CS 2213

Advanced Programming
Ch 8 — Abstract Data Types

Turgay Korkmaz

Office: SB 4.01.13
Phone: (210) 458-7346
Fax: (210) 458-4437
e-mail: korkmaz@cs.utsa.edu
web: www.cs.utsa.edu/~korkmaz

Thanks to Eric S. Roberts, the author of our textbook, for providing some slides/figures/programs.

http://www.cs.utsa.edu/~korkmaz

i Objectives

To appreciate the concept and purpose of abstract data types, or
ADTs

= To understand both the abstract behavior and the underlying
implementation of the stack data type

To be able to use incomplete type mechanism in ANSI C to define
ADTs

To recognize that ADTs provide an attractive alternative to maintaining
encapsulated state within a module.

To understand the design and implementation of a scanner
abstraction based on ADTs (self-study)

Data Structure hierarchy

The atomic data types—such as int, char,
double, and enumerated types—occupy
the lowest level in the hierarchy.

To represent more complex information,
we combine the atomic types to form
larger structures (e.g., struct A {...}).

These larger structures can then be
assembled into even larger ones in an
open-ended process using pointers.

Collectively, these assemblages of
information into more complex types are
called data structures.

atomic
types

records
(struct {..})

data
structures
(stack, list,

trees, graphs)

i Abstract data Type (ADT)

= It is usually far more important to know how a data structure
behaves rather than how it is represented or implemented

= A type defined in terms of its behavior rather than its
representation is called an abstract data type (ADT)

= ADTs are defined by an interface (recall ch3)

Simplicity. Hiding the internal representation from the client means that there are fewer

details for the client to understand.

Flexibility. Because an ADT is defined in terms of its behavior, the lib programmer who
implements one is free to change its underlying representation. As with any abstraction, it
is appropriate to change the implementation as long as the interface remains the same so

app programmer will not know the changes in lib implementation.

Security. The interface boundary acts as a wall that protects the implementation and the
client from each other. If a client program has access to the representation, it can change
the values in the underlying data structure in unexpected ways. Making the data private in
an ADT prevents the client from making such changes. 4

i Stacks

= [0 understand the concept of ADT, we consider a
specific data structure, namely stack
= a storage for a collection of data values (elements)

= values are removed from a stack in the opposite order
from which they were added, so that the last item added
to a stack is always the first item that gets removed.

= Adding a new element to a stack is called pushing
= Removing the most recent item from a stack is called
popping
= S0 the defining behavior of stack is
“Last in, First out” (LIFO)

The Stack Metaphor

« A stack Is a data structure in which

the elements are accessible only in a A 00
last-in/first-out order.

» The fundamental operations on a stack
are push, which adds a new value to
the top of the stack, and pop, which
removes and returns the top value.

« One of the most common metaphors
for the stack concept is a spring-loaded
storage tray for dishes. Adding a new
dish to the stack pushes any previous
dishes downward. Taking the top dish
away allows the dishes to pop back up.

i

Stacks turn out to be particularly useful in a variety of
programming applications.

APPLICATIONS OF STACKS
&

\;7 3)
&
A

i Applications of Stacks

= The primary reason that stacks are important in
brogramming is that nested function calls
nehave in a stack-oriented faShion, recall Fact(n) example

= Pocket calculator example from the textbook

= Compiler example: check if bracketing operators
(parentheses, brackets, and curly braces) in a
string are properly matched.

Stacks and pocket calculators

= SUppose you want to compute
50.0*1.5+ 3.8/ 2.0

= In a (reverse Polish notation, or RPN) calculator, you will
do this as follows:
50.0 (ENTER) 1.5 (x) 3.8 (ENTER) 2.0 (/) (%)

= ENTER: PUSH the previous value on a stack
= Arithmetic operator (+ - * /):
= if the user has just entered a value push it on the stack

= Else
= POP the top two values from stack
= Apply the arithmetic OP
= PUSH the result on the stack

Exercise: Stack Processing

Write a C program that checks whether the bracketing
operators (parentheses, brackets, and curly braces) in a string

are properly matched. As an example of proper matching,
consider the string

{s=2%* (a[2] + 3); x= (1 + (2)); }

If you go through the string carefully, you discover that all the
bracketing operators are correctly nested, with each open
parenthesis matched by a close parenthesis, each open bracket
matched by a close bracket, and so on.

’ 806 OperatorMatching

Enter string: { s = 2 * (a[2] + 3); x = (1 + (2)); } If we I?ave_ a Stack
Brackets are properly nested ADT, it will be easy to
Enter string: (a[2] + b[3) solve this problem...

Brackets are incorrect
Enter string:

HOW?

+

s stack.h defines the behavior of Stack ADT

= Export data types
= Export prototypes for public functions (new_stack, push, pop, etc.)

= stack.c implements the public and private functions

DEVELOPING A STACK ADT st

¢

11

i Data Types in Stack ADT

= Before implementing stack ADT, we need to
consider two important types:
= The type of the element stored in the stack
= The type of the stack data structure itself

= We must decide whether each type is
« part of the library implementation or
= part of the client’s domain/application

12

First think about
i the type of the element

For example, double in calculator, char in bracket matching
Stack element type belongs to the client’s domain/application

Stack implementation does not need to worry about the type of elements. All it
needs to store and return an element with any type

So if C had any type, we would simply use any for data elements

But, C has no such type and requires specific types when the exported functions
declare their parameters...
The closest thing C provides is the type void * which is compatible with any
pointer type
SO, ONE SOLUTION TO DECIDING THE TYPE OF STACK ELEMENT
= Define stack element type as void *
= Let client application allocate memory for any element and give its pointer to stack ATD
= Our Stack ADT will push/pop pointers to/from stack (GREAT FLEXIBILITY) but
= For some applications dealing with pointers might be to complicated and inefficient! 5

The type of the element
(second solution)

f you allow client to access the source code of stack library
or package, you can increase the flexibility and efficiency by
using typedef

In stack.h define
typedef double StackElementT;

If client wants to use stack ADT with char type, all he/she
needs to do change the above definition with

typedef char StackElementT;

= - Client will edit stack.h (violates principle of abstraction)
= - Client should have the source code to compile

There is no optimal design strategy. The best you can do
typedef voilid *StackElementT; 14

The type of the stack itself

= Stack type definitely belongs to the library
implementation of stack ADT

= Your implementation should be able to
= push values of stackElementT onto a stack
=« retrieve them in a LIFO order when popped

= [0 perform these operation you need to
choose a representation for stack

= Client should not see the implementation
details or internal representations. Why?

i Opaque type

In stack.h we can define an opaque type such that its
underlying representation is hidden form client (it is
later implemented in stack.c)

typedef struct nameCDT *nameADT;

For Stack ADT:

= We will have the following incomplete type in stack.h
typedef struct stackCDT *stackADT;

= We then define the concrete type in implementation stack.c
struct stackCDT {

field declarations

é. Defining stack.h Interface

ifndef _stack h /* for comments see actual stack.h in the textbook */

- #define _stack_h
" #include "genlib.h"
typedef double stackElementT; // char, void *, etc...

typedef struct stackCDT *stackADT;,

stackADT NewStack(void);

void FreeStack(stackADT stack);

void Push(stackADT stack, stackElementT element);
stackElementT Pop(stackADT stack);

bool StackIsEmpty(stackADT stack);

bool StackIsFull(stackADT stack);

int StackDepth(stackADT stack);

stackElementT GetStackElement(stackADT stack, int index);

#endif

As library
developer
we need to
also
implement
stack.c

For the time
being,
suppose we
implemented
stack.c

So stack lib
is ready to
be used by
applications.

17

A client/driver using stack.h:

& 3} void ApplyOperator(char op, stackADT operandStack)
{
r rp n Ca I C m C double Ihs, rhs, result;
#include "stack.h" /* other libraries ... */ rhs = Pop(operandStack);
main() lhs = Pop(operandStack);
itch (op) {

{ S\g;tsce '+'[') result = lhs + rhs; break;
Sta_CkA_DT operandStack; case '—':.result = |hs - rhs; l’3reak; ’
string line; case "*': result = lhs * rhs; break;
char ch; case '/": result = Ihs / rhs; break;
operandStack = NewStack(); default: Error("Illegal operator %c", op);
while (TRUE) 1 ;rintf("°/ g\n", result);

printf("> "); line = GetLine(); 09V ' .
ch = toupper(line[0]); , Push(operandStack, result);
switch (ch) { static void ClearStack(stackADT stack)
case 'Q": exit(0); {
case 'H': HelpCommand(); break; while (IStackIsEmpty(stack)) {
case 'C': ClearStack(operandStack); break; (void) Pop(stack);
case 'S": DisplayStack(operandStack); break;) ¥
default: . A
if (isdigit(ch)) { ?tatlc void DisplayStack(stackADT stack)
Push(operandStack, StringToReal(line)); int i, depth;
}else{
ApplyOperator(ch, operandStack); printf("Stack: ");
} depth = StackDepth(stack);
break; }
) ; static void HelpCommand(void)
{..}
1

#ifndef _stack_h /* for comments see actual stack.h in
the textbook */
#define _stack_h

#include "genlib.h"
typedef double stackElementT; // char, void *, etc...

typedef struct stackCDT *stackADT;

stackADT NewsStack(void);

void FreeStack(stackADT stack);

void Push(stackADT stack, stackElementT element);
stackElementT Pop(stackADT stack);

bool StackIsEmpty(stackADT stack);

bool StackIsFull(stackADT stack);

int StackDepth(stackADT stack);

stackElementT GetStackElement(stackADT stack, int index);

#endif

IMPLEMENTATION OF STACK.C

19

3}
Concrete Data Type (CDT)

= First provide a concrete representation for
abstract type stackADT in stack.c

= Suppose we decided to use ARRAY to hold
elements on the stack

#define MaxStackSize 100
struct stackCDT {

stackElementT elements[MaxStackSize];

int count;

b

= We then implement the exported (public) and
private functions

20

stack.c

#include “stack.h” /* other libraries ... */

#define MaxStackSize 100

struct stackCDT {
stackElementT elements[MaxStackSize];
int count;

ber

stackADT NewStack(void)

{
stackADT stack;

stack = New(stackADT);
stack->count = 0;
return (stack);

}

void FreeStack(stackADT stack)
{

}

FreeBlock(stack);

void Push(stackADT stack, stackElementT element)
{
if (StackIsFull(stack)
Error("Stack Size exceeds”);
stack->elements[stack->count++] = element;

}

stackElementT Pop(stackADT stack)
{
if (StackIsEmpty(stack))
Error("Pop of an empty stack");
return (stack->elements|[--stack->count]);

}

bool StackIsEmpty(stackADT stack)
{ return (stack->count == 0);

¥

Igool StackIsFull(stackADT stack)

return (stack->count == MaxStackSize);

}

NO
[REY

int StackDepth(stackADT stack)
{

¥

stackElementT GetStackElement(stackADT stack,

{

¥

return (stack->count);

int index)

if (index < 0 || index >= stack->count) {
Error("Non-existent stack element");

¥

return (stack->elements[stack->count - index - 1]);

count w index

[6] —
[5]
[4]
[3]
[2]
[1]
[0]

> W O O m M

o A W N —H O

22

2

#include “stack.h” /* and other libraries ... */

#define InitialStackSize 100
struct stackCDT {
stackElementT *elements;
int count;
int size;

hor

/* Prototype for Private functions, NOT exported in stack.h */

static void ExpandStack(stackADT stack);
stackADT NewStack(void)

{
stackADT stack;

stack = New(stackADT);

stack->elements = NewArray(InitialStackSize, stackElementT);
stack->count = 0;

stack->size = InitialStackSize;

return (stack);

Improving stack.c implementation using
& "dynamic array while keeping stack.h as is

23

void Push(stackADT stack, stackElementT element)
{

if (stack->count == stack->size) ExpandStack(stack);
stack->elements[stack->count++] = element;

)
stackElementT Pop(stackADT stack)

{
if (StackIsEmpty(stack)) Error("Pop of an empty stack™);

return (stack->elements[--stack->count]);

}

bool StackIsEmpty(stackADT stack)
{

}
bool StackIsFull(stackADT stack)

{

}
void FreeStack(stackADT stack)

{

return (stack->count == 0);

return (FALSE);

FreeBlock(stack->elements);
FreeBlock(stack);

}

24

int StackDepth(stackADT stack)
{

return (stack->count);

stackElementT GetStackElement(stackADT stack, int index)
{
if (index < 0 || index >= stack->count) {
Error("Non-existent stack element");
}

return (stack->elements[stack->count - index - 1]);
by
/* Private functions, NOT exported in stack.h */
static void ExpandStack(stackADT stack)
{
stackElementT *array;
int i, newSize;

newSize = stack->size * 2;
array = NewArray(newSize, stackElementT);
for (i = 0; i < stack->size; i++) {
array[i] = stack->elements|[i];
)

FreeBlock(stack->elements);
stack->elements = array;
stack->size = newSize;

25

S . Exercise:
il Proper matching of {([]1)}

= \Write a C program that checks whether the
bracketing operators (parentheses, brackets,
and curly braces) in a string are properly
matched. ot

#include "genlib.h"

H FO r exa m p | e / typedef Char stackElementT;

typedef struct stackCDT *stackADT;

{ s = 2 * (a[2] + 3); X = (1 + (2)); } stackADT NewStack(void);

void FreeStack(stackADT stack);

void Push(stackADT stack, stackElementT
element);

I S a p ro pe r I I la tC h I n g J stackElementT Pop(stackADT stack);
bool StackIsEmpty(stackADT stack);
bool StackIsFull(stackADT stack);

Suppose you can change stack.h so that it exports It StackDepth(staclADT stack);
stackElementT GetStackElement(stackADT
typedef char stackElementT; stack, int index); 6

Home Exercise #endif

S |
3} Exercise: Reimplementation of

i1 RPN calculator and Proper matching

#ifndef _stack_h
#define _stack_h

= Suppose you cannot change rmosswer

typedef void *stackElementT,

stack.h and instead of char sesnasescorsaaon

stackADT NewStack(void);

void FreeStack(stackADT stack);

or double, it currently @Xports smseusr su st ceners

stackElementT Pop(stackADT stack);
t ed ef VO i d * Sta C kE I e m e ntT m | bool StackIsEmpty(stackADT stack);
y p J | bool StackiIsFull(stackADT stack);
int StackDepth(stackADT stack);

= Given this version of stack.h, s e

#endif

implement RPN calc and proper matching

= What will be the main difference
+= Dynamically allocate memory for each value that

@

£ you push, free when you pop and/or reuse...

27

—

rpncalc.c s

A client/driver using stack.h:

#include "stack.h" /* other libraries ... */
main()

{

<~

stackADT operandStack;
string line;

char ch;

operandStack = NewStack();
while (TRUE) {

printf("> "); line = GetLine();
ch = toupper(line[0]);
switch (ch) {
case 'Q'": exit(0);
case 'H': HelpCommand(); break;
case 'C": ClearStack(operandStack); break;
case 'S": DisplayStack(operandStack); break;
default:
if (isdigit(ch)) {
Push(operandStack, StringToReal(line));
}else{
ApplyOperator(ch, operandStack);
)

break;

void ApplyOperator(char op, stackADT operandStack)

{

double |hs, rhs, result;

rhs = Pop(operandStack);
lhs = Pop(operandStack);
switch (op) {
case '+": result = |hs + rhs; break;
case '-": result = |hs - rhs; break;
case "*": result = |hs * rhs; break;
case '/": result = Ihs / rhs; break;
default: Error("Illegal operator %c", op);
by
printf("%g\n", result);
Push(operandStack, result);
by
static void ClearStack(stackADT stack)
{
while (!StackIsEmpty(stack)) {
(void) Pop(stack);
by
by
static void DisplayStack(stackADT stack)

{
int i, depth;

printf("Stack: ");
depth = StackDepth(stack);

static void HelpCommand(void)

{3

!'_ SCANNER ADT

STUDY Section 8.5 from the textbook

This line contains 10 tokens.

This line contains 10 tokens | .

Next homework may use scannerADT

Danger of Encapsulated State

= You can declare a global variable in a module to
maintain state between functions (e.g., randword.c,
scanadt.h in previous book)
= static will make it private (encapsulated state)

= The module that uses it can have only one copy of

the state information,
= S0 we cannot use that module in different parts of the program

= In case of layered abstractions, client may not know anything about
the underlying modules and use them in different places, resulting in

error...
= ADT provide a safe alternative to encapsulated state
30

