
1

Turgay Korkmaz

Office: SB 4.01.13
Phone: (210) 458-7346
Fax: (210) 458-4437

e-mail: korkmaz@cs.utsa.edu
web: www.cs.utsa.edu/~korkmaz

CS 2213
Advanced Programming

Ch 16 – Graphs (Networks)
Definitions and Graph Representations

Thanks to Eric S. Roberts, the author of our textbook, for providing some slides/figures/programs. I also used some materials from
other textbooks (specifically, The Algorithm Design Manual by Steven Skiena and his slides at http://www.cs.sunysb.edu/skiena.
So I also thank to Steven Skiena for presentations on the Internet).

http://www.cs.utsa.edu/~korkmaz
http://www.cs.sunysb.edu/skiena

Disclaimer

 You are highly recommended to read the chapter
16 from our textbook, which provides a general
interface-based design for graph abstraction using
several other data structures (e.g., list, set) covered
in previous chapters.

 Instead of this general abstract design, we will
directly implement concrete graph structures
and operations. So even though the key concepts
are the same, the implementation details will be
different than the textbook.

2

Objectives

 To appreciate the conceptual structure of a graph and its applications

 To learn basic graph theory terminology/notation

 To learn underlying representations for graphs (adjacency matrix,
adjacency list)

 To understand and be able to apply basic graph algorithms (topological
sort, depth-first search, breath-first search, Dijkstra’s shortest path etc.)

 To provide knowledge and skills to students so that they can comfortably
use graph structures and algorithms (or develop new ones) in their
research or workplace.

3

Structure of a graph

4

A graph (or network) is a mathematical object consisting of nodes (also
called vertices) and edges (also called arcs, links).

The airline graph represented by G(V,E) consists of the following sets.
V = { Atlanta, Boston, Chicago, Dallas, Denver, Los Angeles,
 New York, Portland, San Francisco, Seattle }
E = { AtlantaChicago, Atlanta Dallas, Atlanta New York,
 Boston New York, Boston Seattle, Chicago Denver,
 Dallas Denver, Dallas Los Angeles, Dallas San Francisco,
 Denver San Francisco, Portland San Francisco, Portland Seattle }

Applications
of graphs

 Graphs (networks) are everywhere!

 Physical Networks
 Transportation networks

 Power transmission networks

 Telephone/computer networks

 What are the common things in all these problems?
 We move some entity {car, people, electricity, voice, data} from one node

{intersection, city, generator, telephone, computer} to another through underlying
links {roads, power lines, communication links}.

 But, we want to move entities from one point to
another in an efficient way (what do we mean?)

5

More applications:

Application: Shortest path

6

 Assume each link has cost (e.g., distance).

 What is the best way to get from A to B as
cheaply as possible? How can we find it?

B
A

3

3
1

6

5

2

1

6

Finding Shortest path

 Enumerate all possible solutions
 Measure the “cost” of each alternative solution

 Select the one with min cost

 From the perspective of pure mathematics,
the above problem is trivial to solve! BUT
 The number of paths could be extremely large

 2n possible solutions, what happens when n=100

 So, we need efficient graph algorithms.

7

Basic Graph Notation

8

Basic Graph Notation

 Network or Graph

 G = (N, A) or G(V, E)

 V = { v1, v2, …, vn } node/vertex set

 E = { e1, e2,…, em } arc/link/edge set

 Link/edge connecting vp to vq is also denoted by (p,q)

 Incidence and adjacency:

 ei and ej are adjacent links

 vp and vq are adjacent nodes

 ei and ej are incident to node vq

9

p r q
ei ej

(p,q) (q,r)

Basic Graph Notation (cont’d)

 Labeled vs. Unlabeled Graphs
 Each vertex is assigned a unique name or

 identifier to distinguish it from other vertices.

 An important graph problem is isomorphism testing, determining
whether the topological structure of two graphs are in fact identical
if we ignore any labels.

 10

Basic Graph Notation (cont’d)

 Weighted vs. Unweighted Graphs

 In unweighted graphs, there is no cost distinction
between various edges and vertices.

 In weighted graphs, we can associate
weights/labels/attributes with nodes or links,

 for node p: w(p), or wp

 for link (p,q): c(p,q) or cpq

11

p r q
c(ei) c(ej)

c(p,q) c(q,r)

w(p) w(q) w(r)

Basic Graph Notation (cont’d)

 Simple vs. Non-simple Graphs
 A self-loop is an edge (x,x) involving only one node

 An edge (x,y) is a multi-edge if it occurs more than
once in the graph.

 Any graph which avoids these structures
(loops, multi edges) is called simple.

12

Basic Graph Notation (cont’d)

 Directed and Undirected graphs:

 Directed network:

 Flow is in one direction, e.g., from vp to vq

 Undirected network:

 Flow can be in any direction with the same attributes.

 If link attributes are different,

 we can use directed network model

13

p q
ei

(p,q)

p q
ei

(p,q)

p q

ei

ek

Basic Graph Notation (cont’d)

 An acyclic graph does not contain any cycles.

 Directed Acyclic Graphs are called DAGs.

 They arise naturally in scheduling problems, where
a directed edge (x, y) indicates that x must occur
before y.

14

Basic Graph Notation (cont’d)

 Degree: the number of incident to a node

 deg(vq) is 3

 If Directed, in-degree, out-degree

 Path: a distinct sequence of nodes

 Undirected vs. directed

 Walk: a sequence of nodes

 Cycle: a distinct sequence of nodes except
the first and last node

15

q

q

Basic Graph Notation (cont’d)

 Connected graph

 There is at least one path between
every pair of nodes.

 Connected components

 Incase of directed graphs

 Strongly connected

 Weakly connected

 Tree

 A connected graph with no cycles

16

Basic Graph Notation (cont’d)

 Sparse vs. Dense Graphs
 Graphs are sparse when only a small fraction

of the possible number of vertex pairs actually
have edges defined between them.

 Graphs are dense when the number of edges
increases

 Complete graph: there is an edge between
every pair of nodes

 Dense graphs have a quadratic number of
edges while sparse graphs are linear in size.

 17

Complete

Basic Graph Notation (cont’d)

 Some important nodes
 Source node: (or starting point) a node where flow originates

 Destination/Sink: (or termination point) a node where flow ends

 Supply node: a node where supply for flow is available

 Demand node: a node where non-zero demand for flow exists

18

Example:
The Friendship Graph

 Consider a graph where the vertices are
people, and there is an edge between two
people if and only if they are friends.

 What questions might we ask about the
friendship graph?
 If I am your friend, does that mean you are my friend? (Undirected)

 Am I my own friend? (self-loop, simple)

 Am I linked by some chain of friends to the President? (path)

 How close is my link to the President? (shortest path)

 Is there a path of friends between any two people? (strongly connected)

 Who has the most friends? (degree)

 Is there a clique? a clique in an undirected graph is a subset of its vertices such that every two vertices in the subset are connected by an edge.

19

http://en.wikipedia.org/wiki/Undirected_graph
http://en.wikipedia.org/wiki/Vertex_(graph_theory)

Data Structures for Graphs

Suppose the graph G = (V, E) contains
|V|=n vertices and |E|=m edges.

How can we represent this graph in C?

20

2 4

3

6
1

5

Adjacency Matrix

 We can represent G(V, E) using an nxn matrix M,

where element M[i][j] will be

 1 if (i,j) is an edge of G, and

 0 if it isn’t.

 Is this a good representation

 for dense graphs

 for sparse graphs,

 Can we save space,

 if the graph is undirected?

 if the graph is sparse? 21

0 1 2 3 4 5 6

0

1 1 1

2 1 1 1

3 1 1 1

4 1 1 1

5 1 1 1

6 1 1

2 4

3

6
1

5

0 1 2 3 4 5 6

0

1 1 1

2 1 1 1

3 1 1 1

4 1 1 1

5 1 1 1

6 1 1

Each element M[i][j] might be a structure
to represent other attributes of link (i,j)

22

2 4

3

6

1

5

Exercise: Adjacency Matrix for
the complement graph

0 1 2 3 4 5 6

0

1 1 1

2 1 1 1

3 1 1 1

4 1 1 1

5 1 1 1

6 1 1

Modify this matrix

2 4

3

6

1

5

Adjacency Lists

 We can represent G(V, E)
using an nx1 array of

pointers, where the ith
element points to a
linked list of the edges
incident on vertex i.

 Is this a good representation

 for dense graphs

 for sparse graphs

 23

2 4

3

6
1

5

0

1

2

3

4

5

6

2 3

4 5

1 3 4

1 2 5

2 5 6

3 4 6

Adjacency Lists vs.
Adjacency Matrices

 Which representation would be better for the
followings, also give complexity:

 Test if (x, y) exists? Matrices O(1)

 Find vertex degree? Lists O(degree)

 Memory usage for sparse graphs? lists (m+ n) vs. (n2)

 Memory usage for dense graphs? matrices O(n2)

 Edge insertion or deletion? matrices O(1)

 Faster to traverse the graph? lists (m+ n) vs. (n2)

 Better for most problems? lists 24

Adjacency List
Representation in C

25

Concrete Graph Structure

26

#define MAXV 100

typedef struct edgenode {

 int y;

 int w; //weight

 struct edgenode *next;

} edgenodeT;

typedef struct {

 edgenodeT *edges[MAXV+1];

 int degree[MAXV+1];

 int nvertices;

 int nedges;

 bool directed;

} graphT;

- The edges field is an array of pointers to
list of edges originating from each node x.
- The degree field counts the number of
meaningful entries for the given vertex.
- An undirected edge (x, y) appears twice in
any adjacency-based graph structure, once
as y in x’s list, and once as x in y’s list.

 adjacency info x - - - - > y
 link weight/cost if any
 pointer to next link

We will assume that we will have at most
MAXV many nods in our graphs; but , we
can dynamically change graph size. How?

Creating a graph in
a client program

27

main() // Assume that MAXV is 6

{

 graphT myg1, *myg2;

 myg2 = (graphT *) malloc(sizeof(graphT));

 if(myg2==NULL) {

 printf(”no memory”);

 exit(-1);

 } // myg2 = New(graphT *);

 initialize_graph(&myg1, TRUE);

 initialize_graph(myg2, FALSE);

}

0 ?

1 ?

2 ?

3 ?

4 ?

5 ?

6 ?

edges degree

nvertices ?

nedges ?

directed ?

0 ?

1 ?

2 ?

3 ?

4 ?

5 ?

6 ?

myg1 myg2

0 ?

1 ?

2 ?

3 ?

4 ?

5 ?

6 ?

edges degree

nvertices ?

nedges ?

directed ?

0 ?

1 ?

2 ?

3 ?

4 ?

5 ?

6 ?

typedef struct {

 edgenodeT *edges[MAXV+1];

 int degree[MAXV+1];

 int nvertices;

 int nedges;

 bool directed;

} graphT;

Initializing a
Graph

28

initialize_graph(graphT *g, bool directed)

{

 int i;

 g->nvertices = 0;

 g->nedges = 0;

 g->directed = directed;

 for (i=1; i<=MAXV; i++) {

 g->edges[i] = NULL;

 g->degree[i] = 0;

 }

}

typedef struct {

 edgenodeT *edges[MAXV+1];

 int degree[MAXV+1];

 int nvertices;

 int nedges;

 bool directed;

} graphT;

0 ?

1 0

2 0

3 0

4 0

5 0

6 0

edges degree

nvertices 0

nedges 0

directed 0

0 ?

1 0

2 0

3 0

4 0

5 0

6 0

A typical graph format consists of an initial line featuring the
number of vertices and edges in the graph, followed by a listing
of the edges at one vertex pair per line and weight of that edge.

6 8
1 2 3
1 3 6
2 3 1
2 4 5
3 5 2
4 5 3
4 6 6
5 6 1
2 1 3
3 1 6
3 2 1
4 2 5
5 3 2
5 4 3
6 4 6
6 5 1

0 ?

1 0

2 0

3 0

4 0

5 0

6 0

edges degree

nvertices 0

nedges 0

directed 0

0 ?

1 0

2 0

3 0

4 0

5 0

6 0

Reading a Graph

29

read_graph(graphT *g, bool directed)

{

 int i;

 int n,m;

 int x, y, w;

 scanf(”%d %d”, &n, &m);

 g->nvertices=n; g->nedges=m;

 for (i=1; i<=m; i++) {

 scanf(”%d %d %d”, &x, &y, &w);

 insert _edge(g, x, y, w, directed);

 }

}

0

0 ?

1 2

2 3

3 3

4 3

5 3

6 2

edges degree

nvertices 6

nedges 8

directed 0

FALSE

2 4

3

6
1

5

3

3
1

6

5

2

1

6

Inserting
an edge (suppose we have new edge 1,5 cost is 7)

30

insert_edge(graphT *g, int x, int y, int w, bool directed)

{

 edgenodeT *pe;

 pe = malloc(sizeof(edgenodeT)); // check if NULL

 pe->w = w;

 pe->y = y;

 pe->next = g->edges[x];

 g->edges[x] = pe;

 g->degree[x]++;

 if (directed == FALSE)

 insert_edge(g, y, x, w, TRUE);

}

 Instead of inserting the

new edge at the

beginning of the list, we

can insert it in a sorted

manner w.r.t. y as

shown in the picture

typedef struct {

 edgenodeT

*edges[MAXV+1];

 int degree[MAXV+1];

 int nvertices;

 int nedges;

 bool directed;

} graphT;

typedef struct edgenode {

 int y;

 int w;

 struct edgenode *next;

} edgenodeT;

0 ?

1 0

2 0

3 0

4 0

5 0

6 0

edges degree

nvertices 0

nedges 0

directed 0

0 ?

1 0

2 0

3 0

4 0

5 0

6 0

0 ?

1 2

2 3

3 3

4 3

5 3

6 2

edges degree

nvertices 6

nedges 8

directed 0

1 5 7
false

5 7

Print
Graph

31

print_graph(graphT *g)

{

 edgenodeT *pe;

 int i;

 for(i=1; i<=g->nvertices; i++) {

 printf(”Node %d: ”, i);

 pe = g->edges[i];

 while(pe){

 printf(” %d”, pe->y);

 pe = pe->next;

 }

 printf(”\n”);

 }

}

typedef struct {

 edgenodeT

*edges[MAXV+1];

 int degree[MAXV+1];

 int nvertices;

 int nedges;

 bool directed;

} graphT;

0 ?

1 0

2 0

3 0

4 0

5 0

6 0

edges degree

nvertices 0

nedges 0

directed 0

0 ?

1 0

2 0

3 0

4 0

5 0

6 0

0 ?

1 2

2 3

3 3

4 3

5 3

6 2

edges degree

nvertices 6

nedges 8

directed 0

typedef struct edgenode {

 int y;

 int w;

 struct edgenode *next;

} edgenodeT;

 printf(” %d %d,”, pe->y, pe->w);

Free
Graph

32

free_graph(graphT *g)

{

 edgenodeT *pe, *olde;

 int i;

 for(i=1; i<=g->nvertices; i++) {

 pe = g->edges[i];

 while(pe){

 olde = pe;

 pe = pe->next;

 free(olde);

 }

 }

 free(g);

}

typedef struct {

 edgenodeT

*edges[MAXV+1];

 int degree[MAXV+1];

 int nvertices;

 int nedges;

 bool directed;

} graphT;

0 ?

1 0

2 0

3 0

4 0

5 0

6 0

edges degree

nvertices 0

nedges 0

directed 0

0 ?

1 0

2 0

3 0

4 0

5 0

6 0

0 ?

1 2

2 3

3 3

4 3

5 3

6 2

edges degree

nvertices 6

nedges 8

directed 0

typedef struct edgenode {

 int y;

 int w;

 struct edgenode *next;

} edgenodeT;

33 33

edges degree

nvertices 0

nedges 0

directed 0

0 ?

1 2

2 3

3 3

4 3

5 3

6 2

edges degree

nvertices 6

nedges 8

directed 1

fg

2 4

3

6
1

5

3

3
1

6

5

1

6

Forward-star
vs.
Backward-star

0

1 0

2

3

4

5

6

5

1 3

1 5

2 6

4

edges degree

nvertices 0

nedges 0

directed 0

0 ?

1 2

2 3

3 3

4 3

5 3

6 2

edges degree

nvertices 6

nedges 8

directed 1

bg

0

1

2

3

4

5

6

2 3

4

Exercise: Graph copy

 Write a function that creates a new copy of a
given graph g using adjacency list or
adjacency matrix

void copy_graph_list(graphT *g, graphT **newg)

{

…

}

34 recitation

Why ** ?

graph *copy_graph_list(graphT *g)
{ ….
}

Exercise:
Graph copy (cont’d)

35

edges degree

nvertices 0

nedges 0

directed 0

0 ?

1 2

2 3

3 3

4 3

5 3

6 2

edges degree

nvertices 6

nedges 8

directed 0

g

2 4

3

6
1

5

3

3
1

6

5

2

1

6

edges degree

nvertices 0

nedges 0

directed 0

0 ?

1 2

2 3

3 3

4 3

5 3

6 2

edges degree

nvertices 6

nedges 8

directed 0

recitation

copyg newg

MORE EXERCISES

36

Exercise: Convert graph
representation

 Suppose you are given a graph g, which is
represented using

 adjacency list or

 adjacency matrix,

 Write a function to convert it to a new
graph newg using

 adjacency matrix or

 adjacency list, respectively…

 See next slide for an example…
37

38

0

1

2

3

4

5

6

2 3 3 6

4 6 5 1

1 3 3 1 4 5

1 6 2 1 5 2

2 5 5 3 6 6

3 2 4 3 6 1

2 4

3

6
1

5

3

3
1

6

5

2

1

6

0 1 2 3 4 5 6

0

1 1,3 1,6

2 1,3 1,1 1,5

3 1,6 1,1 1,2

4 1,5 1,3 1,6

5 1,2 1,3 1,1

6 1,6 1,1

Each element M[i][j] might be a structure
to represent other attributes of link (i,j)

typedef struct { int valid; int w;} linkT;

linkT M[MAXV+1] [MAXV+1];

convert_list_to_matrix

Modify print_graph

39

print_graph(graphT *g)

{

 edgenodeT *pe;

 int i;

 for(i=1; i<=g->nvertices; i++) {

 printf(”Node %d: ”, i);

 pe = g->edges[i];

 while(pe){

 printf(” %d”, pe->y);

 pe = pe->next;

 }

 printf(”\n”);

 }

}

M[i][pe->y].valid = 1;

M[i][pe->y].w = pe->w;

 for(j=1; j<=g->nvertices; j++)

 M[i][j].valid = 0;

convert_list_to_matrix(graphT *g, linkT M[] [MAXV+1])

Find in-degree and out-degree
for each node

40

2 4

3

6
1

5

3

3
1

6

5

2

1

6

0 1 2 3 4 5 6

0

1 1,3

2 1,1

3 1,6 1,2

4 1,5 1,3 1,6

5 1,1

6

