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Ch 13 –  Trees 
Basic definitions and Binary Search Tree (BST) 
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Objectives 

 To understand the concept of trees and the standard terminology used 
to describe them. 

 To appreciate the recursive nature of a tree and how that recursive 
structure is reflected in its underlying representation. 

 To become familiar with the data structures and algorithms used to 
implement binary search trees. 

 To recognize that it is possible to maintain balance in a binary search 
tree as new keys are inserted. (Part 2) 

 To learn how binary search trees can be implemented as a general 
abstraction. 
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What is a tree? 

 A tree is defined to be a collection of 
individual entries called nodes for which the 
following properties hold: 

 As long as the tree contains any nodes at all, 
there is a specific node called the root that 
forms the top of a hierarchy. 

 Every other node is connected  

 to the root by a unique line of descent. 
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Trees Are Everywhere 

 Tree-structured hierarchies occur in many 
contexts outside of computer science. 

 Game trees 

 Biological classifications 

 Organization charts 

 Directory hierarchies 

 Family trees 

 Many more… 
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Tree  
Terminology 

 Most terms come from family tree analogue  
 William I is the root of the tree. 

 Adela is a child of William I and the parent of Stephen. 

 Robert, William II, Adela, and Henry I are siblings. 

 Henry II is a descendant of William I, Henry I, and Matilda 

 William I is an ancestor of everyone else. 

 Other terms 
 Nodes that have no children are called leaves 

 Nodes that are neither the root nor a leaf are called interior nodes 

 The height/depth of a tree is the length of 
the longest path from root to a leaf 
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Recursive nature of a tree 

 Take any node in a tree together with all its 
descendants, the result is also  

 a tree (called a subtree of the original one)  

 Each node in a tree can be considered the  

 root of its own subtree  

 This is the recursive nature of tree structures.  
 A tree is simply a node and a set of attached subtrees           

— possibly empty set in the case of a leaf node— 

 The recursive character of trees is fundamental to their underlying 
representation as well as to most algorithms that operate on trees. 
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Representing family trees in C 

 How can we represent the hierarchical 
(parent/children) relationships among the nodes 
 Include a pointer in the parent to point the child 

 A tree is a pointer to a node. 

 A node is a structure that contains some number of trees. 
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Use index values 
of an array (Heap) 

#define MaxChildren 5 
 
typedef struct familyNodeT { 
   string  name; 
   struct  familyNodeT  *children[MaxChildren]; 
} familyNodeT; 
 
typedef  familyNodeT   *familyTreeT; 



Binary Trees: 
One of the most important subclasses of trees with many practical applications  

 A binary tree is defined to be a tree in 
which the following additional properties 
hold: 

 Each node in the tree has at most two 
children. 

 Every node except the root is designated as 
either a left child or a right child of its parent. 

 This geometrical relationship allows to 
represent ordered collections of data 
using binary trees (binary search tree) 
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Binary Search Trees 

 A binary search tree is defined by the 
following properties:  
1. Every node contains—possibly in addition to other 

data—a special value called a key that defines the 
order of the nodes. 

2. Key values are unique, in the sense that no key can 
appear more than once in the tree. 

3. At every node in the tree, the key value must be 

 greater than  all the keys  in its left subtree 

 less than   all the keys  in its right subtree. 
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Motivation for Using 
Binary Search Trees 

 Suppose we want to keep keys sorted 

 What will be the complexity of lookup and insert 
if we use an Array 
 Lookup can be done in O(log N), how? 

 Enter/Insert will be in O(N) 

 How about using Linked List 

 Lookup/Enter will be done in O(N). Why? 

 LL cannot find middle element efficiently (skip list may help) 

 Can both Lookup and Enter be done in O(log N)? 

 Yes, by using Binary search trees 10 



Finding nodes in a binary 
search tree: Recursive 

typedef struct nodeT { 

 char key; 

 struct nodeT *left, *right; 

} nodeT, *treeT; 
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nodeT *FindNode(nodeT *t, char key)  

{ 

   if (t == NULL) return NULL; 

   if (key == t->key) return t; 

   if (key < t->key) { 

     return FindNode(t->left, key); 

   } else { 

     return FindNode(t->right, key); 

  } 

} 
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nodeT *node; 
nodeT *t; 
… 
node=FindNode(t, ‘F’); 

t 

!!! Note !!!: Textbook uses treeT. Instead, I use nodeT  * 

Is there any difference? 



Exercise: Iterative version of 
Finding nodes in a binary search tree 

typedef struct nodeT { 

 char key; 

 struct nodeT *left, *right; 

} nodeT, *treeT; 
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nodeT *FindNode(nodeT *t, char key)  

{ 

 while(t !=NULL) {  

    if (key == t->key) return t; 

       if (key < t->key) { 

  t = t->left; 

    } else { 

  t = t->right; 

 } 

     return NULL; 

} 
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nodeT *node; 
nodeT *t; 
… 
node=FindNode(t, ‘F’); 
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Tree Traversal (inorder) 

void DisplayTree(nodeT *t) 

{ 

  if (t != NULL) { 

    DisplayTree(t->left); 

    printf(“%c “, t->key); 

    DisplayTree(t->right); 

  } 

} 
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nodeT *node; 
nodeT *t; 
… 
DisplayTree(t); 

A B C D E F G  

t 



Preorder and Postorder  
Tree Traversal 

void PreOrderWalk(nodeT *t) 

{ 

  if (t != NULL) { 

    printf(“%c “, t->key); 

    DisplayTree(t->left); 

    DisplayTree(t->right); 

  } 

} 
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void PostOrderWalk(nodeT *t) 

{ 

  if (t != NULL) { 

    DisplayTree(t->left); 

    DisplayTree(t->right); 

    printf(“%c “, t->key); 

  } 

} 

A C B F E G D 

t 



Exercise: Modify one of the traversal 
functions to print the tree as follow 

D 

+---B 

|   +---A 

|   +---C 

+---G 

|   +---E 

|   |   +---F 
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void PrintTree(nodeT *t)  

{   ModifyPreOrderWalk(t, 1);  } 

void ModifyPreOrderWalk(nodeT *t, int h) 

{ 

    int i; 

    if (t == NULL)  return; 

    for(i=0; i < h-1; i++) { 

    printf(“|   “); 

    } 

    if (h>1) printf(“+---“); 

    printf(“%c\n“, t->key); 

    ModifyPreOrderWalk(t->left, h+1); 

    ModifyPreOrderWalk(t->right, h+1); 

  } 

} 

t 



Exercise: Height 

 Suppose we want to find the height of a 
Binary Search Tree t 

 Write a function that returns  

  the height of the tree 

 Recursive Idea  

1 + Maximum of  

 (height of left subtree, height of right subtree). 
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int height(nodeT *t)  

{ 

  if (t == NULL) 

      return 0; 

  else 

     return (1 + maximumof( 

                   height(t->left), 

                   height(t->right)) ); 

} 

typedef struct nodeT { 

 char key; 

 struct nodeT *left, *right; 

} nodeT, *treeT; 



Exercise:  
Sum, Min, Max 

 Suppose we store integer values in a Binary 
Search Tree t 

 Write a function that returns  

  the sum of values in the tree 

 Recursive Idea  
 Value of the current node 

 + the sum of values of all nodes of left subtree  

 + the sum of values of all nodes in right subtree. 

 How about max, min in bst or just in a binary 
tree where values may not be sorted? 17 

int add(struct tree_node *p)  

{ 

  if (p == NULL) 

      return 0; 

  else 

     return (p->data +  

                add(p->left) + 

                add(p->right) ); 

} 

struct  tree_node { 

   int data; 

   struct tree_node *left, *right; 

} 



Exercise: Tree Traversal  
level order 

void DisplayTreeLevelOrder(nodeT *t) 

{ 

 

  if (t != NULL) { 

   ?????? 

 

  } 

} 
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nodeT *node; 
nodeT *t; 
… 
DisplayTreeLevelOrder(t); 
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A little bit harder version 
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Insert - Delete 

19 



Creating a tree in  
a client program 
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main()   

{ 

  nodeT   nt1, *nt2; 

  treeT     tt1,  *tt2; 
 

  nt2 = (nodeT *) malloc(sizeof(nodeT)); 

  if(nt2==NULL) { 

     printf(”no memory”); 

     exit(-1); 

  } 

  nt1.key = ‘A’; nt1.left = nt1.right= NULL; 

  nt2->key = ‘D’; nt2->left = nt2->right= NULL; 

  tt1 = nt2; 

  tt2 = &nt2; 

  InsertNode(&nt2, ‘B’); //  InsertNode(tt2, ‘B’); 

} 

nt1 nt2 

typedef struct nodeT { 

 char key; 

 struct nodeT *left, *right; 

} nodeT, *treeT; 

key ? 

left ? 

right ? 

key ? 

left ? 

right ? 

tt1 

tt2 

key A 

left 0 

right 0 

key D 

left 0 

right 0 

void InsertNode(nodeT  **tptr, char key)  

B 

// nodeT   *tt1, **tt2 

// nt2 = New(nodeT   *) ; 



Inserting new nodes in a 
binary search tree 

typedef struct nodeT { 

 char key; 

 struct nodeT *left, *right; 

} nodeT, *treeT; 
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void InsertNode(nodeT  **tptr, char key)  

{ 

     nodeT  *tmp; 

     tmp=*tptr; 

 if (tmp == NULL) { 

         tmp=New(nodeT *); 

         tmp->key = key; 

         tmp->left=tmp->right=NULL; 

         *tptr=tmp; 

         return; 

     } 

 if (key < tmp->key) { 

  InsertNode(&tmp->left, key); 

 } else { 

  InsertNode(&tmp->right, key); 

 } 

} 
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F nodeT *node; 
nodeT *t=NULL; 
InsertNode(&t, ‘D’); 
InsertNode(&t, ‘B’); 
…  

t 

void InsertNode(nodeT  **tptr, char 



Exercise: modify this such that 
each node points parent node 
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typedef struct nodeT { 

 char key; 

    struct nodeT *parent; 

 struct nodeT *left, *right; 

} nodeT, *treeT; 

void InsertNode(nodeT  **tptr, char key)  

{ 

     nodeT  *tmp; 

     tmp=*tptr; 

 if (tmp == NULL) { 

         tmp=New(nodeT *); 

         tmp->key = key; 

         tmp->left=tmp->right=NULL; 

         *tptr=tmp; 

         return; 

     } 

 if (key < tmp->key) { 

  InsertNode(&tmp->left, key); 

 } else { 

  InsertNode(&tmp->right, key); 

 } 

} 



Deleting nodes from a binary 
search tree 
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Delete D  
 
??? 

target->left==NULL &&  
target->right==NULL 

target->left == NULL target->right == NULL 



Deleting nodes from a binary 
search tree: easy cases 

typedef struct nodeT { 

 char key; 

 struct nodeT *left, *right; 

} nodeT, *treeT; 
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nodeT *t;  
// Suppose we want to delete ‘E’,  

// find/determine pointer to target node 

DeleteNode(&t->right->left); 
// if ‘A’, DeleteNode(&t->left->left); 

void DeleteNode(nodeT  **p)  

{ 

   nodeT *target; 

   target=*p; 

   if (target->left==NULL && target->right==NULL) { 

        *p=NULL; 

   } else if (target->left == NULL) { 

         *p=target->right; 

   } else  if (target->right == NULL) { 

         *p=target->left; 

   } else  {   

 

         /*   target has two children, see next slide */ 

 

   } 

   free(target); 

} 
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Deleting nodes from a binary 
search tree: two children 
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void DeleteNode(nodeT  **p)  

{ 

   nodeT *target, *lmd_r, *plmd_r; 

   target=*p; 

   … /* easy cases, see previous slide */ 

   } else {   

      plmd_r = target; 

      lmd_r = target->right; 

      while( lmd_r->left != NULL){ 

          plmd_r = lmd_r; 

          lmd_r = lmd_r->left; 

      } 

      plmd_r->left = lmd_r->right; 

      lmd_r->left = target->left; 

      lmd_r->right = target->right; 

      *p = lmd_r; 

   } 

   free(target); 

} 

1. Replace the target node with its 
immediate successor,        
which is the smallest value in the 
right subtree (lmd_r  -- leftmost 
descendant in right subtree)  

2. Delete lmd_r (easy case, why?) 
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DeleteNode(&t);   

Is there any 
other case 
missing! 

target->key =   
    lmd_r->key; 
target = lmd_r; 

t 



Deleting nodes from a binary 
search tree: two children (corrected) 
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void DeleteNode(nodeT  **p)  

{ 

   nodeT *target, *lmd_r, *plmd_r; 

   target=*p; 

   … /* easy cases, see previous slide */ 

   } else {   
      plmd_r = target; 

      lmd_r = target->right; 

      while( lmd_r->left != NULL){ 

          plmd_r = lmd_r; 

          lmd_r = lmd_r->left; 

      } 

     if(plmd_r == target) 
         plmd_r->right = lmd_r->right; 
     else 
         plmd_r->left = lmd_r->right; 

      lmd_r->left = target->left; 

      lmd_r->right = target->right; 

      *p = lmd_r; 

   } 

   free(target); 

} 

1. Replace the target node with its 
immediate successor,        
which is the smallest value in the 
right subtree (lmd_r  -- leftmost 
descendant in right subtree)  

2. Delete lmd_r (easy case, why?) 
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DeleteNode(&t);   

Can you think 
of another 
strategy (see 
the exercise 
in the next 
slide) 

target->key =   
    lmd_r->key; 
target = lmd_r; 
 

t 



Exercise: new strategy for deleting nodes 
from a binary search tree: two children 
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void DeleteNode(nodeT  **p) /* Modify this one*/ 

{ 

   nodeT *target, *lmd_r, *plmd_r; 

   target=*p; 

   … /* easy cases see previous slide */ 

   } else {   

      plmd_r = target; 

      lmd_r = target->right; 

      while( lmd_r->left != NULL){ 

          plmd_r = lmd_r; 

          lmd_r = lmd_r->left; 

      } 
     if(plmd_r == target) 

         plmd_r->right = lmd_r->right; 

     else 

         plmd_r->left = lmd_r->right; 

      lmd_r->left = target->left; 

      lmd_r->right = target->right; 

      *p = lmd_r; 

   } 

1. Replace the target node with its 
immediate predecessor, 
which is the largest value in the 
left subtree (rmd_l -- rightmost 
descendant in left subtree)  

2. Delete rmd_l (easy case, why?) 
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Delete D  

target->key =   
    lmd_r->key; 
target = lmd_r; 
 



Exercise: Deleting a node with 
two children 

 Randomly select one of the previous 
strategies 

 Which one will give better balanced tree 
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Final word: Importance of 
Recursion in Binary Trees 

 It's very difficult to think about how to 
iteratively go through all the nodes in a 
binary tree unless you think 
recursively???  

 With recursion, the code is reasonably 
concise and simple. 

 But in some cases iterative approaches 
might be possible and more efficient 
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