); 

} 

 

/* 

 * Function: Merge 

 * --------------- 

 * This function merges two sorted vectors (v1 and v2) into the 

 * vector vec, which should be empty before this operation. 

 * Because the input vectors are sorted, the implementation can 

 * always select the first unused element in one of the input 

 * vectors to fill the next position. 

 */ 
 

void Merge(Vector<int> & vec, Vector<int> & v1, Vector<int> & v2) { 

   int n1 = v1.size(); 

   int n2 = v2.size(); 

   int p1 = 0; 

   int p2 = 0; 

   while (p1 < n1 && p2 < n2) { 

      if (v1[p1] < v2[p2]) { 

         vec.add(v1[p1++]); 

      } else { 

         vec.add(v2[p2++]); 

      } 

   } 

   while (p1 < n1) vec.add(v1[p1++]); 

   while (p2 < n2) vec.add(v2[p2++]); 

} 

The Merge Sort Implementation 
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The Complexity of Merge Sort 

Sorting 8 items 

Two sorts of 4 items 

requires 

Four sorts of 2 items 

which requires 

Eight sorts of 1 item 

which requires 

The work done at each level (i.e., the sum of the work done by all 
the calls at that level) is proportional to the size of the vector.  
The running time is therefore proportional to N times the number 
of levels. 



How Many Levels Are There? 

• The number of levels in the merge sort decomposition is equal 
to the number of times you can divide the original vector in 
half until there is only one element remaining.  In other words, 
what you need to find is the value of k that satisfies the 
following equation: 

1  =  N  /  2  /  2  /  2  /  2  . . .   /  2 

k times 

• You can simplify this formula using basic mathematics: 

1  =  N  /  2k 

2k  =  N 

k  =  log2 N 

• The complexity of merge sort is therefore O(N log N). 



Comparing N 

2 and N log N 

• The difference between O(N 

2) and O(N log N) is enormous for 
large values of N, as shown in this table: 

1,000,000 1,000,000,000,000 19,931,569 

100,000 10,000,000,000 1,660,964 

10,000 100,000,000 132,877 

1,000 1,000,000 9,966 

100 10,000 664 

10 100 33 

N 

2 N log2 N N 

• Based on these numbers, the theoretical advantage of using 
merge sort over selection sort on a vector of 1,000,000 values 
would be a factor of more than 50,000. 



Standard Complexity Classes 

exponential O(2N) Tower of Hanoi solution 

cubic O(N 

3) Obvious algorithms for matrix multiplication 

quadratic O(N 

2) Selection sort 

N log N O(N log N) Merge sort 

linear O(N) Summing a vector; linear search 

logarithmic O(log N) Binary search in a sorted vector 

constant O(1) Finding first element in a vector 

• The complexity of a particular algorithm tends to fall into one 
of a small number of standard complexity classes: 

• In general, theoretical computer scientists regard any problem 
whose complexity cannot be expressed as a polynomial as 
intractable. 



Graphs of the Complexity Classes 
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The End 


