
1 

 

 

Turgay Korkmaz 
 

Office: SB 4.01.13  
Phone: (210) 458-7346  
Fax: (210) 458-4437  

e-mail: korkmaz@cs.utsa.edu 
web: www.cs.utsa.edu/~korkmaz   

 

CS 2213 
Advanced Programming 

Ch 13 –  Trees 2 
Balanced trees 

Thanks to Eric S. Roberts, the author of our textbook, for providing some slides/figures/programs. 

http://www.cs.utsa.edu/~korkmaz


Binary Search Tree:  
Balancing Problem 

 nodeT *t=NULL; 

 … 

 InsertNode(&t, ‘G’); 

 InsertNode(&t, ‘F’); 

 InsertNode(&t, ‘E’); 

 InsertNode(&t, ‘D’); 

 InsertNode(&t, ‘C’); 

 InsertNode(&t, ‘B’); 

 InsertNode(&t, ‘A’); 

 

2 

In which order the 
keys are inserted such 
that we got  

 D 

E 

G 

A C 

B 

F 

G 

C 

A 

E 

D 

F 

B 

t 

t 



Balanced Binary Search Tree  

 A binary tree is balanced if, at each node, the height of the 
left and right subtrees differ by at most one. 

3 the nodes at which the balanced-tree definition fails are shown as open circles 



Exercise 

 nodeT *t=NULL; 

 … 

 InsertNode(&t, ‘ ’); 

 InsertNode(&t, ‘ ’); 

 InsertNode(&t, ‘ ’); 

 InsertNode(&t, ‘ ’); 

 InsertNode(&t, ‘ ’); 

 InsertNode(&t, ‘ ’); 

 InsertNode(&t, ‘ ’); 

 

4 

In which order should we 
insert the keys  

A B C D E F G 

so that we can get a fully 
balanced tree like this 

 D 

E 

F 

A C 

B 

G 

t 



Exercise: Creating a balanced 
tree from sorted data 

5 

void balance_ins(nodeT **t, char array[ ], 
                   int first, int last) 
{ 
  int mid; 
  if (first <= last) { 
     mid = (first + last)/2; 
     InsertNode(t, array[mid]); 
     balance_ins(t, array, first, mid-1); 
     balance_ins(t, array, mid+1, last); 
  } 
} 

Suppose we have an array containing several values in a sorted 

manner. Can you generalize the idea in previous slide to create a 

balanced tree using the values in the sorted array?  

Binary Search  --- Binary Search based insert 

A B C D E F G 

D 

E 

F 

A C 

B 

G 



Exercise 

 Write a function to mark nodes as black or 
white as shown before in slide 3,  

 white means the balanced-tree definition fails 

 black means the balanced-tree definition holds 

 Write a function to check if a given tree is 
balanced or not 

6 

typedef struct nodeT { 

 char key; 

    short color;  // 0: white  1: black 

 struct nodeT *left, *right; 

} nodeT, *treeT; Home exercise 

int height(nodeT *t)  

{ 

  if (t == NULL) 

      return 0; 

  else 

     return (1 + max( height(t->left), 

                               height(t->right)) ); 

} 



7 

void MarkBW(nodeT *t) { 

   int bf; 

   if (t == NULL) return; 

   bf = height(t->right) - height(t->left); 

   if (bf>=-1 && bf <= 1)  

      t->color = 1; /* black */ 

   else  

      t->color = 0; /* white */ 

   MarkBW(t->right);  

   MarkBW(t->left);    

} 

int impMarkBW(nodeT *t) { 

   int bf, hr, hl; 

   if (t == NULL)  

         return 0; 

   hr = impMarkBW(t->right); 

   hl = impMarkBW(t->left);  

   bf = hr – hl; 

   if (bf>=-1 && bf <= 1)  

       t->color = 1; /* black */ 

   else  

       t->color = 0; /* white */ 

   return ( 1 + max(hr, hl ) ); 

} 

 

void MarkBW(nodeT *t)  

{ 

   (void) impMarkBW(t); 

} 

 

#define max(x,y) ((x)>(y) ? (x) : (y)) 

 

int height(nodeT *t)   

{ 

   if (t == NULL)        

         return 0; 

   else   

       return (1 + max( height(t->left),  

       height(t->right) ));   

} 

p

r

e

o

r

d

e

r 

p

o

s

t

o

r

d

e

r 



8 

int isBalanced(nodeT *t) { 

   int bf; 

   if (t == NULL) return 1; /* true */ 

   bf = height(t->right) - height(t->left); 

   return (bf>=-1 && bf <= 1) &&  

             isBalanced(t->left) &&    

             isBalanced(t->right);  

} 

int impBalanced(nodeT *t, int *h) { 

   int bf, hr, hl, br, bl; 

   if (t == NULL) { 

       *h=0;  

       return 1; /* true */ 

   } 

   br = impBalanced (t->right, &hr); 

   bl = impBalanced (t->left, &hl);  

  *h = 1+max(hr, hl); 

   bf = hr – hl; 

   if (br && bl && (bf>=-1 && bf <= 1) ) 

       return 1; /* true */ 

   else  

       return 0; /* false */ 

} 

 

int isBalances(nodeT *t) { 

   int h; 

   return impBalanced(t, &h); 

} 

#define max(x,y) ((x)>(y) ? (x) : (y)) 

 

int height(nodeT *t)   

{ 

   if (t == NULL)        

         return 0; 

   else   

       return (1 + max( 

  height(t->left),  

  height(t->right)) );   

} 



Tree-balancing strategies 

What if the input data values are 
given in a random order? 

How can we keep the tree 
balanced?  

9 



Tree-balancing strategies 

 The worst-case behavior of unbalanced trees 

 FindNode and InsertNode become O(N) 

 We can keep trees balanced as we build them  

 Extend the implementation of InsertNode  
 it keeps track of whether the tree is balanced while inserting new nodes.  

 If the tree ever becomes out of balance, InsertNode must rearrange 

the nodes in the tree so that the balance is restored without disturbing 

the ordering relationships. 

 Assuming that it is possible to rearrange a tree in time 
proportional to its height, both FindNode and 
InsertNode can be implemented in O(log N) time. Why? 

 There are several algorithms, we will study AVL 10 



AVL - Example 

 Create a binary search tree in which the nodes 
contain the symbols for the chemical elements. 
 H (Hydrogen) 

 He (Helium) 

 Li (Lithium) 

 Be (Beryllium) 

 B (Boron) 

 C (Carbon) 

  How will the tree look like if we insert them in 
that order? Can we keep the tree balanced? 11 

typedef struct nodeT { 

 string key; 

 struct nodeT *left, *right; 

} nodeT, *treeT; 



AVL– basic idea 

 Associate an integer with each node, called 
balance factor = height(right)-height(left) 

 Each node of an AVL tree has a bf 0, -1 or 1 

 -1 : left-heavy (the height of the left sub-tree is 1 
greater than the right sub-tree), 

 0   : balanced (both sub-trees are the same height) or 

 +1: right-heavy (the height of the right sub-tree is 1 
greater than the left sub-tree). 

 If bf for any node is 2 or -2 , the tree is not balanced. 

 To fix the imbalance, restructure the tree 
12 

Published in 1962 by the 

Russian mathematicians 

Georgii Adel’son-Vel’skii and 

Evgenii Landis and has 

since been known by the 

initials AVL. 



AVL - operation 

13 

How many different cases do we have to 

consider?  

 



AVL -- Single Rotation  

14 

H-He axis 
Left rotation 



AVL -- Single Rotation 
Generalization 

15 

In general, you can always perform this type of rotation operation on any 

two nodes in a binary search tree without invalidating the relative 

ordering of the nodes, even if the nodes have subtrees descending from 

them. In a tree with additional nodes, the basic operation looks like this: 

LeftRotation(nodeT **tptr)  {  

  nodeT *parent, *child;    

  parent=*tptr;  // N1 

  child = parent->rigtht; // N2 

    /* Can you write  

         the C code  

         for this rotation? */ 

  } 

    parent->right = child->left; 



AVL -- Single Rotation  
insert Be and B 

16 

Be-H axis 
Right rotation 



AVL -- Single Rotation 
is not always sufficient: insert C 

17 

When the nodes involved in the rotation have balance factors with opposite signs, a 

single rotation is not enough.  To fix the problem, we need to make two rotations.  

1. Before rotating the out-of balance node, we rotate its child in the opposite 

direction. Rotating the child gives the balance factors in the parent and child 

the same sign, which means that the following rotation will succeed. 

2. We then do the required rotation.  

This pair of operations is called a double rotation 



AVL – Double Rotation (LR) 
 

18 

Be-H axis 
Left rotation 

H-He axis 
Right rotation 

We may have RL case, where we do Right – Left rotations 



L and R rotations 

19 

4 

5 

9 

t 

4 

5 

9 

t 

9 

5 

4 

t 

t 

4 

5 

9 



RL and LR rotations 

20 

4 

9 

5 

t 

4 

5 

9 

t 

9 

5 

4 

t 

t 

4 

5 

9 

4 

5 

9 

t 

9 

4 

5 

t 



t 

t 

Exercise: Code for left rotation 

21 

2 

5 

9 

bf=…. 

bf=…. 

bf=…. 2 

5 

9 

bf=…. 

bf=…. 

bf=…. 

Suppose you have pointers t and then a, b, c for nodes 4, 5, 9. 

Write the necessary statements to achieve left rotation. 

a 

b 

c 

    parent->right = child->left; 

    child->left = parent; 

    (*tptr) = child; 

    a->right = b->left; 

    b->left = a; 

    t = b; 



Exercise: AVL tree 

22 

Show the results of inserting 2, 1, 4, 5, 9, 3, 6, 7 into an AVL tree, 

which is currently empty. 

You don’t need to re-draw the tree after each insertion. But after a 

rotation, you must re-draw the tree.  Also Don’t forget to include 

balance factor (bf) for each node and show how it changes as you 

insert new nodes.   

 



Insert 

23 



Implementing AVL algorithm 
InsertNode  InsertAVL 

24 

typedef struct nodeT { 

 char key; 

 struct nodeT *left, *right; 

} nodeT, *treeT; 

typedef struct nodeT { 

 string key; 

 struct nodeT *left, *right; 

    int bf; 

} nodeT, *treeT; 

void InsertNode(nodeT **tptr, char key)  

{ 

     nodeT  *tmp; 

     tmp=*tptr; 

 if (tmp == NULL) { 

         tmp=New(nodeT *); 

         tmp->key = key; 

         tmp->left=tmp->right=NULL; 

         *tptr=tmp; 

         return; 

     } 

 if (key < tmp->key) { 

  InsertNode(&tmp->left, key); 

 } else { 

  InsertNode(&tmp->right, key); 

 } 

} 

void InsertNode(treeT  *tptr, string key)  

{ 

  (void) InsertAVL(tprt, key); 

} 



int InsertAVL(treeT *tprt, string key) vs.  
void InsertNode(treeT *tprt, string key)  

25 

 InsertAVL seems to have the same prototype of 
InsertNode, which is implemented as a wrapper to 
InsertAVL (why). 

 The parameters are indeed the same.  

 But, InsertAVL returns an integer value (why) 

 that represents the change in the height of the 
tree after inserting the node.      MarkBW vs. impMarkBW 

 This return value, which will always be 0 or 1, makes 
it easy to fix the structure of the tree as the code 
makes its way back through the level of recursive 
calls. 



26 

static int InsertAVL(treeT *tptr, string key) 

{ 

    treeT t; 

    int sign, delta; 

 

    t = *tptr; 

    if (t == NULL) { 

        t = New(treeT); 

        t->key = CopyString(key); 

        t->bf = 0; 

        t->left = t->right = NULL; 

        *tptr = t; 

        return (+1); 

    } 

    sign = StringCompare(key, t->key); 

    if (sign == 0) return (0); 

        

 

} 

  

 

if (sign < 0) { 

        delta = InsertAVL(&t->left, key); 

        if (delta == 0) return (0); 

        switch (t->bf) { 

          case +1: t->bf =  0; return (0); 

          case  0: t->bf = -1; return (+1); 

          case -1: FixLeftImbalance(tptr);   

                        return (0); 

        } 

    } else { 

        delta = InsertAVL(&t->right, key); 

        if (delta == 0) return (0); 

        switch (t->bf) { 

          case -1: t->bf =  0; return (0); 

          case  0: t->bf = +1; return (+1); 

          case +1: FixRightImbalance(tptr);  

                         return (0); 

        } 

    } 



Insert left left 

27 

9 

5 

9 

 
Initial case 
return 1 
 
 
 

bf=0 bf=0 

bf=0   

delta = InsertAVL(&t->left, key); 

if (delta == 0) return (0); 

switch (t->bf) { 

    case +1: t->bf =  0; return (0); 

    case  0: t->bf = -1; return (+1); 

    case -1: FixLeftImbalance(tptr);   

                   return (0); 

} 

bf=-1 
9 

5 
bf=0   

bf=-1 

4 bf=0   

bf=-1   

9 

5 

bf=0 

4 
bf=0   

bf=0   

Insert 9 Insert 5 Insert 4 



Recursive calls to 
InsertAVL(…)  

28 

  The simple cases are 

1. Adding a node in place of a previously NULL tree, which increases 

the height by one 

2. Encountering an existing node containing the key, which leaves the 

height unchanged 

 In the recursive cases,  

1. The code first adds the new node to the appropriate subtree, 

keeping track of the change in height in the local variable delta.  

2. If the height of the subtree to which the insertion was made has not 

changed, then the balance factor in the current node must also 

remain the same.  

3. If, however, the subtree increased in height, there are three 

possibilities: (see next slide) 

bf=0   

bf=-1 

bf=0 

bf=0   

bf=+1 

bf=0 



29 

1. That subtree was previously shorter than 

the other subtree in this node. In this case, inserting the 

new node actually makes the tree more balanced than it was previously. The balance 

factor of the current node becomes 0, and the height of the subtree rooted there remains 

the same as before. 
 

2. The two subtrees in the current node 

were previously the same size. In this case, increasing 

the size of one of the subtrees makes the current node slightly out of balance, but not to 

the point that any corrective action is required. The balance factor becomes –1 or +1, as 

appropriate, and the function returns 1 to show that the height of the subtree rooted at this 

node has increased. 

 

3. The subtree that grew taller was 

already taller than the other subtree. When this 

situation occurs, the tree has become seriously out of balance, because one subtree is 

now two nodes higher than the other. At this point, the code must execute the appropriate 

rotation operations to correct the imbalance.  

- If the balance factors in the current node and the root of the subtree that expanded have 

the same sign, a single rotation is sufficient.  

- If not, the code must perform a double rotation. After performing the rotations, the code 

must correct the balance factors in the nodes whose positions have changed. 

6 

2 9 

6 

2 

4 

9 

6 

2 

3 

9 

4 

5 



30 

static void FixLeftImbalance(treeT *tptr) 

{ 

    treeT t, parent, child, *cptr; 

    int oldBF; 
 

    parent = *tptr; 

    cptr = &parent->left; 

    child = *cptr; 

    if (child->bf != parent->bf) { // check signs 

        oldBF = child->right->bf; 

        RotateLeft(cptr); 

        RotateRight(tptr); 

        t = *tptr; 

        t->bf = 0; 

        switch (oldBF) { 

          case -1: t->left->bf = 0;  

                      t->right->bf = +1; break; 

          case  0: t->left->bf = t->right->bf = 0;  

                    break; 

          case +1: t->left->bf = -1;  

                    t->right->bf = 0; break; 

        } 

    } else { 

        RotateRight(tptr); 

        t = *tptr; 

        t->right->bf = t->bf = 0; 

    } 

} 

9 

5 
bf=0   

bf=-1 

4 bf=0   

bf=-1   

delta = InsertAVL(&t->left, key); 

if (delta == 0) return (0); 

switch (t->bf) { 

    case +1: t->bf =  0; return (0); 

    case  0: t->bf = -1; return (+1); 

    case -1: FixLeftImbalance(tptr);   

                   return (0); 

} 

t tptr 

9 

5 

bf=0 

4 
bf=0   

bf=0   

t tptr 



31 

static void FixLeftImbalance(treeT *tptr) 

{ 

    treeT t, parent, child, *cptr; 

    int oldBF; 
 

    parent = *tptr; 

    cptr = &parent->left; 

    child = *cptr; 

    if (child->bf != parent->bf) { 

        oldBF = child->right->bf; 

        RotateLeft(cptr); 

        RotateRight(tptr); 

        t = *tptr; 

        t->bf = 0; 

        switch (oldBF) { 

          case -1: t->left->bf = 0;  

                      t->right->bf = +1; break; 

          case  0: t->left->bf = t->right->bf = 0;  

                    break; 

          case +1: t->left->bf = -1;  

                    t->right->bf = 0; break; 

        } 

    } else { 

        RotateRight(tptr); 

        t = *tptr; 

        t->right->bf = t->bf = 0; 

    } 

} 

9 

5 
bf=0   

bf=-1 

6 
bf=0   

bf=+1   

delta = InsertAVL(&t->left, key); 

if (delta == 0) return (0); 

switch (t->bf) { 

    case +1: t->bf =  0; return (0); 

    case  0: t->bf = -1; return (+1); 

    case -1: FixLeftImbalance(tptr);   

                   return (0); 

} 

t tptr 

9 

6 

bf=0 

5 
bf=0   

bf=0   

t tptr 



Exercise  
FixRightImbalance() 

32 

static void FixRightImbalance(treeT *tptr) 

{ 

    treeT t, parent, child, *cptr; 

    int oldBF; 
 

    parent = *tptr; 

    cptr = &parent->right; 

    child = *cptr; 

    if (child->bf != parent->bf) { 

        oldBF = child->right->bf; 

        RotateRight(cptr); 

        RotateLeft(tptr); 

        t = *tptr; 

        t->bf = 0; 

        switch (oldBF) { 

          case -1: t->left->bf = 0;  

                      t->right->bf = +1; break; 

          case  0: t->left->bf = t->right->bf = 0;  

                      break; 

          case +1: t->left->bf = -1;  

                         t->right->bf = 0; break; 

        } 

    } else { 

        RotateLeft(tptr); 

        t = *tptr; 

        t->left->bf = t->bf = 0; 

    } 

} 



AVL Rotations 

33 

void RotateRight(treeT *tptr) 

{ 

    treeT parent, child; 

 

    parent = *tptr; 

    child = parent->left; 

    parent->left = child->right; 

    child->right = parent; 

    (*tptr) = child; 

} 

void RotateLeft(treeT *tptr) 

{ 

    treeT parent, child; 

 

    parent = *tptr; 

    child = parent->right; 

    parent->right = child->left; 

    child->left = parent; 

    (*tptr) = child; 

} 



34 

static void DisplayTree(treeT t) 

{ 

    if (t != NULL) { 

        DisplayTree(t->left); 

        printf("%s\n", t->key); 

        DisplayTree(t->right); 

    } 

} 
 

static void DisplayStructure(treeT t) 

{ 

    RecDisplayStructure(t, 0, NULL); 

} 
 

static void RecDisplayStructure(treeT t, int depth, string label) 

{ 

    if (t == NULL) return; 

    printf("%*s", 3 * depth, ""); 

    if (label != NULL) printf("%s: ", label); 

    printf("%s (%s%d)\n", t->key, (t->bf > 0) ? "+" : "", t->bf); 

    RecDisplayStructure(t->left, depth + 1, "L"); 

    RecDisplayStructure(t->right, depth + 1, "R"); 

} 



Properties of AVL  
tree-balancing algorithm 

 If you insert a new node into an AVL tree, you can 
always restore its balance by performing at most 
one operation, which is either a single or a double 
rotation. 

 After you complete the rotation operation, the 
height of the subtree at the axis of rotation is 
always the same as it was before inserting the 
new node. 

 This property ensures that none of the balance 
factors change at any higher levels of the tree. 

35 



The effect of single rotation 
operation on balance factors 

36 



The effect of double rotation 
operations on balance factors 

37 



AVL Tree: Running Times 

 Find takes O(log n), Why? 

 height of the tree is O(log n). 

 Insert takes O(log n), Why?   

 We find the node (O(log n) time), and then we 
may have to visit every node on the path back 
to the root, performing up to 2 single rotations 
(O(1) time each) to fix the tree. 

 Remove: O(log n). Why? 

38 



39 

 Remember the definitions.   

 What is the purpose of AVL tree? 

 What is the balance factor (bf)? 

 Insertion in AVL Trees (4 balancing cases):  

 L, R, LR and RL (single and double rotation).  

 Be able to give example 

 Complexity of operations on AVL trees. 

 
AVL Tree: Review 



Which key insertion will cause 
single and double rotations 

40 

6 

2 

3 

9 

4 

6 

2 

3 

9 

4 

6 

2 

3 9 

4 

6 

2 9 

4 



Exercise: AVL Delete 

 Rebalancing after removal is quite similar to 
that for insertion.  

 Removing a node either may have no effect on 
the height of a tree or may shorten it by one.  

 If a tree gets shorter, the balance factor in its 
parent node changes.  

 If the parent node becomes out of balance, it is 
possible to rebalance the tree at that point by 
performing either a single or a double rotation. 

41 


