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Abstract—Due to flow dynamics, a software defined network
(SDN) may need to frequently update its data plane so as to
optimize various performance objectives, such as load balancing.
Most previous solutions first determine a new route configuration
based on the current flow status, and then update the forwarding
paths of existing flows. However, due to slow update operations
of Ternary Content Addressable Memory (TCAM) based flow
tables, unacceptable update delays may occur, especially in a
large or frequently changed network. According to recent studies,
most flows have short duration and the workload of the entire
network may vary after a long duration. As a result, the new route
configuration may be no longer efficient for the workload after
the update, if the update duration takes too long. In this paper,
we address the real-time route update, which jointly considers
the optimization of flow route selection in the control plane
and update scheduling in the data plane. We formulate the
delay-satisfied route update (DSRU) problem, and prove its NP-
Hardness. Two algorithms with bounded approximation factors
are designed to solve this problem. We implement the proposed
methods on our SDN testbed. The experimental results and
extensive simulation results show that our method can reduce the
route update delay by about 60% compared with previous route
update methods while preserving a similar routing performance
(with link load ratio increased less than 3%).

Index Terms—Route Update, Software Defined Networks, Real-
time, Load Balancing, Rounding.

I. INTRODUCTION

Software-defined networking (SDN) is a new paradigm

that separates the control and data planes on independent

devices [1]. The controller provides centralized and flexible

control by installing forwarding rules in the data plane, and

the switches perform flow forwarding according to the rules.

Due to frequent flow dynamics in a network [2], the data plane

needs to be timely updated to avoid sub-optimal flow routes

that may cause network congestion. The controller should

respond to events such as shifts in traffic intensity, and new

connection from hosts, by pushing forwarding rules to flow

tables on the switches so as to achieve various performance

requirements, such as load balancing. Thus, network updates

(also called route updates) help to significantly improve net-

work performance and resource utilization [3].

The speed of network updates is an important metric in many

application scenarios because it determines the agility of the

control loop. The effectiveness of network updates is tied to

how quickly they adapt to changing workloads. Slow network

updates will make network utilization lower and decrease the

route performance, such as imbalanced link utilization [4]. The

route update procedure consists of two main components: route

selection in the control plane and forwarding table update in the

data plane. Generally, the delay for route selection is much less

than that for update scheduling [4]. Thus, this paper focuses

on minimizing the delay for forwarding table update. Most

existing update studies first compute a new route configuration

only based on the current workload (or the collected flow

intensity information) in a wide area network [4] or data center

[5]. To minimize the update delay, these methods then schedule

the data plane updates from the current route configuration to

the new one with a fine-grained manner. For example, Hong et
al. [4] divided all flows into minimum number of sets, and

updated the flows in one set per round while avoiding the

transient congestion. Jin et al. [3] encoded the consistency-

related dependencies among updates at individual switches as

a graph, and dynamically scheduled these updates on different

switches.

However, the previous solutions [3] [4] do not pay attention

to the impact of route selection in the control plane, including

how many flows the controller will update and which path a

flow will be updated to, on the update delay. Thus, they may

still result in a long update duration, especially in a large and

dynamic network. For example, in a moderate-size data center

network, the volume of flows arriving at a switch can be in

the order of 75K-100K flows/min for a rack consisting of 40

servers and the same would be 1,300K for the servers hosting

around 15 virtual machines per host [6]. At one time instant,

assume that it requires to update the routes of 8K flows (less

than 1%) on one switch. The update delay depends on two

main factors: the total number of rules that need to be updated

or inserted, and TCAM’s speeds for update operations (e.g.,
insertion or modification). By testing on the today’s commodity

switches [3], it often takes about 5ms and 10ms for each

insertion and modification, respectively, on the TCAM-based

flow table. For the above scenario, assume that there needs

4K insertion operations and 4K modification operations. It

will last for 60s at least for rule update on this switch.

Unfortunately, a long update delay hurts the quality of route
selection. The existing studies [2] [6] have presented the traffic

characteristics by testing in various datacenters. We can make

several observations from existing measurement results [2]: 1)
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More than 80% flows last less than 10s. 2) Fewer than 0.1%

flows last longer than 200s. 3) More than 50% bytes are in

flows lasting less than 25s. If a network-wide route update

takes a long duration (e.g., 60s), the selected routes may not be

useful because many flows have already terminated and many

new flows have arrived [7]. As the optimal route configuration

is usually derived by the current workload in a network [4],

one route configuration is efficient for the current workload, but

may be no longer efficient for another scheme after a long time

duration. In other words, route updates with a shorter duration

help to enhance the route performance. Therefore, real-time

network update is necessary for an SDN.

In fact, both route selection and update scheduling determine

the update delay. On the one hand, when the controller updates

more flows, though the flow routes may be optimized, the

update delay will be increased significantly. On the other hand,

if only a few flows are updated, the update delay is smaller.

So, there is a trade-off between route update delay and flow

path optimization. Different from these previous works, we will
consider the performance trade-off by jointly optimizing the
route selection and update scheduling. To satisfy real-time re-

quirements, we only update routes for a subset of chosen flows,

including selecting new routes for these flows and scheduling

the update operations. As a result, the final route configuration

can still achieve a close-to-optimal route performance, such

as load balancing, with update delay constraint. One may say

that we only update the routes of those large flows (also called

elephant flows) [5] [8]. However, our simulation results show

that the update delay of this method is still unacceptable under

many network situations, especially with a large number of

(elephants) flows.

To address this challenge, we formulate the delay-satisfied

route update (DSRU) problem, and prove its NP-Hardness

by reduction from the classical multi-commodity flow (MCF)

problem [9]. Due to its difficulty, we design two algorithms

to solve the real-time route update challenge through joint
optimization of route selection and update scheduling. One is

an approximation algorithm based on the randomized rounding

method, the other is a greedy algorithm. We show that the

proposed algorithm can achieve the bi-criteria constant ap-

proximation performance under most network situations. We

also implement our proposed route update algorithm on a

real SDN platform. The experimental results on the platform

and extensive simulation results show that our algorithm can

significantly decrease the route update delay while achieving

similar load balance. For example, our method decreases the

route update delay by 60% compared with the previous method

[3] while preserving a close route performance (with link load

ratio increased less than 3%).

The rest of this paper is organized as follows. Section II

introduces the preliminaries and problem definition. In Section

III, we propose two algorithms to deal with the DSRU problem.

The testing results and the simulation results are given in

Section IV. Section V discusses the related works on the route

update in an SDN. We conclude the paper in Section VI.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we will introduce the network and TCAM

update models in an SDN, describe two update requirements

for congestion freedom and route consistency, define the delay-

satisfied route update problem, and prove its NP-Hardness.

A. Network Model

An SDN typically consists of two device sets: a controller,

and a set of switches, V = {v1, ..., vn}, with n = |V |. Thus,

The network topology can be modeled by G = (V,E), where

E is a set of links connecting switches. When a flow arrives

at a switch, if there is a matched flow entry for the header

packet, the switch takes the action specified in the entry, such

as forwarding packets to a certain port. Otherwise, the switch

reports the header packet to the controller. Then, the controller

determines the route path for this flow, and deploys flow entries

on all switches through this path. Same to many previous

works [3] [10], we also adopt the unsplittable flow mode for

its simplicity in this paper.

B. Delay Model for TCAM Updates

We introduce the delay model of TCAM updates, including

insertion and modification, on a switch. Jin et al. [3] have

shown that the delay for inserting/modifying flow entries is

almost linear with the number of being inserted/modified flow

entries if all flow entries have the same priority. In fact,

most of flows have the unique priority in many practical

applications [11]. Even though in some applications with

microflow and macroflow rule schemes [12], there have two

different priorities, the higher one for macroflows (or elephant

flows) and the lower one for microflows. Since we only update

some selective elephant flows, all of them have the unique

priority. Thus, it is reasonable to assume that the operation

delay for insertion/modification of each flow entry is a constant

under the unique priority. Let ti and tm denote the required

delays for the insertion and modification operations of a flow

entry, respectively. For example, by testing on the practical

commodity switches [3], tm may be 10ms or more on some

switches due to low-speed of TCAM updates. To be more

practical, we will discuss how to deal with the various latency

of TCAM updates in Section III-E.
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(a) Current Route Configuration
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(b) Target Route Configuration

Fig. 1: An example of route update. Each link has 10 units of capacity.
To avoid transient congestion, v2 should apply the update for moving
γ3 before v2 moves γ2. Otherwise, link v2v5 will be congested.

C. Congestion-free Route updates [4]

We illustrate the downside of static ordering of rule updates

with the example of Fig. 1. Each link has a capacity of 10 units

and each flow size is marked. The controller wants to update
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the network from (a) to (b) in Fig. 1. If we update all switches

in one shot (i.e., send all update commands simultaneously),

since different switches will apply the updates at different

times, such a strategy may cause congestion on some links.

For instance, if v2 applies the update for moving flow γ3 after

v2 moves γ2, link v2v5 will be congested. Thus, it requires us

to carefully schedule the updates for congestion freedom.

D. Consistent Route updates [10]

When network updates occur, the consistency guarantee

persists: each packet (or flow) is forwarded either using the

configuration in place prior to the update, or the configuration

in place after the update, but never a mixture of the two [10].

This strong requirement is important for some applications

such as HTTP load balancers, which need to ensure that all

packets in the same TCP connection reach the same server

replica to avoid breaking connections. Among many previous

algorithms, the two-phase update mechanism [3] [10] has been

widely used, because it can provide a simple, consistent and

efficient route update way. Thus, our route update is also built

on this method. To guarantee consistency, the two-phase update

mechanism should satisfy the following constraint.

Definition 1 (Consistent Update Order): Given a flow, as-

sume that its final path after the update is v0...vm, with m ≥ 1.

v0 is the ingress switch, and others are the internal switches.

The controller should start the route update on the ingress

switch of this flow after the route updates are finished on all

the internal switches. We call this as consistent update order.

Due to limited space, we omit the detailed description of

this update mechanism here. The reader can refer [3] [10] for

the detailed procedure of the two-phase update method.

E. Definition of Delay-Satisfied Route Update (DSRU)

This section defines the delay-satisfied route update (DSRU)

problem. In an SDN, since the header packet of each new-

arrival flow will be reported to the controller, the controller

saves the information of each flow. Thus, it is reasonable to

assume that we know the current flow set, denoted by Γ =
{γ1, ..., γr} with r = |Γ|, in the network. After a flow entry is

setup for flow γ on one switch, this switch can count the traffic

size of this flow. By collecting the flow statistics information

from switches, the controller knows the size (or intensity) of

each flow γ as s(γ). Note that, in some scenarios, the intensity

of each flow may vary dynamically [11]. Thus, it is difficult to

master the accurate intensity of each flow. We will discuss how

to deal with the more practical case without accurate intensity

information of each flow in Section III-E. Each flow γ will

be assigned a set Pγ of feasible paths, and be routed through

one feasible path in Pγ . We will further discuss Pγ in the next

section when we present our route update algorithm.

The route update procedure can be divided into route selec-

tion and update scheduling. To obtain the trade-off optimization

among route performance and update delay, we should consider

the joint optimization of route selection and update scheduling.

Assume that the current route configuration is denoted by Rc,

in which the route of flow γ under this route configuration

is denoted by Rc(γ). To support real-time update, we will

determine a subset of flows, denoted by Γu, and select a

feasible path as the target route of each flow. That is, the

controller just updates the routes of flows in Γu. Assume that

the target route configuration is denoted by Rf , in which the

route of flow γ is denoted by Rf (γ). The route update from

Rc to Rf should satisfy the following three constraints:

• The congestion-free constraint: During the route update,

there is no transient congestion in a network, illustrated

in Fig. 1, by proper update scheduling.

• The route-consistency constraint: For each flow γ ∈ Γu,

the consistent route update should be guaranteed. That is,

the flow entry modification on the ingress switch should

start after flow entries have been setup at all internal

switches on the final route of this flow.

• The real-time constraint: The maximum delay of route

update on all the switches should not exceed T0, where

T0 is the tolerated delay.

After route update, we measure the traffic load on each link

e as l(e) =
∑

γ∈Γ,e∈Rf (γ) s(γ) ≤ λ · c(e), where λ is the

maximum link load factor. To provide more flexible routes for

new-arrival flows, our objective is to achieve the load balancing

in a network, by minimizing λ.

Theorem 1: The DSRU problem is NP-hard.

We can prove the NP-hardness by showing that the unsplit-

table multi-commodity flow (MCF) with minimum congestion

problem [9] is a special case of DSRU. Due to limited space,

we omit the detailed proof here.

III. REAL-TIME ROUTE UPDATE ALGORITHM

Due to NP-hardness, it is difficult to optimally solve the

DSRU problem. This section first gives a relaxed version of

the DSRU problem, and explores the quantitative relationship

between DSRU and its relaxed version (Section III-A). Then,

we present an approximation algorithm, called RRSU, for the

DSRU problem (Section III-B), and analyze the approximation

performance of the proposed algorithm (Section III-C). We

modify the RRSU algorithm so as to satisfy both the update

delay and link capacity constraints (Section III-D). Finally, we

give some discussion on our algorithm (Section III-E).

A. Preliminaries

Since the DSRU problem requires to ensure the congestion-

free and consistent update constraints for all the flows, it makes

problem formulation and algorithm design more difficult. Thus,

we first consider a relaxed version of the DSRU problem,

in which the controller sends all update commands and all

switches execute the route updates of all flows simultaneously.

This is also called Oneshot in [5]. Next, we formulate the

relaxed version, called R-DSRU, into an integer linear program

as follows. Let variable ypγ ∈ {0, 1} denote whether the flow

γ selects the feasible path p ∈ Pγ or not in the target route

configuration Rf . We use t(v, γ, p) to express the necessary

delay of flow-entry operation on switch v as the route of flow γ
is updated to the target path p. Note that, if the route of flow γ
does not change from the start configuration to the target one,

i.e., Rc(γ) = p, t(v, γ, p) = 0. According to the two-phase

update procedure [10], the constant t(v, γ, p) is expressed as
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follows: If switch v is the ingress switch of path p, v will

take the modification operation for route update of flow γ, and

t(v, γ, p) = tm. If v is the internal switch of path p, this switch

will take an insertion operation. So, t(v, γ, p) = ti. Otherwise,

t(v, γ, p) = 0. We have

t(v, γ, p) =

⎧⎪⎨⎪⎩
tm, v is the ingress switch of path p( �= Rc(γ))

ti, v is one of internal switches on p(�= Rc(γ))

0, otherwise.
(1)

Let variable λ be the maximum link load factor. R-DSRU

solves the following problem:

min λ

S.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
p∈Pγ

ypγ = 1, ∀γ ∈ Γ∑
γ∈Γ

∑
v∈p:p∈Pγ

ypγ · t(v, γ, p) ≤ T0, ∀v ∈ V∑
γ∈Γ

∑
e∈p:p∈Pγ

ypγ · s(γ) ≤ λ · c(e), ∀e ∈ E

ypγ ∈ {0, 1}, ∀p, γ

(2)

The first set of equations means that each flow will be

forwarded through one path from a source to a destination.

The second set of inequalities denotes that the route update

delay on each switch should not exceed a threshold, T0 for the

R-DSRU problem. That is, the real-time feature is pursued.

The third set of inequalities expresses that the traffic load on

each link e after update does not exceed λ · c(e), where λ is

the maximum link load factor. Our objective is to achieve the

load balance, i.e., min λ.

We use λD(T ) and λR(T ) to denote the optimal load-

balance factors for the DSRU and R-DSRU problems under

the delay constraint T , respectively. We have:

Lemma 2: For any delay constraint T , λR(T ) ≤ λD(T ).
Proof: Assume that a set of flows Γu can be updated

within a delay constraint T so as to achieve the minimum

load-balance factor for the DSRU problem. Since it permits

to update all the flows simultaneously, the total delay on each

switch for R-DSRU should not exceed T if the routes for the

same flow set are updated. In other words, we can at least

update a flow set Γu within delay constraint T for the R-DSRU

problem. As a result, the optimal load balance factor for the

R-DSRU problem will not be worse than that for the DSRU

problem under the same delay constraint. That is, λR(T ) ≤
λD(T ), ∀T .

B. Rounding-based Route Selection and Update (RRSU)

We describe a rounding-based algorithm for real-time route

update with consistency and congestion-free guarantee in an

SDN. Due to difficulty of the DSRU problem, the first step

obtains the fractional solution for the relaxed DSRU problem.

In the second step, we choose one feasible path for each flow

using the randomized rounding method, and obtain the target

route configuration. Finally, we schedule the update operations

of all the flows on different switches so as to guarantee the

congestion-free and consistency. There might be an exponential

number of feasible paths between a source and a destination

for each flow. Following [4] [13], we assume that the controller

has pre-computed a set of feasible paths between each pair of

switches. Given a flow γ, we use Pγ to be the set of feasible

paths between the two corresponding switches which connect

to the source and the destination. These feasible paths may

simply be the shortest paths, which can be found by depth-

first search, between two switches.

Algorithm 1 RRSU: Rounding-based Route Selection-Update

1: Step 1: Solving the Relaxed R-DSRU Problem
2: Construct a linear program in Eq. (3) as Relaxed S-DSRU

3: Obtain the optimal solution ỹpγ
4: Step 2: Selecting Routes for Load-balance
5: Derive an integer solution ŷpγ by randomized rounding

6: for each flow γ ∈ Γ do
7: for each feasible path p ∈ Pγ do
8: if ŷpγ = 1 then
9: Appoint a feasible path p for flow γ

10: Step 3: Route Update Scheduling
11: Apply the previous Dionysus method [3] for route update

To solve the problem formalized in Eq. (2), the algorithm

constructs a linear program as a relaxation of the R-DSRU

problem. More specifically, R-DSRU assumes that the traffic

of each flow should be forwarded only through one feasible

path. By relaxing this assumption, traffic of each flow γ is

permitted to be splittable and forwarded through a path set

Pγ . We formulate the following linear program LP1.

min λ

S.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
p∈Pγ

ypγ = 1, ∀γ ∈ Γ∑
γ∈Γ

∑
v∈p:p∈Pγ

ypγ · t(v, γ, p) ≤ T0, ∀v ∈ V∑
γ∈Γ

∑
e∈p:p∈Pγ

ypγ · s(γ) ≤ λ · c(e), ∀e ∈ E

ypγ ≥ 0, ∀p, γ

(3)

Note that, variable ypγ is fractional in Eq. (3). Since LP1 is

a linear program, we solve it in polynomial time with a linear

program solver. Assume that the optimal solution for LP1 is

denoted by ỹpγ , and the optimal result is denoted by λ̃. As LP1

is a relaxation of the R-DSRU problem, λ̃ is a lower-bound

result for R-DSRU. Using the randomized rounding method

[14], variable ŷpγ , with p ∈ Pγ , is set as 1 with the probability

of ỹpγ while satisfying
∑

p∈Pγ
ŷpγ = 1, ∀γ ∈ Γ. If ŷpγ = 1,

∃p ∈ Pγ , this means that flow γ selects p ∈ Pγ as its route.

After the second step, we have determined the target route

configuration. The third step can just apply the previous

Dionysus method [3] for consistent and congestion-free route

update. The RRSU algorithm is given in Alg. 1.

C. Approximation Performance Analysis

We analyze the approximate performance of the proposed

RRSU algorithm. Assume that the minimum capacity of all the

links is denoted by cmin. We define a variable α as follows:

α = min{min{ λ̃cmin

s(f)
, f ∈ Γ}, T0

tm
} (4)

In most practical situations, since the flow intensity is usually

much less than the link capacity, for example, cmin =100Mbps,
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and s(f) =4Mbps for high definition video, and tm is usually

much less than T0, it follows that α � 1. Since RRSU is a

randomized algorithm, we compute the expected traffic load

on links and the expected update delay on switches. We give

two famous lemmas for probability analysis.

Lemma 3 (Chernoff Bound): Given n independent variables:

x1, x2, ..., xn, where ∀xi ∈ [0, 1]. Let μ = E[
∑n

i=1 xi]. Then,

Pr

[
n∑

i=1

xi ≥ (1 + ε)μ

]
≤ e

−ε2μ
2+ε , where ε is an arbitrarily

positive value.

Lemma 4 (Union Bound): Given a countable set of n events:

A1, A2, ..., An, each event Ai happens with possibility Pr(Ai).

Then, Pr(A1 ∪A2 ∪ ... ∪An) ≤
n∑

i=1

Pr(Ai).

Link Capacity Constraints. We first bound the probability

with which the capacity of each link will be violated after

route update. The first step of the RRSU algorithm will derive

a fractional solution ỹpγ and an optimal result λ̃ for the relaxed

R-DSRU problem by the linear program. Using the randomized

rounding method, for each flow γ ∈ Γ, only one path in Pγ

will be chosen as its target route. Thus, the traffic load of link

e from flow γ is defined as a random variable xe,γ as follows:

Definition 2: For each link e ∈ E and each flow γ ∈ Γ, a

random variable xe,γ is defined as:

xe,γ =

{
s(γ), with probability of

∑
e∈p:p∈Pγ

ỹpγ

0, otherwise.
(5)

According to the definition, xe,γ1 , xe,γ2 ... are mutually

independent. The expected traffic load on link e is:

E

⎡⎣∑
γ∈Γ

xe,γ

⎤⎦ =
∑
γ∈Γ

E[xe,γ ] =
∑
γ∈Γ

∑
e∈p:p∈Pγ

ỹpγ · s(γ) ≤ λ̃c(e)

(6)

Combining Eq. (6) and the definition of α in Eq. (4), we

have ⎧⎨⎩
xe,γ ·α
˜λc(e)

∈ [0, 1]

E

[∑
γ∈Γ

xe,γ ·α
˜λ·c(e)

]
≤ α.

(7)

Then, by applying Lemma 3, assume that ρ is an arbitrary

positive value. It follows

Pr

⎡⎣∑
γ∈Γ

xe,γ · α
λ̃ · c(e)

≥ (1 + ρ)α

⎤⎦ ≤ e
−ρ2α
2+ρ (8)

Now, we assume that

Pr

⎡⎣∑
γ∈Γ

xe,γ

λ̃ · c(e)
≥ (1 + ρ)

⎤⎦ ≤ e
−ρ2α
2+ρ ≤ F

n2
(9)

where F is the function of network-related variables (such as

the number of switches n, etc.) and F → 0 when the network

size grows.

The solution for Eq. (9) is expressed as:

ρ ≥
log n2

F +
√

log2 n2

F + 8α log n2

F
2α

, n ≥ 2 (10)

We give the approximation performance as follows.

Theorem 5: The proposed RRSU algorithm achieves the

approximation factor of 4 logn
α +3 for link capacity constraints.

Proof: Set F = 1
n2 . Eq. (9) is transformed into:

Pr

⎡⎣∑
γ∈Γ

xe,γ

λ̃ · c(e)
≥ (1 + ρ)

⎤⎦ ≤ 1

n4
,

where ρ ≥ 4 log n

α
+ 2 (11)

By applying Lemma 4, we have,

Pr

⎡⎣∨
e∈E

∑
γ∈Γ

xe,γ

λ̃ · c(e)
≥ (1 + ρ)

⎤⎦
≤

∑
e∈E

Pr

⎡⎣∑
γ∈Γ

xe,γ

λ̃ · c(e)
≥ (1 + ρ)

⎤⎦
≤ n2 · 1

n4
=

1

n2
, ρ ≥ 4 log n

α
+ 2 (12)

Note that the third inequality holds, because there are at

most n2 links in a network with n switches. The approximation

factor of our algorithm is ρ+ 1 = 4 log n
α + 3.

Route Update Delay Constraints. Next, we analyze the

route update delay performance on most situations. Similar

to definition 2, we define another random variable zv,γ to

formulate the route update delay on a switch.

Definition 3: For each switch v ∈ V and each flow γ ∈ Γu,

random variable zv,γ is defined as:

zv,γ =

⎧⎪⎨⎪⎩
tm, v is the ingress switch of flow γ

ti, with probability
∑

v∈p:p∈Pγ
ỹpγ

0, otherwise
(13)

By the definition, zv,γ1 , zv,γ2 ... are mutually independent.

Thus, we have:

{ zv,γ ·α
T0

∈ [0, 1]

E

[∑
γ∈Γu

zv,γ ·α
T0

]
≤ α.

(14)

Similar to the proof for the link capacity constraint, we have

a general form of proving: the total delay for route update on

any switch v will not exceed the delay constraint T0 by a factor

of 1 + x, if and only if there exists F satisfying

Pr

⎡⎣∨
v∈V

∑
γ∈Γu

zv,γ · α
T0

≥ (1 + x) · α
⎤⎦ ≤ F , (15)

where x is the function of network-related variables (such as

n, etc.), and F is defined same as that in Eq. (9). By applying

Theorem 4, Eq. (15) is relaxed to:

Pr

⎡⎣∨
v∈V

∑
γ∈Γu

zv,γ · α
T0

≥ (1 + x) · α
⎤⎦

≤
∑
v∈V

Pr

⎡⎣ ∑
γ∈Γu

zγ,v · α
T0

≥ (1 + x) · α
⎤⎦ ≤ F (16)
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Let n be the number of switches. By applying Theorem 3

and Eq. (14), we can assume:

Pr

⎡⎣ ∑
γ∈Γu

zv,γ · α
T0

≥ (1 + x) · α
⎤⎦ ≤ e−

x2α
2+x

≤ F
n
, n ≥ 2 (17)

Then, we get the result:

x ≥
log n

F +
√
log2 n

F + 8 · α log n
F

2 · α , n ≥ 2 (18)

By setting suitable values of parameters x and F , we can

derive the approximation performance on the route update

delay constraint.

Lemma 6: After the rounding process, the total route update

delay on any switch v will not exceed the constraint T0 by a

factor of 3 log n
α + 3 for the R-DSRU problem.

Proof: Set F(n) = 1
n2 . Apparently F → 0 as n → ∞.

With respect to Eq. (18), we set

x =
log n

F + log n
F + 4 · α

2 · α
=

6 log n+ 4 · α
2 · α =

3 log n

α
+ 2 (19)

Then Eq. (15) is guaranteed with 1 + x = 3 logn
α + 3 and

F = 1
n2 , which concludes the proof.

Approximation Factor: To forward all the flows on chosen

paths, the above analysis shows that, the link capacity will

hardly be violated by a factor of 4 logn
α +3, and the route update

delay constraint will not be violated by a factor of 3 log n
α + 3

for the R-DSRU problem. For simplicity, we use Fv to denote

the set of updated flows whose ingress switches are v. By Eq.

(3), we have the following lemma:

Lemma 7:
∑

γ∈Fv
tm ≤ T0, ∀v ∈ V .

According to Lemma 7, we conclude that:

Theorem 8: If we omit the congestion-free constraint during

update, the the RRSU algorithm can guarantee that, the link

capacity will hardly be violated by a factor of 4 logn
α + 3, and

the route update delay constraint will not be violated by a factor

of 3 logn
α + 4 for the DSRU problem.

Note that, the previous Dionysus method [3] has shown that,

the congestion-free and consistent constraints will not bring

significant route update delay compared with simultaneously

updating (i.e., the Oneshot method) through efficient schedul-

ing. As our RRSU algorithm only updates a smaller number

of flows, the congestion-free constraint will also not bring

significant update delay increase. In most practical situations,

the RRSU algorithm can reach almost the constant bi-criteria

approximation. For example, let λ̃ be 0.4. The link capacity

of today’s networks will be 1Gbps. Observing the practical

flow traces, the maximum intensity of a flow may reach

1Mbps or 10Mbps. Under two cases,
cemin

s(f) will be 103 and

102, respectively. In a larger network with 1000 switches,

log n = 10. The approximation factor for the link capacity

constraint is 3.04 and 3.4, respectively. Since T0

tm
is usually 102

at least, the approximation factor for the route update delay

constraint is 4.3. In other words, our RRSU algorithm can

achieve the constant bi-criteria approximation for the DSRU

problem in many situations.

Algorithm 2 GRSU: Greedy Route Selection and Update

1: Step 1: the same as that in RRSU
2: Step 2: Route Selection with Link Capacity Constraint
3: for each flow γ ∈ Γ do
4: zγ =

∑
p∈Pγ−{Rc(γ)} ỹ

p
γ

5: for each flow γ ∈ Γ in the decreasing order of zγ do
6: for each path p ∈ Pγ in the decreasing order of ỹpγ do
7: if all the links on path p can contain this flow then
8: Assign p as its target route

9: Update the remaining capacity of each link on p
10: break

11: Step 3: Update Scheduling with Delay Constraint
12: Sort all the flows γ ∈ Γu in the decreasing order of zγ
13: The current updated flow set is Γ′

14: repeat
15: if Γ′ = Φ or A flow has been updated then
16: repeat
17: Catch the header flow γ from the queue

18: if Eq. (20) is satisfied for each link e ∈ Rf (γ)
then

19: Schedule Update of this flow, Γ′ = Γ′ ∪ {γ}
20: Remove flow γ from queue

21: until (Such a flow is not found)

22: until (The update delay is running out)

D. Greedy Route Selection and Update (GRSU) Algorithm

Though the RRSU algorithm almost achieves the bi-criteria

approximation performance for the DSRU problem, the ran-

domized rounding mechanism cannot fully guarantee that both

the route update delay and link capacity constraints are always

met. Below we propose a greedy route selection and update

(GRSU) algorithm which satisfies both two constraints. The

GRSU algorithm is formally described in Alg. 2.

The GRSU algorithm mainly consists of three steps. Same

as RRSU, the first step of GRSU constructs a linear program

by Eq. (3) as a relaxation of the R-DSRU problem. Assume

that the optimal solution for Eq. (3) is denoted by ỹpγ .

In the second step, we will choose a subset of flows for

route update while satisfying the link capacity constraint. Let

variable zγ denote the probability with which flow γ is selected

for route update. For each flow γ ∈ Γ, we compute zγ as zγ
=
∑

p∈Pγ−{Rc(γ)} ỹ
p
γ . The algorithm sorts all the flows by the

decreasing order of zγ , and checks these flows one by one. For

each flow γ ∈ Γ, we sort all the feasible paths in Pγ by the

decreasing order of ỹpγ . For a feasible path p, if all the links on

path p can contain this flow, that is, the remaining capacity of

each link on path p is not less than s(γ), we find a path p as

the target route of flow γ. Moreover, we update the remaining

capacity of each link in the network. By this way, we have

determined the target route configuration Rf (γ).
In the third step, the algorithm schedules the update op-

erations on switches while satisfying several constraints. We

sort all the flows by the decreasing order of zγ , and put them

into a queue. The set of being updated flows is denoted by
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Γ′. When Γ′ is null (i.e., Φ) or the route update of a flow

has been finished, we choose several flows from the queue

for simultaneous update without congestion, which will be de-

scribed in the next paragraph. To guarantee route consistency,

we require that the update on the ingress switch should start

after the updates on the internal switches are finished. Due

to link capacity constraint, we may not find such a flow for

update. Under this situation, a natural way is to reduce the flow

rate so as to satisfy the link capacity constraint. The algorithm

will be terminated until the update delay is running out.

We introduce the efficient way for choose several flows for

simultaneous update without congestion. We catch the header

flow from the queue, and schedule the route update for this

flow if this flow and all flows in set Γ′ can be updated without

transient congestion. This procedure is terminated until we

cannot find such a flow from the queue. Assume that the current

route configuration is denoted by R1. For the header flow γ, the

transient congestion can be avoided if the following constraint

is satisfied on each link e of its target route:

∑
γ′∈Γ−Γ′

∑
e∈R1(γ′)

s(γ′) +
∑

γ′∈Γ′

∑
e∈R1(γ′)∪Rf (γ′)

s(γ′)

≤ c(e)− s(γ) (20)

Eq. (20) shows that the traffic load on link e consists of two

parts: 1) For each γ′ ∈ Γ− Γ′, the controller will not change

its route, i.e., R1(γ′). 2) If the controller is updating the route

of flow γ′ ∈ Γ′, due to asynchronous operations on different

switches, we cannot determine its route, either the route before

the update (R1(γ′)) or the route after the update (Rf (γ′)).
E. Discussion

1) Jin et al. [3] have shown that the per-rule update latency

may be varied for flow entries with different priorities

by testing on the switches. To solve this case, we first

estimate the expected delay for each update operation, and

then apply the GRSU algorithm for real-time route update.

However, due to various latency of per-rule update, it may

be difficult to guarantee the route approximation bound.

2) In some application scenarios, the network traffic matrix

may tremendously vary over space and time [11]. Thus,

the flow intensity is unknown for the controller. Some

previous works [11] use the number of burdened flows as

the traffic load of each link. Accordingly, the link capacity

c(e) is defined as the maximum number of flows that one

link e can pass through. Our GRSU algorithm can solve

this case by setting s(γ) as 1. Due to limited space, we

omit the detailed description here.

3) The occasional topology change also triggers the route

updates. For example, migrating virtual machines will

make the routes of some flows be disrupted [15]. If we

directly update the routes of all the affected flows by

topology change, some flows may be blocked for a longer

delay, due to route interruption. To reduce the delay, we

first deploy some default paths using OSPF for those

affected flows, similar as [5], so that they can recover

data forwarding within a small delay. Then, we adopt our

GRSU algorithm for real-time route update to achieve the

load balancing.

IV. SIMULATION RESULTS

This section first introduces the metrics and benchmarks for

performance comparison (Section IV-A). Then, we describe the

implementation of delay-satisfied route update algorithms on

our SDN platform, and present testing results (Section IV-B).

We evaluate our algorithm by comparing with the previous

methods through extensive simulations (Section IV-C).

A. Performance Metrics and Benchmarks

Since this paper cares for real-time route update by joint

optimization of route selection and update scheduling, we

adopt two main performance metrics to measure the update

efficiency. The first metric is link load ratio (LLR), which can

be obtained by measuring the traffic load l(e) of each link e.

Then, LLR is defined as: LLR = max{l(e)/c(e), e ∈ E}. The

second one is the route update delay, which refers the delay

for the update procedure from the current route configuration

to the target one, by different algorithms.

�

�� �� ��

�� ��

��

��
������

Fig. 2: Topology of the SDN Platform. Our platform is mainly
composed of three parts: a controller, six OpenFlow enabled switches
{v1, v2, v3, v4, v5, v6} and four terminals {u1, u2, u3, u4}.

We implement the delay-satisfied route update algorithm

on both the SDN platform and Mininet [16], which is a

widely-used simulator for an SDN. To show update efficiency

of our GRSU algorithm, we compare it with some other

benchmarks. First, the controller often determines the target

route configuration based on the current workload using the

different routing algorithms, e.g., the multi-commodity flow

(MCF) algorithm [9], and executes route updates from the

current route configuration to the target one using the update

scheduling algorithm, e.g., Dionysus [3]. Since the controller

may update all flows, including elephant flows and mice flows,

by the MCF algorithm, the update delay may likely be larger.

For example, our simulation results show that, when there are

40K flows in topology (b), the update delay by joint MCF

and Dionysus methods may reach 65s, which is unacceptable

for many applications. An improved version is that we only
update the routes of those elephant flows [11], denoted by

EMCF, and also adopt the Dionysus method [3] for update

scheduling. The combined method is denoted by EMCF+DS.

The second one is the OSPF protocol, which only chooses

the shortest path for route selection, and does not apply route

updates. This benchmark is adopted for comparing the route

performance of our proposed algorithm. The third one is the

optimal result of the linear program LP1 in Eq. (3), denoted

by OPT. Since LP1 is the relaxed version of the R-DSRU

problem, and R-DSRU is the relaxed version of DSRU, OPT
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Fig. 3: Testing Results Through the SDN Platform.

is a lower-bound for both R-DSRU and DSRU. We mainly

observe the impact of two parameters, i.e., number of flows

and route update delay constraint T0, on the route update

performance. Intuitively, when parameter T0 increases, since

the routes of more flows can be updated, the link load ratio

will be reduced. Due to limited capacity, our commodity

switch cannot support the delay measurement of insertion and

modification operations on the flow table. According to the

testing results on the HP ProCurve 5406zl switch [17], the

delays for insertion and modification operations are set as

5ms and 10ms, respectively. We also take these results in our

platform testing and simulations.

B. Test-bed Evaluation

1) Implementation On the Platform: We implement the

OSPF, EMCF+DS and GRSU algorithms on a real test-bed.

Our SDN platform is mainly composed of three parts: a server

installed with the controller’s software, a set of OpenFlow

enabled switches and some terminals. Specifically, we choose

Opendaylight, which is an open source project supported by

multiple enterprises, as the controller’s software. The Open-

daylight controller is running on a server with a core i5-

3470 processor and 4GB of RAM. The topology of our SDN

platform is illustrated in Fig. 2. The forwarding plane of an

SDN comprises of 6 H3C S5120-28SC-HI switches, which

support the OpenFlow v1.3 standard. During the platform

implementation, each flow is identified by three elements,

source IP, destination IP and TCP port, so that each terminal is

able to generate different numbers of flows to other terminals.

2) Testing results: We mainly observe the impact of update

delay constraint on the performance of link load ratio. Two sets

of experiments are run on the platform by generating different

numbers of flows. The first experiment contains 200 flows, the

other contains 1000 flows. In each experiment, there are 20%

elephant flows and 80% mice flows. Fig. 3(a) shows that it

takes about 0.36s and 1.80s for the update procedure by the

EMCF+DS algorithm when there are 200 and 1000 flows in a

network. Figs. 3(b) and 3(c) show that, the link load ratio is

improved with the increase of the route update delay constraint

by our GRSU algorithm. However, the improvement is much

slower with the increasing route update delay. Note that, the

route performance of EMCF+DS will not change with update

delay constraint. Fig. 3(b) shows that our algorithm can reduce

the route update delay by 77% compared with the EMCF+DS

method while preserving a similar routing performance (with

link load ratio increased about 1%). Fig. 3(c) shows that, our

GRSU algorithm can achieve the close route performance as

EMCF+DS (with link load ratio increased about 2%) while it

reduces the update delay about 61%. From these testing results,

our GRSU algorithm achieves the better trade-off performance

between route performance and route update delay.

C. Simulation Evaluation

1) Simulation Setting: In the simulations, we choose t-

wo practical and typical topologies with different network

sizes [18]. The first topology, denoted by (a), contains 20

switches and 74 links. The second topology, denoted by (b),

contains 100 switches and 397 links. For the both topologies,

each link has a uniform capacity, 100Mbps. We execute each

simulation 100 times, and give the average simulation results.

The authors of [5] have shown that less than 20% of the top-

ranked flows may be responsible for more than 80% of the

total traffic. Thus, we generate different numbers of flows, and

the intensity of each flow obeys this 2-8 distribution.

2) Simulation Results: We run three groups of experiments

to check the effectiveness of our algorithm. The first group

of two simulations shows the route update delay by varying

the number of flows in an SDN. We execute two algorithms,

EMCF+DS and GRSU, on two different topologies. Fig. 4

shows that the required route update delay by the EMCF+DS

algorithm is almost linearly increasing with the number of

flows in a network. In a large network with 40K flows,

it requires more than 19s by the right plot of Fig. 4. In

the following simulations, we limit the route update delay

constraint no more than 3.5s (and 2s by default), and mainly

compare the route performance with the EMCF+DS algorithm

for fairness. Obviously, even though the controller only updates

the routes of those elephant flows, the required update delay by

EMCF+DS is still much more than the update delay constraint.

The second group of simulations mainly shows how the

route update delay constraint affects the link load ratio on

two topologies. Given a fixed number of flows in a network,

we change the route update delay constraints, and the route

performance is shown in Figs. 5 and 6. Two figures show that,

the link load ratio is reduced when the route update delay

becomes larger by our proposed GRSU algorithm. However,

the route update delay constraint does not affect the link load

ratio of the EMCF+DS algorithm, which always updates the

routes of those elephant flows in a network. For the small

topology, Fig. 5 shows that our GRSU algorithm can reduce
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(b). Left plot: 20000 flows; right plot: 40000 flows.

the route update delay by 60% compared with the EMCF+DS

method while preserving a close route performance (with link

load ratio increased less than 3%). For example, when there

are 6000 flows in the network, the EMCF+DS method needs

about 7s for route update by the left plot of Fig. 4. The left

plot of Fig. 5 shows that the GRSU algorithm can achieve the

similar route performance with EMCF+DS only with a route

update delay of 2s. For the large topology, we find that the

GRSU algorithm can reduce the route update delay about 75%

compared with EMCF+DS while still achieving the similar link

load ratio performance by Fig. 6.

The third group of simulations shows how the number of

flows affects the link load ratio performance on two topologies.

Figs. 7 and 8 show that, the route performance of our GRSU

algorithm is much closer to that of EMCF+DS with the

increase of the route update delay constraint. More specifically,

the GRSU algorithm with route update delay of 2s can achieve

the similar route performance as EMCF+DS, which should take

a route update delay of 5-8s in topology (a). In topology (b),

Fig. 8 shows that our GRSU algorithm just takes about 2s for

route update, so as to achieve the similar route performance as

EMCF+DS, which will take a route update delay of 10-16s.

From these simulation results, we can make some con-

clusions. First, with the increase of the route update delay

constraint, our algorithm can update more flows, and reduce

the link load ratio. Second, Figs. 7 and 8 show that, with

the increasing number of flows, the link load ratio will be

increased under the same route update delay constraint by our

GRSU algorithm. Third, Figs. 5-8 show that, the proposed

algorithm almost achieves the similar performance as OPT,
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which is the lower bound for the DSRU problem, provided

that the route update delay constraint is not too small. Fourth,

our proposed algorithm decreases the route update delay about

60-80% compared with the EMCF+DS algorithm. However,

it can reach almost the similar route performance, such as

load balancing, as EMCF+DS. Therefore, our proposed GRSU

algorithm can achieve the better trade-off between the route

performance and update delay by joint optimization of route

selection and update scheduling.

V. RELATED WORKS

Due to network dynamics, the controller should frequently

update its data plane so as to provide high resource utilization.

The comprehensive survey of route update can be found in

[19]. Almost all the previous methods usually compute the

target route configuration based on the current workload, and

design different algorithms for route update from the current

route configuration to the target one. These studies can be

divided into several categories by their optimization objectives,

such as consistency-guarantee, and low update delay, etc.

The first category is to ensure the packet/flow consistency

during the route update. Reitblatt et al. [10] introduced two

abstractions for network updates: per-packet and per-flow con-

sistency. These two abstractions guaranteed that a packet or a

flow were handled either by the current route configuration

before an update or by the target route configuration after

an update, but never by both. Katta et al. [20] introduced

a generic algorithm for implementing consistent updates that

traded update time for rule-space overhead. They divided a

global policy into a set of consistent slices and updated to

the new policy of one slice at a time. By increasing the

number of slices, the rule-space overhead on the switches

could be reduced, and the route update delay could be in-

creased. Mahajan et al. [21] highlighted the inherent trade-

off between the strength of the consistency property and

dependencies it imposed among rules at different switches.

zUpdate [15] provided a primitive to manage the network-

wide traffic migration for all the datacenter network updates.

Given the end requirements of a specific datacenter network
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update, zUpdate would automatically handle all the details,

including computing a lossless migration plan and coordinating

the changes to different switches. Canini et al. [22] studied a

distributed control plane that enabled concurrent and robust

policy implementation.

The second category is to minimize the update delay while

satisfying other performance requirements, such as congestion-

free and consistency-conservation, etc. Hong et al. [4] tried

to minimize the number of rounds for congestion-free update

through flow splitting. They formulated the route update prob-

lem into a linear program, solved it in polynomial time, and

analyzed the possibly maximum round (or delay) for route

update. Jin et al. [3] described Dionysus, a system for fast,

consistent network updates in SDNs. Dionysus encoded as a

graph the consistency-related dependencies among updates at

individual switches, and it then dynamically scheduled these

updates based on runtime differences in the update speeds

of different switches. The authors of [23] presented a prac-

tical method for implementing accurate time-based updates,

TIMEFLIPs, which could be used to implement atomic bundle

updates, and to coordinate network updates with high accuracy.

Almost all the previous works update the network from

the old route configuration to a new one, which is derived

only based on the current workload. Though some works [3]

have designed different algorithms to decrease the route update

delay with consistency-guarantee, due to low-speed of TCAM

operations, it may still result in a longer delay for route updates,

especially in a large-scale or dynamically changed network.

In most situations, the workload in a network has changed

significantly after a certain period, e.g., 20-60s [6]. If the route

update takes a longer delay, the final route configuration may

be inefficient for the workload after update. So, we need a real-

time route update for an SDN, so as to achieve the trade-off

between update delay and route performance.

VI. CONCLUSION

In this paper, we have studied the real-time route update

while considering the current workload, the speed of TCAM

updates, and the delay requirement on each switch. We have

designed a rounding-based algorithm and a greedy method for

the DSRU problem. The testing results on the SDN platform

and the extensive simulation results have shown the high

efficiency of our proposed algorithm.
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