
1

Turgay Korkmaz

Office: SB 4.01.13
Phone: (210) 458-7346
Fax: (210) 458-4437

e-mail: korkmaz@cs.utsa.edu
web: www.cs.utsa.edu/~korkmaz

CS 2213
Advanced Programming

Ch 13 – Trees
Basic definitions and Binary Search Tree (BST)

Thanks to Eric S. Roberts, the author of our textbook, for providing some slides/figures/programs.

http://www.cs.utsa.edu/~korkmaz

Objectives

 To understand the concept of trees and the standard terminology used
to describe them.

 To appreciate the recursive nature of a tree and how that recursive
structure is reflected in its underlying representation.

 To become familiar with the data structures and algorithms used to
implement binary search trees.

 To recognize that it is possible to maintain balance in a binary search
tree as new keys are inserted. (Part 2)

 To learn how binary search trees can be implemented as a general
abstraction.

2

What is a tree?

 A tree is defined to be a collection of
individual entries called nodes for which the
following properties hold:

 As long as the tree contains any nodes at all,
there is a specific node called the root that
forms the top of a hierarchy.

 Every other node is connected

 to the root by a unique line of descent.

3

Trees Are Everywhere

 Tree-structured hierarchies occur in many
contexts outside of computer science.

 Game trees

 Biological classifications

 Organization charts

 Directory hierarchies

 Family trees

 Many more…

4

Tree
Terminology

 Most terms come from family tree analogue
 William I is the root of the tree.

 Adela is a child of William I and the parent of Stephen.

 Robert, William II, Adela, and Henry I are siblings.

 Henry II is a descendant of William I, Henry I, and Matilda

 William I is an ancestor of everyone else.

 Other terms
 Nodes that have no children are called leaves

 Nodes that are neither the root nor a leaf are called interior nodes

 The height/depth of a tree is the length of
the longest path from root to a leaf

5

Recursive nature of a tree

 Take any node in a tree together with all its
descendants, the result is also

 a tree (called a subtree of the original one)

 Each node in a tree can be considered the

 root of its own subtree

 This is the recursive nature of tree structures.
 A tree is simply a node and a set of attached subtrees

— possibly empty set in the case of a leaf node—

 The recursive character of trees is fundamental to their underlying
representation as well as to most algorithms that operate on trees.

6

Representing family trees in C

 How can we represent the hierarchical
(parent/children) relationships among the nodes
 Include a pointer in the parent to point the child

 A tree is a pointer to a node.

 A node is a structure that contains some number of trees.

7

Use index values
of an array (Heap)

#define MaxChildren 5

typedef struct familyNodeT {
 string name;
 struct familyNodeT *children[MaxChildren];
} familyNodeT;

typedef familyNodeT *familyTreeT;

Binary Trees:
One of the most important subclasses of trees with many practical applications

 A binary tree is defined to be a tree in
which the following additional properties
hold:

 Each node in the tree has at most two
children.

 Every node except the root is designated as
either a left child or a right child of its parent.

 This geometrical relationship allows to
represent ordered collections of data
using binary trees (binary search tree)

8

left right

data

Binary Search Trees

 A binary search tree is defined by the
following properties:
1. Every node contains—possibly in addition to other

data—a special value called a key that defines the
order of the nodes.

2. Key values are unique, in the sense that no key can
appear more than once in the tree.

3. At every node in the tree, the key value must be

 greater than all the keys in its left subtree

 less than all the keys in its right subtree.

9

D

E

G

A C

B

F

< <

Motivation for Using
Binary Search Trees

 Suppose we want to keep keys sorted

 What will be the complexity of lookup and insert
if we use an Array
 Lookup can be done in O(log N), how?

 Enter/Insert will be in O(N)

 How about using Linked List

 Lookup/Enter will be done in O(N). Why?

 LL cannot find middle element efficiently (skip list may help)

 Can both Lookup and Enter be done in O(log N)?

 Yes, by using Binary search trees 10

Finding nodes in a binary
search tree: Recursive

typedef struct nodeT {

 char key;

 struct nodeT *left, *right;

} nodeT, *treeT;

11

nodeT *FindNode(nodeT *t, char key)

{

 if (t == NULL) return NULL;

 if (key == t->key) return t;

 if (key < t->key) {

 return FindNode(t->left, key);

 } else {

 return FindNode(t->right, key);

 }

}

D

E

G

A C

B

F
nodeT *node;
nodeT *t;
…
node=FindNode(t, ‘F’);

t

!!! Note !!!: Textbook uses treeT. Instead, I use nodeT *

Is there any difference?

Exercise: Iterative version of
Finding nodes in a binary search tree

typedef struct nodeT {

 char key;

 struct nodeT *left, *right;

} nodeT, *treeT;

12

nodeT *FindNode(nodeT *t, char key)

{

 while(t !=NULL) {

 if (key == t->key) return t;

 if (key < t->key) {

 t = t->left;

 } else {

 t = t->right;

 }

 return NULL;

}

D

E

G

A C

B

F
nodeT *node;
nodeT *t;
…
node=FindNode(t, ‘F’);

t

Tree Traversal (inorder)

void DisplayTree(nodeT *t)

{

 if (t != NULL) {

 DisplayTree(t->left);

 printf(“%c “, t->key);

 DisplayTree(t->right);

 }

}

13

D

E

G

A C

B

F

nodeT *node;
nodeT *t;
…
DisplayTree(t);

A B C D E F G

t

Preorder and Postorder
Tree Traversal

void PreOrderWalk(nodeT *t)

{

 if (t != NULL) {

 printf(“%c “, t->key);

 DisplayTree(t->left);

 DisplayTree(t->right);

 }

}

14

D

E

G

A C

B

F

D B A C G E F

void PostOrderWalk(nodeT *t)

{

 if (t != NULL) {

 DisplayTree(t->left);

 DisplayTree(t->right);

 printf(“%c “, t->key);

 }

}

A C B F E G D

t

Exercise: Modify one of the traversal
functions to print the tree as follow

D

+---B

| +---A

| +---C

+---G

| +---E

| | +---F

15

D

E

G

A C

B

F

void PrintTree(nodeT *t)

{ ModifyPreOrderWalk(t, 1); }

void ModifyPreOrderWalk(nodeT *t, int h)

{

 int i;

 if (t == NULL) return;

 for(i=0; i < h-1; i++) {

 printf(“| “);

 }

 if (h>1) printf(“+---“);

 printf(“%c\n“, t->key);

 ModifyPreOrderWalk(t->left, h+1);

 ModifyPreOrderWalk(t->right, h+1);

 }

}

t

Exercise: Height

 Suppose we want to find the height of a
Binary Search Tree t

 Write a function that returns

 the height of the tree

 Recursive Idea

1 + Maximum of

 (height of left subtree, height of right subtree).

16

int height(nodeT *t)

{

 if (t == NULL)

 return 0;

 else

 return (1 + maximumof(

 height(t->left),

 height(t->right)));

}

typedef struct nodeT {

 char key;

 struct nodeT *left, *right;

} nodeT, *treeT;

Exercise:
Sum, Min, Max

 Suppose we store integer values in a Binary
Search Tree t

 Write a function that returns

 the sum of values in the tree

 Recursive Idea
 Value of the current node

 + the sum of values of all nodes of left subtree

 + the sum of values of all nodes in right subtree.

 How about max, min in bst or just in a binary
tree where values may not be sorted? 17

int add(struct tree_node *p)

{

 if (p == NULL)

 return 0;

 else

 return (p->data +

 add(p->left) +

 add(p->right));

}

struct tree_node {

 int data;

 struct tree_node *left, *right;

}

Exercise: Tree Traversal
level order

void DisplayTreeLevelOrder(nodeT *t)

{

 if (t != NULL) {

 ??????

 }

}

18

D

E

G

A C

B

F

nodeT *node;
nodeT *t;
…
DisplayTreeLevelOrder(t);

D B G A C E F

t

A little bit harder version
D
B G
A C E
F

Insert - Delete

19

Creating a tree in
a client program

20

main()

{

 nodeT nt1, *nt2;

 treeT tt1, *tt2;

 nt2 = (nodeT *) malloc(sizeof(nodeT));

 if(nt2==NULL) {

 printf(”no memory”);

 exit(-1);

 }

 nt1.key = ‘A’; nt1.left = nt1.right= NULL;

 nt2->key = ‘D’; nt2->left = nt2->right= NULL;

 tt1 = nt2;

 tt2 = &nt2;

 InsertNode(&nt2, ‘B’); // InsertNode(tt2, ‘B’);

}

nt1 nt2

typedef struct nodeT {

 char key;

 struct nodeT *left, *right;

} nodeT, *treeT;

key ?

left ?

right ?

key ?

left ?

right ?

tt1

tt2

key A

left 0

right 0

key D

left 0

right 0

void InsertNode(nodeT **tptr, char key)

B

// nodeT *tt1, **tt2

// nt2 = New(nodeT *) ;

Inserting new nodes in a
binary search tree

typedef struct nodeT {

 char key;

 struct nodeT *left, *right;

} nodeT, *treeT;

21

void InsertNode(nodeT **tptr, char key)

{

 nodeT *tmp;

 tmp=*tptr;

 if (tmp == NULL) {

 tmp=New(nodeT *);

 tmp->key = key;

 tmp->left=tmp->right=NULL;

 *tptr=tmp;

 return;

 }

 if (key < tmp->key) {

 InsertNode(&tmp->left, key);

 } else {

 InsertNode(&tmp->right, key);

 }

}

D

E

G

A C

B

F nodeT *node;
nodeT *t=NULL;
InsertNode(&t, ‘D’);
InsertNode(&t, ‘B’);
…

t

void InsertNode(nodeT **tptr, char

Exercise: modify this such that
each node points parent node

22

typedef struct nodeT {

 char key;

 struct nodeT *parent;

 struct nodeT *left, *right;

} nodeT, *treeT;

void InsertNode(nodeT **tptr, char key)

{

 nodeT *tmp;

 tmp=*tptr;

 if (tmp == NULL) {

 tmp=New(nodeT *);

 tmp->key = key;

 tmp->left=tmp->right=NULL;

 *tptr=tmp;

 return;

 }

 if (key < tmp->key) {

 InsertNode(&tmp->left, key);

 } else {

 InsertNode(&tmp->right, key);

 }

}

Deleting nodes from a binary
search tree

23

D

E

G

A C

B

F

Delete A

D

E

G

C

B

F

D

E

G

A C

B

F

Delete E

D

G

A C

B

F

D

E

G

A C

B

F

Delete G

D

E

A C

B

F

D

E

G

A C

B

F

Delete D

???

target->left==NULL &&
target->right==NULL

target->left == NULL target->right == NULL

Deleting nodes from a binary
search tree: easy cases

typedef struct nodeT {

 char key;

 struct nodeT *left, *right;

} nodeT, *treeT;

24

nodeT *t;
// Suppose we want to delete ‘E’,

// find/determine pointer to target node

DeleteNode(&t->right->left);
// if ‘A’, DeleteNode(&t->left->left);

void DeleteNode(nodeT **p)

{

 nodeT *target;

 target=*p;

 if (target->left==NULL && target->right==NULL) {

 *p=NULL;

 } else if (target->left == NULL) {

 *p=target->right;

 } else if (target->right == NULL) {

 *p=target->left;

 } else {

 /* target has two children, see next slide */

 }

 free(target);

}

t

D

E
A

G

C

B

F

left right

D

G

A C

B

F

Deleting nodes from a binary
search tree: two children

25

D

E

G

A C

B

F

void DeleteNode(nodeT **p)

{

 nodeT *target, *lmd_r, *plmd_r;

 target=*p;

 … /* easy cases, see previous slide */

 } else {

 plmd_r = target;

 lmd_r = target->right;

 while(lmd_r->left != NULL){

 plmd_r = lmd_r;

 lmd_r = lmd_r->left;

 }

 plmd_r->left = lmd_r->right;

 lmd_r->left = target->left;

 lmd_r->right = target->right;

 *p = lmd_r;

 }

 free(target);

}

1. Replace the target node with its
immediate successor,
which is the smallest value in the
right subtree (lmd_r -- leftmost
descendant in right subtree)

2. Delete lmd_r (easy case, why?)

E

F

G

A C

C

DeleteNode(&t);

Is there any
other case
missing!

target->key =
 lmd_r->key;
target = lmd_r;

t

Deleting nodes from a binary
search tree: two children (corrected)

26

D

G

A C

B

Z

void DeleteNode(nodeT **p)

{

 nodeT *target, *lmd_r, *plmd_r;

 target=*p;

 … /* easy cases, see previous slide */

 } else {
 plmd_r = target;

 lmd_r = target->right;

 while(lmd_r->left != NULL){

 plmd_r = lmd_r;

 lmd_r = lmd_r->left;

 }

 if(plmd_r == target)
 plmd_r->right = lmd_r->right;
 else
 plmd_r->left = lmd_r->right;

 lmd_r->left = target->left;

 lmd_r->right = target->right;

 *p = lmd_r;

 }

 free(target);

}

1. Replace the target node with its
immediate successor,
which is the smallest value in the
right subtree (lmd_r -- leftmost
descendant in right subtree)

2. Delete lmd_r (easy case, why?)

G

Z

A C

C

DeleteNode(&t);

Can you think
of another
strategy (see
the exercise
in the next
slide)

target->key =
 lmd_r->key;
target = lmd_r;

t

Exercise: new strategy for deleting nodes
from a binary search tree: two children

27

D

E

G

A C

B

F

void DeleteNode(nodeT **p) /* Modify this one*/

{

 nodeT *target, *lmd_r, *plmd_r;

 target=*p;

 … /* easy cases see previous slide */

 } else {

 plmd_r = target;

 lmd_r = target->right;

 while(lmd_r->left != NULL){

 plmd_r = lmd_r;

 lmd_r = lmd_r->left;

 }
 if(plmd_r == target)

 plmd_r->right = lmd_r->right;

 else

 plmd_r->left = lmd_r->right;

 lmd_r->left = target->left;

 lmd_r->right = target->right;

 *p = lmd_r;

 }

1. Replace the target node with its
immediate predecessor,
which is the largest value in the
left subtree (rmd_l -- rightmost
descendant in left subtree)

2. Delete rmd_l (easy case, why?)

C

E

G

A

F

B

Delete D

target->key =
 lmd_r->key;
target = lmd_r;

Exercise: Deleting a node with
two children

 Randomly select one of the previous
strategies

 Which one will give better balanced tree

28

Final word: Importance of
Recursion in Binary Trees

 It's very difficult to think about how to
iteratively go through all the nodes in a
binary tree unless you think
recursively???

 With recursion, the code is reasonably
concise and simple.

 But in some cases iterative approaches
might be possible and more efficient

29

