
Challenges and Solutions to Consistent Data Plane
Update in Software Defined Networks

Sharvari Komajwar
The University of Texas at San Antonio

San Antonio, Texas-78249
Email: sharvari.komajwar@utsa.edu

Turgay Korkmaz
The University of Texas at San Antonio

San Antonio, Texas-78249
Email: turgay.korkmaz@utsa.edu

Abstract— Software Defined Networking (SDN) has emerged as
a promising paradigm to make network management easier while
supporting various applications requiring different guarantees in
terms of performance, availability and correctness. In essence,
SDN decouples control and data planes such that a logically
centralized SDN controller finds the paths based on given require-
ments, and then accordingly installs the necessary forwarding
rules on the distributed SDN switches, which are simple forward-
ing devices. Due to various reasons such as congestions, failures
or policy changes in the network, the SDN controller needs to
find new paths and shift the traffic from the original paths to
the new paths. However, during this transition, numerous time
consuming steps need to be performed such as updating nodes on
the new paths. If not carefully coordinated, these updating steps
may cause loops, blackholes, and performance degradations. This
paper provides a detailed survey on the existing techniques that
try to consistently update the new state of data plane while also
discussing some future challenges.

I. INTRODUCTION

Software Defined Networking (SDN) has been receiving
significant attention due to its promises in simplifying the
network management and supporting emerging applications,
especially real-time cloud and big-data applications. Unlike
traditional networking paradigm, SDN has separated network
management and control from forwarding functions. This
decoupling of control plane and data plane enables SDN to be
more flexible and feasible for many common network services
such as routing [28]–[30], multicast [32], [33], security [31],
bandwidth management, quality of service (QoS) [16], [34],
[35] and storage optimization etc.

In general, SDN has a logically centralized controller (soft-
ware) which makes network management and control deci-
sions (e.g., finding paths based on current topology and given
traffic requirements). The controller then installs the necessary
forwarding rules on the simple forwarding switches in the data
plane through a standard protocol (e.g., OpenFlow [36]). The
behavior of each switch in the data plane is determined by the
installed rules. Upon receiving a packet, each switch looks up
the rules installed by the controller. If there is a match, the
packet is forwarded to the next switch based on the matched
rule. Otherwise, the switch informs the controller about this
packet and expects to get the necessary new rules from the
controller.

SDN has several advantages as a result of decoupling the
control plane and data plane. However, it also introduces new

challenges such as how to efficiently handle congestion and
node/link failure. Many techniques have been proposed to
deal with congestion [1], [2] and link/node failure [3], [4].
In general, SDN controller can find new paths for the affected
flows using various path selections algorithms proposed in the
literature [5]–[9], and switch the traffic from the old paths
to the new paths. Unfortunately, the switching from the old
paths to the new paths is a very challenging taks due to the
distributed nature of the data plane. If it is not done in a
consistent manner, it may cause loops and/or blackholes.

In SDN, before switching the traffic from an old path to
a new path, the controller needs to install the new rules to
the switches on the new path. Clearly, the controller-switch
interaction will involve some delay in the update process.
Moreover, this delay is not predictable because of the different
reaction times of the specific hardware and/or the current
load. As a result, it is very difficult to ensure that all the
switches are consistently updated before the next packet is
sent. Therefore, one of the key challenges in SDN is how
to update the data plane for a new path quickly while not
violating the consistency of underlying network. Accordingly,
many techniques have been proposed in the literature [11]–
[21]. These techniques differ from each other in terms of their
rule placement policies or consistency properties that they try
to preserve during the update. Some researchers have also
focused on the optimization objectives. In this paper, we give
a detailed overview of the existing techniques for consistent
data plane update while discussing some future challenges.

This paper is organized as follows. Section II gives the
brief introduction of update problem. Section III classifies the
techniques proposed in the literature. Section IV discusses
open problems that are not addressed yet in the literature.
Section V concludes the paper.

II. NETWORK UPDATE PROBLEM IN SDN

A dependable SDN network should be able to reconfigure
and update the state (i.e., rules) of the underlying switches
so that it can cope with various problems such as link/node
failures, congestions, or policy changes. Upon the need of
switching from an old path to a new path, the SDN controller
computes the new path and installs new rules on the corre-
sponding switches. However, due to the distributed structure
of SDN switches, it is very difficult to make sure that all the



switches are updated before the next packet arrives. If any
one of the switches on the new path is not updated by the
controller in a timely manner, that switch may cause a loop in
the network or drop the packets due to missing rule. It may
also cause performance related problems such as congestions
or may violate the policies in the network.

Fig. 1. A simple SDN Topology.

For example, suppose initially all the packets that be-
long to theflow from S to D are forced to follow the
path {S,A,E,C,D} shown by the red (dashed) arrows in
Fig. 1. Accordingly, SDN controller installs following rules on
S,A,E and C: dst(D)→ fwd(A), dst(D)→ fwd(E), dst(D)→
fwd(C) and dst(D)→ fwd(D), respectively. Suppose, there is
a congestion on link A − E at time t and the traffic from
S to D needs to be shifted from the old path to the new
path {S,B,C,E,D} shown by blue (straight) arrows. This
transition from the old path to the new path requires SDN
controller to install the following new rules on S,B,C and
E: dst(D)→ fwd(B), dst(D)→ fwd(C), dst(D)→ fwd(E) and
dst(D)→ fwd(D), respectively. Suppose, at time t + 2 all the
switches on the new path get updated and all the packets after
that are routed through the new path. But at time t + 1 it is
not guaranteed that all the switches are updated or not. In our
example, suppose all the switches on the new path except E
are updated. So at time t + 1 when packets come to C from
B, C will forward them to E based on the new rule installed
by the controller. However, since E is not updated yet, it will
forward it to C again based on the old rule, resulting in a
loop. These packets will loop between C and E till E gets
the update from the controller. Clearly, this situation causes
unnecessary use of network resources and incurs additional
performance penalties (e.g., delay, loss) in the network.

So, one of the challenging problems in the current SDN is
how to shift the traffic from an old path to a new path as soon
as possible while guaranteeing that there will be no loop or
black-hole during this transition. In addition to providing loop-
free and black-hole-free update mechanisms, it is necessary to
take into account the consistency of the network in terms of
policy as well as performance. Accordingly, the researchers

have been extensively investigating these issues under the
general umbrella of Network State Update Problem. In the next
section, we provide an overview of the techniques proposed
in the literature.

III. OVERVIEW OF DATA PLANE UPDATE TECHNIQUES

We classify the existing data plane update techniques in
terms of (a) rule placement policies they used, (b) consistency
properties they focused on, and (c) the optimization goals they
tried to achieve. Table I shows the summary classification
of the existing studies. We now describe the datils of these
techniques in the following three subsections.

TABLE I
OVERVIEW OF UPDATE MECHANISMS IN SDN.

Loop-free / Blackhole free

Rule Addition [10] Congestion
[10], [19] Policy

Rule Replacement [16], [26] Congestion
[22] Policy

[11]–[14], [17] Loop-free / Blackhole free

Hybrid - Congestion
[15], [20] Policy

A. Rule Placement Policies

Rule placement policies can be classified based on the
operations performed on switches as follows:

1) Rule Replacement: Upon computing a new path, the
SDN controller tries to install the new rules into the switches
on the new path. If some switches are common in the new and
old paths, the old rule for a particular flow gets replaced by
the new rule. In the literature, many proposed solutions [11]–
[14] use this policy. One of the key issues in these solutions is
how to guarantee the connectivity consistency (i.e., loop-free
and black-hole-free update). The simplest solution would be
to update the switches in the reverse order one at a time. In
our example, if the controller updates E, C, B and then S,
there will be no loop or black-hole. But, this solution requires
four rounds of updates and significantly delays the transition
from the old path to the new path. The other extreme is to
try to update all at once (in one round). However, as the
example in previous section shows, this may result in loop
if the order of updates is not carefully controlled. So the key
issue here is how to minimize the number of rounds (and thus
the update delay) by carefully selecting the order of updated
switches in each round so that there will be no loop or black-
hole during the update. As we discuss in the next sub-section,
researchers have proposed various update techniques that can
provide connectivity consistency while using rule replacement
policy.



2) Rule Addition: In contrast to the Rule Replacement
policy, Rule Addition policy allows SDN controller to add
new rules to a switch while also keeping the original rules in
the switch. For example, while updating the new path in Fig. 1,
switch S will maintain both rules (i.e., dst(D)→ fwd(A) and
dst(D)→ fwd(B)) instead of replacing the old rule. The new
rules are initially inactive. Once all the rules are installed, they
are activated based on the 2-Phase commit technique [10]. In
this technique, packets are tagged on the ingress switch with
either “New label” or “Old label”. In the internal switches,
packets with “New label” are forwarded according to the
new rule while the packets with “Old label” are forwarded
according to the old rule. This way, packets can be forwarded
with either rule. Initially packets are tagged with “Old label”.
After installing the new rules and confirming their sucussefull
installation on all the internal switches using 2-phase commit,
the conroller instructs the ingress switch to mark the packets
with “New label”. In this way, the transition from an old path
to new path can be completed with minimum delay and loss.

Though adding a rule minimizes the delay and loss, the
wastage of critical network resources (e.g., expensive and rare
switch TCAM memory) is an important disadvantage of this
technique. Therefore, as we discuss in the next subsection,
most of the existing techniques consider rule replacement
rather than rule addition. Morever, rule addition technique
assumes that the old path is operational while the new one is
being established. However, this might not be the case when
there is a failure on the old path. Accordingly, a new path
must quickly be establised and used instead of the old one.

3) Hybrid Approach: This policy tries to combine both rule
replacement and rule addition policies to reduce the memory
overhead while mnimizing the number of rounds in updating
the switches. For example, Vissicchio et al. presented FLIP
[15] which uses the hybrid approach for providing per-packet
consistent updates, where each packet follows either the old
path or the new path but not the combinations.

B. Consistency Properties

Proposed solutions can also be classified based on consis-
tency properties that they provide. In [17], authors has men-
tioned wide variety of consistency properties which need to be
provided during updates. In the literature, several works have
been inspired by the above mentioned 2-phase commit tech-
nique. Most of the contributions provide additional guarantee
such as congestion free SDN updates [16] or preservation of
policy constraints.

1) Connectivity consistency: Network has to guarantee that
there exist a working path during the updates. There are two
types of connectivity issues need to be handled during updates:
(i) Loops: If there is a switch (e.g., C) on the new path which
is updated to send the traffic to another switch (e.g., E) which
happens to be on the old path sending the traffic to C, then
the packets will circulate between C − E till E is updated;
(ii) Black-holes: If there is a switch (e.g., B) on the new
path which is not updated yet and receives the traffic, then

the packets will get dropped due to missing forwarding rule
in this switch.

Loop avoidance is the most basic consistency property and
has been intensively studied in the literature. Mahajan and
Wattenhofer in [17] first proposed destination based loop-
free network update. Instead of adding rules in the switches,
they achieved consistent network updates by replacing rules
in multiple rounds based on the dependencies. Their solution
can be divided into two modules. First module is responsible
to generate the plan to update the network. This update
plan consists of a directed acyclic graph (DAG) in which
rule updates are represented by nodes and directed edges
represent dependencies among these rules. Update plan is
generated in two steps. In first steps, Dependency graph is
built based on old rules, new rules and desired consistency
property such as loop-freedom. Second step finally outputs the
DAG from the dependency graph by breaking loops. Second
module of this solution quickly applies this plan to the current
network. In essence, these two modules try to handle two basic
concerns related to update problems: consistency and update
time (delay). One of the limitations in their solution is that
every switch in the network forwards the packet based on
its destination. For example, when two flows from different
sources to the same destination meet at a common switch, the
rest of their paths should be the same.

Ludwig et al. [13] initiated the study of arbitrary route
updates which are not destination based. In their technique, up-
date problem can be converted into optimization problem on a
directed graph which consists of all the switches on the old and
new paths. Nodes which are not common on both paths can
be updated trivially, so they can be removed from the graph.
Ludwig et al. have introduced two different definitions of
loop-free network updates: Strong Loop− freedom (SLF )
and Relaxed Loop − freedom (RLF ). In SLF, forwarding
rules installed on all the switches in the network should be
loop-free while RLF requires that forwarding rules installed
on the switches along the path from source to destination
should be loop-free. The main goal in [13] is determine how
many communication rounds k are needed to solve the loop-
free network update problem. It can easily be decided if the
network can be updated in k = 2 round or not. But for k = 3,
the problem is shown to be NP-Hard using 3-SAT reduction.
Update algorithms proposed in [13], [17] are mainly designed
for a single path [13] or single destination [17] update. In [11],
Dudycz et al. proposed a loop-free update algorithm to update
multiple flows at the same time while minimizing the number
of rounds.

As mentioned above, another consistency property is black-
hole free network updates. This property is easy to guarantee
by implementing some default matching rule which is never
updated. However, it could in turn induce forwarding loops.
If there is currently no blackhole for any destination, a
straightforward mechanism would be to install new rules with
a higher priority, and then delete the old rules [12], [17]. But in
the presence of memory limits and guaranteeing loop-freedom,
finding the fastest blackhole-free update schedule is shown to



be NP-hard [12], calling for further research.
2) Policy consistency: Network operators often have some

high-level requirements and policies such as security, perfor-
mances etc. To enforce such policies, the network has to route
every packet through certain nodes (e.g. Firewall) or sub-paths.
When switching from an old path to a new path, the underlying
update mechanism should preserve such high-level policies.
Accordingly, several policy preserving update mechanims have
proposed while each is focusing on some specific policies such
as Per Packet Consistency (PPC) and Waypoint Enforcement
(WPE).

Per Packet Consistency (PPC) requires every packet to travel
either on its initial path or on its new path, but not on the
combination of both. This is because both paths are bounded
with some high-level policies such as security and/or perfor-
mance requirements that need to be enforced. In Waypoint
Enforcement (WPE), it is not always necessary to follow either
the old path or new path. Sometimes it is sufficient to send the
traffic through a sub-path or a certain node. WPE generally
takes place for security requirements. For example, sometimes
to fulfill security requirements all the packets need to traverse
a firewall. Here we refer a single node (waypoint) as a firewall.
Suppose in the topology given in Fig. 1, switch E is assigned
to be a firewall and network administrator impose the policy
that any flow traveling from S to D should go through E at
anytime. So to maintain policy consistency, updates should be
done in such a way that each path during the updates should
pass through switch E.

Researchers have propsed various techniques to preserve the
PPC and WPE policies during updates. One straightforward
solution to preserve PPC is to use the above mentioned 2-
Phase commit technique which activates the new path after all
the new rules are installed on all the switches along the new
path. By taging packets with the “Old label” or “New label,” it
gurantees that each packet will go through either the old path
or the new path, respectively. Unsurprisingly, this approach
guarantees per-packet consistency. A major disadvantage of
2-phase commit is that it doubles the consumed memory
on switches because of rule addtitions. Other disadvantages
include requiring header space, tagging overhead, and com-
plications with middleboxes changing tags. It also requires
devices to maintain both the initial and final sets of forwarding
rules throughout the update, in order to possibly apply any of
the two sets according to packet tags.

To address some of these issues, Katta et al. in [19] have
proposed to split the updates into multipe rounds. In each
round, the controller determines the consistent sub-updates
for the global updates and apply 2-phase commit to it. In
this algorithm, as the number of rounds increases, TCAM
memory size requirements decreases. But this approach is
expensive in terms of update time. In other words, it can limit
the memory overhead on each switch at any moment in time
but at the price of slowing down the update. In general, the
switch-memory consumption of 2-phase commit techniques
remains a fundamental limitation of this approach, calling for
the exploration of alternatives.

In [20], PPC is ensured using hybrid approach discussed
in Section III.A.3. This approach first computes the maximal
sequence of rule replacements that preserve PPC, and then
apply a restricted 2-phase commit procedure on a subset of
(non-ordered) devices and flows.

In [15], Vissicchio et al. focus on the problem of preserving
generic policies during SDN updates. For each flow, a policy
is defined as a set of paths so that the flow must traverse
any of those paths in each intermediate state. The proposed
algorithm uses both rule replacements and additions (i.e.,
packet tagging and tag matching) in the returned operational
sequences and during its computation rather than considering
the two operations in subsequent steps as in [20].

Both the above works argue that it is always profitable
to combine rule replacement and additions, as it reduces the
amount of memory overhead while keeping the operational
sequence always computable.

In [22], authors mainly focused on preserving WPE during
updates with minimum delay. They proposed WayUp, an
algorithm which guarantees WPE with minimum number of
communication rounds. They also found that it may not be
possible to achieve WPE through single point and loop-
freedom at the same point.

3) Performance consistency: Performance consistency
makes sure that the network resources are available during the
updates and not oversubscribed. For example, suppose there
are two flows from S to D in Fig. 1 and the capacity of each
link is 1 Mbps. The first flow f1 has bandwidth demand of
0.9 Mbps and goes through the path {S,A,E,C,D} while
the second flow f2 has bandwidth demand of 0.2 Mbps and
goes through the path {S,B,C,E,D}. Suppose the network
provider changes some policies on both flows such that f1
and f2 need to be migrated on paths {S,B,C,E,D} and
{S,A,E,C,D}, respectively. In this case, if the new path for
any one of the flows is updated before the migration of other
flow, there will be some congestion on the old path, causing
performance inconsistency in the network.

Many techniques [10], [16], [21], [26] consider the traffic
volumes and the corresponding constraints raised by the lim-
ited capacity of network links. Their goal is to follow these
constraints during each step of updates. In the above example,
if we consider that both flows are splittable, we can solve
this problem in polynomial time by sending 0.5 Mbps of f1
on original path and remaining flow on new path. But for
unsplittable flows this is a NP-Hard problem.

Current algorithms to maintain performance consistency are
based on the work by Reitblatt et al. [10]. In [16], Hong
et al. have introduced a new system called SWAN which
helps to update a network in congestion-free manner and
increases the overall utilization of network. Initially it assumes
that there are three classes of traffic: Interactive, Elastic and
Background. It is observed that it is impossible to update
network without congestion if all links are full. SWAN assigns
a scratch capacity s at each link. Then, they prove that it is
possible to update the network without any congestion in at
most [1/s]-1 steps. Using LP formulation, SWAN also finds



the sequence of minimal number of steps, if exists. Instead of
wasting scratch capacity, it allocates it to background traffic.

This LP-formulation was extended by Zheng et al. [21]
to include unsplittable flows as well. Furthermore, using
randomized rounding with an LP, Zheng et al. can approximate
the minimum congestion that will occur if the migration has
to be performed using minimal number of updates. Also in
[26], Wang et al. divided new routing path into multiple
independent segments and identified critical nodes which shift
the flow from the old path to the new path. Instead of building
global dependency graph, they built a local dependency graph
with potentially congested links using critical nodes and then
proposed a heuristic algorithm to resolve those dependencies
in it.

In [24], Xu et al. have introduced a new aspect of net-
work update problem. They argue that network update delay
depends on not only update scheduling but also how many
flows controller will update and which paths will be updated.
Another challenge during network update is how to keep track
of the current network configuration as the network state
changes frequently. If the workload of network is changing
frequently and update delay is significant, then the new
configuration may be no longer efficient for the workload
after update. To addresse the real-time route update, Xu et
al. have considered the optimization of flow route selection
and update scheduling jointly. They formulated the delay-
satisfied route update (DSRU) problem with three constraints.
First constraint is congestion-free constraint that guarantees
no congestion during the update process. Second constraint
is route-consistency constraint in which each packet should
be forwarded either with the new configuration or the old
configuration and not with the mixture of two. Third constraint
is real-time constraint which guarantees that the maximum
delay of route update on all switches should not exceed some
tolerated delay. Further they proved its NP-Hardness by reduc-
ing from multi-commodity flow problem (MCF) and proposed
two algorithms: greedy and an approximation algorithm based
on randomized rounding method.

Mizrahi et al. in [27] have proposed a unique solution for
the congestion during updates. They argue that sometimes two
or more switches need to be updated at the same time to
avoid congestion. Their solution is specially applicable for
the situation where flow swapping occurs as a part of load
balancing. First, they proved that in some scenarios flows are
need to be swapped. It is inevitable. Then they provided a
mechanism to apply updates on switches almost at the same
time. This mechanism is based on OpenFlow [36] Bundle
feature (Bundle is a sequence commands applied as a single
operation). They proposed Scheduled Bundle, to apply all the
commands in specific pre-determined time. This feature allows
all the switches to update the new path within a specific time
limit.

C. Optimization Goals

Proposed techniques can be classified based on different
types of objectives that need to be achieved during updates

such as maximizing the number of switches updated in a
single round without violating any consistency, minimizing
the communication amount and delay between controller and
switches or minimizing the extent to which link capacities are
oversubscribed during the update.

In [18], Zheng et al. proposed an algorithm to minimize the
congestion that occurs during network updates. They argue
that for production scale networks (where the number of
flows is more than 5K), existing solutions [16] are too slow
since they require to solve a series of LPs to calculate the
congestion-free update. Since many low priority flows can
tolerate packet loss due to congestion, Zheng et al. proposed
congestion-minimizing network update instead of congestion-
free network update. They proposed two optimization prob-
lems: minimum congestion update problem (MCUP) and
bounded congestion update problem (BCUP). MCUP aims at
minimizing congestion during updates within x intermediate
steps where x is given. Where BCUP aims to minimize the
number of intermediate steps and corresponding routing at
each step such that maximum congestion will be less than
threshold y. They further proved that these two problems are
NP-hard and provided approximation algorithms and heuristics
for that.

IV. DISCUSSION

In the previous section, we discussed various techniques that
have been proposed in the literature to solve consistent update
problem in SDN. The main goal of all these techniques is to
shift the traffic from an old path to a new path while avoiding
loops and blackholes in the network. To ahieve this goal, it
is necessary to update the state of the network in a consistent
manner. The existing solutions can in general be classified
into two types: 2-phase commit-based techniques [10] and
ordered round-based techniques [12], [17]. Both types have
certain advantages and disadvantages. For example, 2-phase
commit-based techniques can easily maintain all types of
consistencies mentioned in the previous section. But the major
challenge faced by these techniques is the excessive use of
memory. Morever, since these techniques apply a new rule
only when the controller receives confirmation from every
switch, a significant delay may be incurred in case one of
the switches responds slowly.

To mitigate some of the problems in 2-phase commit-based
techniques, many researchers considered round-based tech-
niques. While round-based techniques do not need excessive
memory, they still face the challenge regarding delay. As the
number of rounds increases, the time required to update the
new path increases. In most of the round-based techniques, the
number of rounds are determined based on the dependencies
of rules. Also time required for each round is dependent on
the communication between each switch and the controller.
In the worst case, the number of rounds can be equal to the
number of switches involved in the path switching. So there
is still need for efficient techniques that can update network
in minimum rounds without excessive memory consumption.



All of the above techniques assume that the controller has
already calculated the new path as a backup path for particular
flow. In case of events such as congestion/failure, the controller
updates the new path. That means the way controller calculates
the new path may affect the overall delay required to update
the network. Many path finding algorithms are proposed in the
literature [5]–[9]. They can be divided into two classes. First
class assumes that controller calculates two paths for each flow
and install both paths on the switches, one as primary and
other one as a backup path. Using this technique, the network
can be updated quickly and efficiently. However, installing two
paths for each flow is a wastage of critical network resources
such as switch TCAM memory. Moreover, the backup path
may not be available when needed. So a new path needs to
be computed on demand.

In case of second class of path finding algorithms, the
controller calculates a totally new path from source to desti-
nation upon detecting congestion/failure. In this case, the total
time required to update the network includes time required to
calculate the new path and time to update switches on the new
path. In the worst case, if the new path is totally different from
the old path and contain many critical switches (i.e., Switches
which have entries for both old and new paths with different
interfaces), the probability of creating loop/blackhole during
update may increase. Apparently, this will increase delay and
overhead during the update. One solution is to find an optimum
path which has maximum number of overlapping switches
(i.e., Switches which have entry for both new and old paths
with same interface) to minimize the time and overhead re-
quired to update the network. So there is a need for developing
new path selection algorithms that can simultaneously find the
optimum path on demand and update the network in a timely
and efficient manner.

In case of computing paths on demand, the controller
needs to have the accurate state information of the underlying
data plane. However, due to the distrubuted nature of the
data plane, the accurate state information cannot easily be
otained. For high accuracy, the conroller needs to query the
switches frequently or the switches should send every change
to the controller. Unfortunately, this will incur significant
protocol overhead. So there is a significant need for designing
efficient mechanisms to provide accurate state information to
the controllers and/or new path selection algorithms that can
take inaccurate state information into account.

Last but not least, many of the existing techniques [10], [19]
assume that the old path is still available to carry packets while
switching the traffic over a new path. While this assumption
is true in case of shifting traffic becasue of policy changes
or congestion, it is clearly not true in case of link/node
failures. Since all the packets will be dropped at the point
of failure, the path shifting should be done in a much more
timely manner. In [25], Huang et al. have considered this
problem first time and proposed source routing based protocol
to handle failures. However, more work still needs to be done
for develeoping locally and globally efficient mechanisms to
cope with unpredictable events such as link/node failures.

V. CONCLUSIONS

In this paper, we provided the overview of the techniques
used to solve the network update problems along with their
classification according to Rule placement policy they used,
type of consistency they focus on and performance goals they
try to achieve. We also presented some open challenges that
require further research.

REFERENCES

[1] S. Jain, A. Kumar, S. Mandal, J. Ong et al., B4: Experience with a
globally-deployed software defined wan, in SIGCOMM, 2013.

[2] S. Agarwal, M. Kodialam, and T. Lakshman, Traffic engineering in
software defined networks, in INFOCOM, 2013.

[3] C.-Y. Chu, K. Xi, M. Luo, and H. J. Chao, Congestion-aware single link
failure recovery in hybrid sdn networks, in INFOCOM, 2015.

[4] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang et al., Hedera:
Dynamic flow scheduling for data center networks. in NSDI, 2010.

[5] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula et al., De-
voflow: Scaling flow management for high-performance networks, in
SIGCOMM, 2011.

[6] T. Benson, A. Anand, A. Akella, and M. Zhang, Microte: Fine grained
traffic engineering for data centers, in CoNEXT, 2011.

[7] M. Suchara, D. Xu, R. Doverspike, D. Johnson et al., Network architec-
ture for joint failure recovery and traffic engineering, in SIGMETRICS,
2011.

[8] Y. D. Lin, H. Y. Teng, C. R. Hsu, C. C. Liao and Y. C. Lai, ”Fast failover
and switchover for link failures and congestion in software defined
networks,” 2016 IEEE International Conference on Communications
(ICC), Kuala Lumpur, 2016.

[9] A. Capone, C. Cascone, A. Q. Nguyen, and B. Sanso, “Detour planning
for fast and reliable failure recovery in sdn with openstate,” in Design
of Reliable Communication Networks (DRCN), 2015 11th International
Conference on the. IEEE, 2015, pp. 2532.

[10] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker.
Abstractions for network update. In Proc. ACM SIGCOMM, pages
323334, 2012.

[11] S. Dudycz, A. Ludwig, and S. Schmid. Can’t touch this: Consistent
network updates for multiple policies. In Proc. IEEE/IFIP DSN, 2016.

[12] K.-T. Frster, R. Mahajan, and R. Wattenhofer. Consistent Updates in
Software Defined Networks: On Dependencies, Loop Freedom, and
Blackholes. In Proc. IFIP Networking, 2016.

[13] A. Ludwig, J. Marcinkowski, and S. Schmid. Scheduling loop-free
network updates: Its good to relax! In Proc. ACM PODC, 2015.

[14] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and O. Bonaventure.
Lossless migrations of link-state igps. IEEE/ACM Transactions on
Networking (TON), 20(6):18421855, 2012.

[15] S. Vissicchio and L. Cittadini. FLIP the (Flow) Table: Fast LIghtweight
Policy-preserving SDN Updates. In Proc. IEEE INFOCOM, 2016.

[16] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer. Achieving high utilization with software-driven wan.
SIGCOMM Comput. Commun. Rev., 43(4):1526, 2013.

[17] R. Mahajan and R. Wattenhofer. On Consistent Updates in Software
Defined Networks. In Proc. ACM HotNets, 2013.

[18] J. Zheng; H. Xu; G. Chen; H. Dai; J. Wu, ”Congestion-Minimizing
Network Update in Data Centers,” in IEEE Transactions on Services
Computing , vol.PP, no.99, pp.1-1 doi: 10.1109/TSC.2016.2631519

[19] N. P. Katta, J. Rexford, and D. Walker. Incremental consistent updates.
In Proc. ACM SIGCOMM HotSDN, 2013.

[20] S. Vissicchio, L. Vanbever, L. Cittadini, G. Xie, and O. Bonaventure.
Safe Update of Hybrid SDN Networks. Technical report, UCLouvain,
2013.

[21] J. Zheng, H. Xu, G. Chen, and H. Dai. Minimizing transient congestion
during network update in data centers. In Proc. ICNP, 2015.

[22] A. Ludwig, M. Rost, D. Foucard, and S. Schmid. Good network updates
for bad packets: Waypoint enforcement beyond destination-based routing
policies. In Proc. ACM HotNets, 2014.

[23] A. Ludwig, S. Dudycz, M. Rost, and S. Schmid. Transiently secure
network updates. In Proc. ACM SIGMETRICS, 2016.



[24] Hongli Xu, Zhuolong Yu, Xiang-Yang Li, Chen Qian, Liusheng Huang
and Taeho Jung, ”Real-time update with joint optimization of route se-
lection and update scheduling for SDNs,” 2016 IEEE 24th International
Conference on Network Protocols (ICNP), Singapore, 2016, pp. 1-10.

[25] Huang Liaoruo, Shen Qingguo and Shao Wenjuan, ”A source routing
based link protection method for link failure in SDN,” 2016 2nd IEEE
International Conference on Computer and Communications (ICCC),
Chengdu, 2016, pp. 2588-2594.

[26] W. Wang, W. He, J. Su, and Y. Chen. Cupid: Congestion-free consistent
data plane update in software defined networks. In Proc. IEEE INFO-
COM, 2016.

[27] T. Mizrahi and Y. Moses, ”Software defined networks: It’s about
time,” IEEE INFOCOM 2016 - The 35th Annual IEEE International
Conference on Computer Communications, San Francisco, CA, 2016,
pp. 1-9.

[28] L. W. Cheng and S. Y. Wang, ”Application-Aware SDN Routing for
Big Data Networking,” 2015 IEEE Global Communications Conference
(GLOBECOM), San Diego, CA, 2015

[29] C. Chen, B. Li, D. Lin and B. Li, ”Software-defined inter-domain routing
revisited,” 2016 IEEE International Conference on Communications
(ICC), Kuala Lumpur, 2016

[30] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker, N.
Feamster, J. Rexford, S. Shenker, R. Clark, and E. Katz-Bassett, Sdx:
A software defined internet exchange, in Proc. ACM SIGCOMM, 2014

[31] Q. Yan, F. R. Yu, Q. Gong and J. Li, ”Software-Defined Networking
(SDN) and Distributed Denial of Service (DDoS) Attacks in Cloud Com-
puting Environments: A Survey, Some Research Issues, and Challenges,”
in IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 602-
622, Firstquarter 2016.

[32] W. Cui and C. Qian, ”Scalable and Load-Balanced Data Center Multi-
cast,” 2015 IEEE Global Communications Conference (GLOBECOM),
San Diego, CA, 2015

[33] J. Ruckert, J. Blendin, R. Hark and D. Hausheer, ”DYNSDM: Dynamic
and flexible software-defined multicast for ISP environments,” 2015
11th International Conference on Network and Service Management
(CNSM), Barcelona, 2015

[34] J. M. Wang; Y. Wang; X. Dai; B. Bensaou, ”SDN-based Multi-
Class QoS Guarantee in Inter-Data Center Communications,” in
IEEE Transactions on Cloud Computing , vol.PP, no.99, pp.1-1 doi:
10.1109/TCC.2015.2491930

[35] A. Ghosh, S. Ha, E. Crabbe, and J. Rexford, Scalable multi-class
traffic management in data center backbone networks, Selected Areas in
Communications, IEEE Journal on, vol. 31, no. 12, 2013.

[36] Open Networking Foundation, OpenFlow Switch Specification, Version
1.4.0, 2013.


