
Software Defined Networks: It’s About Time
Tal Mizrahi, Yoram Moses∗

Technion — Israel Institute of Technology
Email: {dew@tx, moses@ee}.technion.ac.il

Abstract—With the rise of Software Defined Networks (SDN),
there is growing interest in dynamic and centralized traffic
engineering, where decisions about forwarding paths are taken
dynamically from a network-wide perspective. Frequent path re-
configuration can significantly improve the network performance,
but should be handled with care, so as to minimize disruptions
that may occur during network updates.

In this paper we introduce TIME4, an approach that uses
accurate time to coordinate network updates. We characterize
a set of update scenarios called flow swaps, for which TIME4
is the optimal update approach, yielding less packet loss than
existing update approaches. We define the lossless flow allocation
problem, and formally show that in environments with frequent
path allocation, scenarios that require simultaneous changes at
multiple network devices are inevitable.

We present the design, implementation, and evaluation of a
TIME4-enabled OpenFlow prototype. The prototype is publicly
available as open source. Our work includes an extension to the
OpenFlow protocol that has been adopted by the Open Network-
ing Foundation (ONF), and is now included in OpenFlow 1.5.
Our experimental results demonstrate the significant advantages
of TIME4 compared to other network update approaches.

Time is what keeps everything from happening at once
– Ray Cummings

I. INTRODUCTION

A. It’s About Time

The use of synchronized clocks was first introduced in
the 19th century by the Great Western Railway company in
Great Britain. Clock synchronization has significantly evolved
since then, and is now a mature technology that is being
used by various different applications, from mobile backhaul
networks [1] to distributed databases [2].

The Precision Time Protocol (PTP), defined in the IEEE
1588 standard [3], can synchronize clocks to a very high
degree of accuracy, typically on the order of 1 microsecond [1],
[4], [5]. PTP is a common and affordable feature in commodity
switches. Notably, 9 out of the 13 SDN-capable switch sili-
cons listed in the Open Networking Foundation (ONF) SDN
Product Directory [6] have native IEEE 1588 support.

In this work we introduce TIME4, a generic tool for using
time in SDN. One of the products of this work is a new
feature that enables timed updates in OpenFlow, and has been
incorporated in OpenFlow 1.5. Furthermore, we present a
class of update scenarios in which the use of accurate time
is provably optimal, while existing update methods are sub-
optimal.

∗Yoram Moses is the Israel Pollak academic chair at Technion.

B. The Challenge of Dynamic Traffic Engineering in SDN

Defining network routes dynamically, based on a complete
view of the network, can significantly improve the network
performance compared to the use of distributed routing pro-
tocols. SDN and OpenFlow [7], [8] have been leading trends
in this context, but several other ongoing efforts offer similar
concepts (e.g., [9]).

Centralized network updates often involve multiple network
devices. Hence, updates must be performed in a way that
strives to minimize temporary anomalies such as traffic loops,
congestion, or disruptions, which may occur during transient
states where the network has been partially updated.

While SDN was originally considered in the context of
campus networks [7] and data centers [10], it is now also
being considered for Wide Area Networks (WANs) [11], [12],
carrier networks, and mobile backhaul networks [13].

WAN and carrier-grade networks require a very low packet
loss rate. Carrier-grade performance is often associated with
the term five nines, representing an availability of 99.999%.
Mobile backhaul networks require a Frame Loss Ratio (FLR)
of no more than 10−4 for voice and video traffic, and no
more than 10−3 for lower priority traffic [14]. Other types
of carrier network applications, such as storage and financial
trading require even lower loss rates [15], on the order of
10−5.

Several recent works have explored the realm of dynamic
path reconfiguration, with frequent updates on the order of
minutes [11], [12], [16], enabled by SDN. Interestingly, for
voice and video traffic, a frame loss ratio of up to 10−4 implies
that service must not be disrupted for more than 6 milliseconds
per minute. Hence, if path updates occur on a per-minute basis,
then transient disruptions must be limited to a short period of
no more than a few milliseconds.

C. Timed Network Updates

We explore the use of accurate time as a tool for performing
coordinated network updates in a way that minimizes packet
loss. We introduce TIME4, which is an update approach that
performs multiple changes at different switches at the same
time.

Example 1. Fig. 1 illustrates a flow swapping scenario. In this
scenario, the forwarding paths of two flows, f1 and f2, need to
be reconfigured, as illustrated in the figure. It is assumed that
all links in the network have an identical capacity of 1 unit,
and that both f1 and f2 require a bandwidth of 1 unit. In the
presence of accurate clocks, by scheduling S1 and S3 to update

IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications

978-1-4673-9953-1/16/$31.00 ©2016 IEEE

their paths at the same time, there is no congestion during
the update procedure, and the reconfiguration is smooth. As
clocks will typically be reasonably well synchronized, albeit
not perfectly synchronized, such a scheme will result in a very
short period of congestion.

S1 S2

S3 S4

S5

f1

f2

S1 S2

S3 S4

S5

f1

f2

before after

Fig. 1: Flow Swapping—Flows need to convert from the
“before” configuration to the “after”.

In this paper we show that in a dynamic environment, where
flows are frequently added, removed or rerouted, flow swaps
are inevitable. A notable example of the importance of flow
swaps is a recently published work by Fox Networks [17], in
which accurately timed flow swaps are essential in the context
of video switching.

One of our key results is that simultaneous updates are the
optimal approach in scenarios such as Example 1, whereas
other update approaches may yield considerable packet loss,
or incur higher resource overhead. Note that such packet
loss can be reduced either by increasing the capacity of the
communication links, or by increasing the buffer memories in
the switches. We show that for a given amount of resources,
TIME4 yields lower packet loss than other approaches.

Accuracy is a key requirement in TIME4; since updates
cannot be applied at the exact same instant at all switches,
they are performed within a short time interval called the
scheduling error. The experiments we present in Section IV
show that the scheduling error in software switches is on the
order of 1 millisecond. The TCAM-based hardware solution
of [18] can execute scheduled events in existing switches with
an accuracy on the order of 1 microsecond.

D. Related Work

Various network update approaches have been analyzed in
the literature. A common approach is to use a sequence of
configuration commands [16], [19]–[21], whereby the order of
execution guarantees that no anomalies are caused in interme-
diate states of the procedure. However, as observed by [16], in
some update scenarios, known as deadlocks, there is no order
that guarantees a consistent transition. Two-phase updates [22]
use configuration version tags to guarantee consistency during
updates. However, as per [22], two-phase updates cannot
guarantee congestion freedom, and are therefore not effective
in flow swap scenarios, such as Fig. 1. Hence, in flow swap
scenarios the order approach and the two-phase approach
produce the same result as the simple-minded approach, in
which the controller sends the update commands as close as
possible to instantaneously, and hopes for the best.

In this paper we present TIME4, an update approach that is
most effective in flow swaps and other deadlock [16] scenarios,

such as Fig. 1. We refer to update approaches that do not use
time as untimed update approaches.

In SWAN [11], the authors suggest that reserving un-
used scratch capacity of 10-30% on every link can allow
congestion-free updates in most scenarios. The B4 [12] ap-
proach prevents packet loss during path updates by temporarily
reducing the bandwidth of some or all of the flows. Our ap-
proach does not require scratch capacity, and does not reduce
the bandwidth of flows during network updates. Furthermore,
in this paper we show that variants of SWAN and B4 that make
use of TIME4 can perform better than the original versions.

Rearrangeably non-blocking topologies (e.g., [23]) allow
new traffic flows to be added to the network by rearranging
existing flows. The analysis of flow swaps presented in this
paper emphasizes the requirement to perform simultaneous
reroutes during the rearrangement procedure, an aspect which
has not been previously studied.

Preliminary work-in-progress versions of the current paper
introduced the concept of using time in SDN [24] and the flow
swapping scenario [25]. The use of time for consistent updates
was discussed in [26]. TimeFlip [18] presented a practical
method of implementing timed updates. The current work is
the first to present a generic protocol for performing timed
updates in SDN, and the first to analyze flow swaps, a natural
application in which timed updates are the optimal update
approach.

E. Contributions

The main contributions of this paper are as follows:
• We consider a class of network update scenarios called

flow swaps, and show that simultaneous updates using
synchronized clocks are provably the optimal approach
of implementing them. In contrast, existing approaches
for consistent updates (e.g., [16], [22]) are not applicable
to flow swaps, and other update approaches such as
SWAN [11] and B4 [12] can perform flow swaps, but
at the expense of increased resource overhead.

• We present the design, implementation and evaluation of
a prototype that performs timed updates in OpenFlow.

• Our work includes an extension to the OpenFlow protocol
that has been approved by the ONF and integrated into
OpenFlow 1.5 [27], and into the OpenFlow 1.3.x exten-
sion package [28]. The source code of our prototype is
publicly available [29].

• We present experimental results that demonstrate the ad-
vantage of timed updates over existing approaches. More-
over, we show that existing update approaches (SWAN
and B4) can be improved by using accurate time.

Due to space limits, some of the proofs and experimental
results are presented in [30].

II. THE LOSSLESS FLOW ALLOCATION (LFA) PROBLEM

A. Inevitable Flow Swaps

Fig. 1 presents a scenario in which it is necessary to swap
two flows, i.e., to update two switches at the same time. In
this section we discuss the inevitability of flow swaps; we

d

q1 q2

o1 o2

(a) Clos network.

d

o1 o2 on

q1 q2 qm

c c c

s

∞∞ ∞

c cc

e1 e2 em

(b) Unsplittable flow graph.

Fig. 2: Modeling a Clos topology as an unsplittable flow graph.

show that there does not exist a controller routing strategy
that avoids the need for flow swaps.

Our analysis is based on representing the flow-swap problem
as an instance of an unsplittable flow problem, as illustrated
in Fig. 2b. The topology of the graph in Fig. 2b models the
traffic behavior to a given destination in common multi-rooted
network topologies such as fat-tree and Clos (Fig. 2a).

The unsplittable flow problem [31] has been thoroughly
discussed in the literature; given a directed graph, a source
node s, a destination node d, and a set of flow demands
(commodities) between s and d, the goal is to maximize the
traffic rate from the source to the destination. In this paper we
define a game between two players: a source1 that generates
traffic flows (commodities) and a controller that reconfigures
the network forwarding rules in a way that allows the network
to forward all traffic generated by the source without packet
losses.

Our main argument, phrased in Theorem 1, is that the source
has a strategy that forces the controller to perform a flow swap,
i.e., to reconfigure the path of two or more flows at the same
time. Thus, a scenario in which multiple flows must be updated
at the same time is inevitable, implying the importance of
timed updates.

Moreover, we show that the controller can be forced to
invoke n individual commands that should optimally be per-
formed at the same time. Update approaches that do not use
time, also known as untimed approaches, cause the updates to
be performed over a long period of time, potentially resulting
in slow and possibly erratic response times and significant
packet loss. Timed coordination allows us to perform the
n updates within a short time interval that depends on the
scheduling error.

1The source player does not represent a malicious attacker; it is an
‘adversary’, representing the worst-case scenario.

Although our analysis focuses on the topology of Fig.2b, it
can be shown that the results are applicable to other topologies
as well, where the source can force the controller to perform
a swap over the edges of the min-cut of the graph.

B. Model and Definitions

We now introduce the lossless flow allocation (LFA) prob-
lem; it is not presented as an optimization problem, but rather
as a game between two players: a source and a controller. As
the source adds or removes flows (commodities), the controller
reconfigures the forwarding rules so as to guarantee that all
flows are forwarded without packet loss. The controller’s goal
is to find a forwarding path for all the flows in the system
without exceeding the capacity of any of the edges, i.e., to
completely avoid loss of packets from the given flows. The
source’s goal is to progressively add flows, without exceeding
the network’s capacity, forcing the controller to perform a flow
swap. We shall show that the source has a strategy that forces
the controller to swap traffic flows simultaneously in order to
avoid packet loss.

Our model makes three basic assumptions: (i) each flow
has a fixed bandwidth, (ii) the controller strives to avoid
packet loss, and (iii) flows are unsplittable. We discuss these
assumptions further in Sec. V.

We use the term flow in its OpenFlow sense, i.e., a set
of packets that share common properties, such as source and
destination network addresses. A flow in our context, can be
seen as a session between the source and destination that runs
traffic at a fixed rate.

The network is represented by a directed weighted acyclic
graph (Fig. 2b), G = (V, E, c), with a source s, a destination
d, and a set of intermediate nodes, Vin. Thus, V = Vin ∪
{s, d}. The nodes directly connected to s are denoted by O =
{o1, o2, . . . , on}. Each of the outgoing edges from the source
s has an infinite capacity, whereas the rest of the edges have
a capacity c. For the sake of simplicity, and without loss of
generality, throughout this section we assume that c = 1. Such
a graph G is referred to as an LFA graph.

The source node progressively transmits traffic flows to-
wards the destination node. Each flow represents a session
between s and d; every flow has a constant bandwidth, and
cannot be split between two paths. A centralized controller
configures the forwarding policy of the intermediate nodes,
determining the path of each flow. Given a set of flows from s
to d, the controller’s goal is to configure the forwarding policy
of the nodes in a way that allows all flows to be forwarded
to d without exceeding the capacity of any of the edges.

The set of flows that are generated by s is denoted by F ::=
{F1, F2, . . . , Fk}. Each flow Fi is defined as Fi ::= (i, fi, ri),
where i is a unique flow index, fi is the bandwidth satisfying
0 < fi ≤ c, and ri denotes the node that the controller
forwards the flow to, i.e., ri ∈ {o1, o2, . . . , on}.

It is assumed that the controller monitors the network, and
thus it is aware of the flow set F. The controller maintains a
forwarding function, Rcon : F × Vin −→ Vin ∪ {d}. Every
node (switch) has a flow table, consisting of a set of entries;

an element υ ∈ F × Vin is referred to as an entry for short.
An update of Rcon is defined to be a partial function u :
F×Vin ⇀ Vin∪{d}. We define a reroute as an update u that
has a single entry in its domain. We call an update that has
more than one entry in its domain a swap, and it is assumed
that all updates in a swap are performed at the same time. We
define a k-swap for k ≥ 2 as a swap that updates entries in at
least k different nodes. Note that a k-swap is possible only if
n ≥ k, where n is the number of nodes in O. We focus our
analysis on 2-swaps, and throughout the section we assume
that n ≥ 2. In Section II-E we discuss k-swaps for values of
k > 2.

C. The LFA Game

The lossless flow allocation problem can be viewed as a
game between two players, the source and the controller. The
game proceeds by a sequence of steps; in each step the source
either adds or removes a single flow (Fig. 3), and then waits
for the controller to perform a sequence of updates (Fig. 4).
The source’s strategy Ss(F, Rcon) = (a, F), is a function that
defines for each flow set F and forwarding function Rcon for
F, a pair (a, F) representing the source’s next step, where
a ∈ {Add,Remove} is the action to be taken by the source,
and F = (j, fj , rj) is a single flow to be added or removed.
The controller’s strategy is defined by Scon(Rcon, a, F) = U,
where U = {u1, . . . , u`} is a sequence of updates, such that
(i) at the end of each update no edge exceeds its capacity, and
(ii) at the end of the last update, u`, the forwarding function
Rcon defines a forwarding path for all flows in F. Notice that
when a flow is to be removed, the controller’s update is trivial;
it simply removes all the relevant entries from the domain of
Rcon. Hence our analysis focuses on adding new flows.

The following theorem, which is the crux of this section,
argues that the source has a strategy that forces the controller
to perform a swap, and thus that flow swaps are inevitable
from the controller’s perspective.

Theorem 1. Let G be an LFA graph. In the LFA game over
G, there exists a strategy, Ss, for the source that forces every
controller strategy, Scon, to perform a 2-swap.

Proof. Let m be the number of incoming edges to the destina-
tion node d in the LFA graph (see Fig 2b). For m = 1 the claim
is trivial. Hence, we start by proving the claim for m = 2, i.e.,
there are two edges connected to node d, edges e1 and e2.

SOURCE PROCEDURE

1 F← ∅
2 repeat at every step
3 (a, F)← Ss(F, Rcon)
4 if a = Add
5 F← F ∪ F
6 Wait for the controller to complete updates
7 else // a = Remove
8 F← F \ F

Fig. 3: The LFA game: the source’s procedure.

CONTROLLER PROCEDURE

1 repeat at every step
2 {u1, . . . , u`} ← Scon(Rcon, a, F)
3 for j ∈ [1, `]
4 Update Rcon according to uj

Fig. 4: The LFA game: the controller’s procedure.

We show that the source has a strategy that, regardless of the
controller’s strategy, forces the controller to use a swap. In the
first four steps of the game, the source generates four flows,
F1 = (1, 0.35, o1), F2 = (2, 0.35, o1), F3 = (3, 0.45, o2),
and F4 = (4, 0.45, o2), respectively. According to the Source
Procedure of Fig. 3, after each flow is added, the source waits
for the controller to update Rcon before adding the next flow.
After the flows are added, there are two possible cases:
(a) The controller routes symmetrically through e1 and e2,

i.e. a flow of 0.35 and a flow of 0.45 through each of the
edges. In this case the source’s strategy at this point is to
generate a new flow F5 = (5, 0.3, o1) with a bandwidth
of 0.3. The only way the controller can accommodate F5

is by routing F1 and F2 through the same edge, allowing
the new 0.3 flow to be forwarded through that edge. Since
there is no sequence of reroute updates that allows the
controller to reach the desired Rcon, the only way to reach
a state where F1 and F2 are routed through the same edge
is to swap a 0.35 flow with a 0.45 flow. Thus, by issuing
F5 the controller forces a flow swap as claimed.

(b) The controller routes F1 and F2 through one edge, and F3

and F4 through the other edge. In this case the source’s
strategy is to generate two flows, F6 and F7, with a
bandwidth of 0.2 each. The controller must route F6

through the edge with F1 and F2. Now each path sustains
a bandwidth of 0.9 units. Thus, when F7 is added by the
source, the controller is forced to perform a swap between
one of the 0.35 flows and one of the 0.45 flows.

In both cases the controller is forced to perform a 2-swap,
swapping a flow from o1 with a flow from o2. This proves the
claim for m = 2.

The case of m > 2 is obtained by reduction to m = 2: the
source first generates m−2 flows with a bandwidth of 1 each,
causing the controller to saturate m − 2 edges connected to
node d (without loss of generality e3, . . . , em). At this point
there are only two available edges, e1 and e2. From this point,
the proof is identical to the case of m = 2.

D. The Impact of Flow Swaps

We define a metric for flow swaps, by considering the
oversubscription that is caused if the flows are not swapped
simultaneously, but updated using an untimed approach.

We define the oversubscription of an edge, e, with respect to
a forwarding function, Rcon, to be the difference between the
total bandwidth of the flows forwarded through e according to
Rcon, and the capacity of e. If the total bandwidth of the flows
through e is less than the capacity of e, the oversubscription
is defined to be zero.

switch

Time

controller

Ts

B
u
n
d
le
 C
o
m
m
it

(a
t tim

e
 T
s)

Switch executes

bundle at time Ts

B
u
n
d
le
 O
p
e
n

B
u
n
d
le
 A
d
d
 1

...

Commit may include

scheduled time Ts

1

re
p
ly

B
u
n
d
le
 A
d
d
 N

B
u
n
d
le
 C
lo
s
e

re
p
ly

re
p
ly

2 3 4

B
u
n
d
le
 D
is
c
a
rd

5'

5

Fig. 5: A Scheduled Bundle: the Bundle Commit message may include Ts, the scheduled time of execution. The controller
can use a Bundle Discard message to cancel the Scheduled Bundle before Ts.

Definition 1 (Flow swap impact). Let F be a flow set, and
Rcon be the corresponding forwarding function. Let u : F ×
V ⇀ V ∪ {d} be a 2-swap, such that u = u1 ∪ u2, where
ui = (υi, vi), for υi ∈ F × V, vi ∈ V ∪ {d}, and i ∈ {1, 2}.
The impact of u is defined to be the minimum of: (i) The
oversubscription caused by applying u1 to Rcon, or (ii) the
oversubscription caused by applying u2 to Rcon.

The following theorem shows that in the LFA game, the
source can force the controller to perform a flow swap with a
swap impact of roughly 0.5.

Theorem 2. Let G be an LFA graph, and let 0 < α < 0.5.
In the LFA game over G, there exists a strategy, Ss, for the
source that forces every controller strategy, Scon, to perform
a swap with an impact of α.

The proof is presented in [30].
Intuitively, Theorem 2 shows that not only are flow swaps

inevitable, but they have a high impact on the network, as they
can cause links to be congested by roughly 50% beyond their
capacity.

E. n-Swaps

As defined above, a k-swap is a swap that involves k or
more nodes. In previous subsections we discussed 2-swaps.
The following theorem generalizes Theorem 1 to n-swaps,
where n is the number of nodes in O.

Theorem 3. Let G be an LFA graph. In the LFA game over
G, there exists a strategy, Ss, for the source that forces every
controller strategy, Scon, to perform an n-swap.

The proof is presented in [30].

III. DESIGN AND IMPLEMENTATION

A. Protocol Design

We present an extension that allows OpenFlow controllers
to signal the time of execution of a command to the switches.
This extension is described in full in [30].2

2A preliminary version of this extension was presented in [32].

Our extension makes use of the OpenFlow [8] Bundle
feature; a Bundle is a sequence of OpenFlow messages from
the controller that is applied as a single operation. Our time
extension defines Scheduled Bundles, allowing all commands
of a Bundle to come into effect at a pre-determined time. This
is a generic means to extend all OpenFlow commands with
the scheduling feature.

Using Bundle messages for implementing TIME4 has two
significant advantages: (i) It is a generic method to add the
time extension to all OpenFlow commands without changing
the format of all OpenFlow messages; only the format of
Bundle messages is modified relative to the Bundle message
format in [8], optionally incorporating an execution time.
(ii) The Scheduled Bundle allows a relatively straightforward
way to cancel scheduled commands, as described below.

Fig. 5 illustrates the Scheduled Bundle message procedure.
In step 1, the controller sends a Bundle Open message to
the switch, followed by one or more Add messages (step 2).
Every Add message encapsulates an OpenFlow message, e.g.,
a FLOW MOD message. A Bundle Close is sent in step 3,
followed by the Bundle Commit (step 4), which optionally
includes the scheduled time of execution, Ts. The switch then
executes the desired command(s) at time Ts.

The Bundle Discard message (step 5′) allows the controller
to enforce an all-or-none scheduled update; after the Bundle
Commit is sent, if one of the switches sends an error message,
indicating that it is unable to schedule the current Bundle, the
controller can send a Discard message to all switches, cancel-
ing the scheduled operation. Hence, when a switch receives a
scheduled commit, to be executed at time Ts, the switch can
verify that it can dedicate the required resources to execute the
command as close as possible to Ts. If the switch’s resources
are not available, for example due to another command that is
scheduled to Ts, then the switch replies with an error message,
aborting the scheduled commit. Significantly, this mechanism
allows switches to execute the command with a guaranteed
scheduling accuracy, avoiding the high variation that occurs
when untimed updates are used.

The OpenFlow time extension also defines Bundle Fea-
ture Request messages, which allow the controller to query

OpenFlow Agent

Dpctl

OpenFlow Switch

CPqD OFSoftswitch

PTPd Master

PTPd Slave i

Controller

Switch i

OpenFlow protocol

using time extension
PTP

Time

extension

Switch

scheduling

SDN application

using time-based updates

offseti

Time-based

update

REVERSEPTPClock

O
p
e
n
 s
o
u
rc
e

REVERSEPTPClock

Fig. 6: TIME4 prototype design: the black blocks are the
components implemented in the context of this work.

switches about whether they support Scheduled Bundles, and
to configure some of the switch parameters related to Sched-
uled Bundles.

B. Clock synchronization

TIME4 requires the switches and controller to maintain a
local clock, enabling time-triggered events. Hence, the local
clocks should be synchronized. The OpenFlow time exten-
sion we defined does not mandate a specific synchronization
method. Various mechanisms may be used, e.g., the Network
Time Protocol (NTP), the Precision Time Protocol (PTP) [3],
or GPS-based synchronization. The prototype we designed and
implemented uses REVERSEPTP [33], a variant of PTP that
is customized for SDN.

C. Prototype Design and Implementation

We have designed and implemented a software-based pro-
totype of TIME4, as illustrated in Fig. 6. The components we
implemented are marked in black. These components run on
Linux, and are publicly available as open source [29].

Our TIME4-enabled OFSoftswitch prototype was adopted
by the ONF as the official prototype of Scheduled Bundles.3

Switches. Every switch i runs an OpenFlow switch software
module. Our prototype is based on the open source CPqD OF-
Softswitch [34],4 incorporating the switch scheduling module
(see Fig. 6) that we implemented. When the switch receives
a Scheduled Bundle from the controller, the switch scheduling
module schedules the respective OpenFlow command to the

3The ONF process for adding new features to OpenFlow requires every
new feature to be prototyped.

4OFSoftswitch is one of the two software switches used by the Open
Networking Foundation (ONF) for prototyping new OpenFlow features. We
chose this switch since it was the first open source OpenFlow switch to include
the Bundle feature.

desired time of execution. The switch scheduling module also
handles Bundle Feature Request messages received from the
controller.

Each switch runs a REVERSEPTP master, which distributes
the switch’s time to the controller. Our REVERSEPTP proto-
type is a lightweight set of Bash scripts that is used as an
abstraction layer over the well-known open source PTPd [35]
module. Our software-based implementation uses the Linux
clock as the reference for PTPd, and for the switch’s schedul-
ing module. To the best of our knowledge, ours is the first
open source implementation of REVERSEPTP.

Controller. The controller runs an OpenFlow agent, which
communicates with the switches using the OpenFlow protocol.
Our prototype uses the CPqD Dpctl (Datapath Controller),
which is a simple command line tool for sending OpenFlow
messages to switches. We have extended Dpctl by adding
the time extension; the Dpctl command-line interface allows
the user to define the execution time of a Bundle Commit.
Dpctl also allows a user to send a Bundle Feature Request to
switches.

The controller runs REVERSEPTP with n instances of PTPd
in slave mode, where n is the number of switches in the net-
work. One or more SDN applications can run on the controller
and perform timed updates. The application can extract the
offset, offseti, of every switch i from REVERSEPTP, and use
it to compute the scheduled execution time of switch i in every
timed update. The Linux clock is used as a reference for PTPd,
and for the SDN application(s).

IV. EVALUATION

A. Evaluation Method

Environment. We evaluated our prototype on a 71-node
testbed in the DeterLab [36] environment. Each machine (PC)
in the testbed either played the role of an OpenFlow switch,
running our TIME4-enabled prototype, or the role of a host,
sending and receiving traffic. A separate machine was used
as a controller, which was connected to the switches using an
out-of-band network.

Performance attributes. Three performance attributes play
a key role in our evaluation, as shown in Table I.

∆ The average time elapsed between two consecutive messages
sent by the controller.

IR Installation latency range: the difference between the maximal
rule installation latency and the minimal installation latency.

δ Scheduling error: the maximal difference between the actual
update time and the scheduled update time.

TABLE I: Performance Attributes.

Intuitively, ∆ and IR determine the performance of untimed
updates. ∆ indicates the controller’s performance; an Open-
Flow controller can handle as many as tens of thousands [37]
to millions [38] of packets per second, depending on the
type of controller and the machine’s processing power. Hence,
∆ can vary from 1 microsecond to several milliseconds. IR
indicates the installation latency variation. The installation
latency is the time elapsed from the instant the controller sends

a rule modification message until the rule has been installed.
The installation latency of an OpenFlow rule modification
(FLOW MOD) has been shown to range from 1 millisecond
to seconds [16], [39], and grows dramatically with the number
of installations per second.

The attribute that affects the performance of timed updates
is the switches’ scheduling error, δ. When an update is
scheduled to be performed at time T0, it is performed in
practice at some time t ∈ [T0, T0 + δ].5 The scheduling error,
δ, is affected by two factors: the device’s clock accuracy,
which is the maximal offset between the clock value and
the value of an accurate time reference, and the execution
accuracy, which is a measure of how accurately the device
can perform a timed update, given run-time parameters such
as the concurrently executing tasks and the load on the
device. The achievable clock accuracy strongly depends on the
network size and topology, and on the clock synchronization
method. For example, the clock accuracy using the Precision
Time Protocol [3] is typically on the order of 1 microsecond
(e.g., [4]).

B. Performance Attribute Measurement

Our experiments measured the three attributes, ∆, IR, and δ,
illustrating how accurately updates can be applied in software-
based OpenFlow implementations. It should be noted that
these three values depend on the processing power of the
testbed machine; we measured the parameters for three types
of DeterLab machines, Type I, II, and III, listed in Table II.

In software-based switches, the CPU handles both the data-
plane traffic and the communication with the controller, and
thus IR and δ can be affected by the rate of data-plane traffic
through the switch. Hence, in our experiments we fixed the
rate of traffic through each switch to 10 Mbps, allowing an
‘apples-to-apples’ comparison between experiments.

5An alternative representation of the accuracy, δ, assumes a symmetric
error, T0 ± δ. The two approaches are equivalent.

controller
...

o1 o2 on

H1 H2 Hn

q1 q2

d

Fig. 7: Experimental evaluation: every host and switch was
emulated by a Linux machine in the DeterLab testbed. All

links have a capacity of 10 Mbps. The controller is
connected to the switches by an out-of-band network.

Machine Type ∆ IR δ

I Intel Xeon E3 LP 9.64 1.3 1.232.4 GHz, 16 GB RAM

II Intel Xeon 9.6 1.47 1.182.1 GHz, 4 GB RAM

II Intel Dual Xeon 14.27 2.72 1.193 GHz, 2 GB RAM

TABLE II: Measured attributes in milliseconds.

C. Flow Swap Evaluation

1) Experiment Setting
We evaluated our prototype on a 71-node testbed under. We

used the testbed to emulate an OpenFlow network with 32
hosts and 32 leaf switches, as depicted in Fig. 7, with n = 32.

Metric. A flow swap that is not performed in a coordinated
way may bare a high cost: either packet loss, deep buffering,
or a combination of the two. We use packet loss as a metric
for the cost of flow swaps, assuming that deep buffering is not
used.

We used Iperf to generate flows from the sources to the
destination, and to measure the number of packets lost between
the source and the destination.

The flow swap scenario. All experiments were flow swaps
with a swap impact of 0.5.6 We used two static flows,
which were not reconfigured in the experiment: H1 generates
a 5 Mbps flow that is forwarded through q1, and H2 generates
a 5 Mbps flow that is generated through q2. We generated n
additional flows (where n is the number of switches at the
bottom layer of the graph): (i) A 5 Mbps flow from H1 to
the destination. (ii) n − 1 flows, each having a bandwidth of
5

n−1 Mbps. Every flow swap in our experiment required the
flow of (i) to be swapped with the n − 1 flows of (ii). Note
that this swap has an impact of 0.5.

2) Experimental Results
TIME4 vs. other update approaches. In this experiment

we compared the packet loss of TIME4 to other update
approaches described in Sec. I-D. As discussed in Sec. I-D,
applying the order approach or the two-phase approach to flow
swaps produces similar results. This observation is illustrated
in Fig. 8b. In the rest of this section we refer to these two
approaches collectively as the untimed approaches.

In our experiments we also implemented a SWAN-
based [11] update, and a B4-based [12] update. In SWAN, we
used a 10% scratch on each of the links, and in B4 updates
we temporarily reduced the bandwidth of each flow by 10%
to avoid packet loss. As depicted in Fig. 8b, SWAN and B4
yield a slightly lower packet loss rate than TIME4; the average
number of packets lost in each TIME4 flow swap is 0.2, while
with SWAN and B4 only 0.1 packets are lost on average.

To study the effect of using time in SWAN and in B4, we
also performed hybrid updates, illustrated in Fig. 8c and 8d,
and in the two right-most bars of Fig. 8b. We combined
SWAN and TIME4, by performing a timed update on a
network with scratch capacity, and compared the packet loss

6By Theorem 2, the source can force the controller to perform a flow swap
with an impact as high as roughly 0.5.

0

5

10

15

20

25

30

35

0 10 20 30

P
a

c
k

e
t

L
o

s
s

Number of switches

Time4

Untimed

(a) The no. of packets lost in a
flow swap vs. no. of switches

involved in the update.

0.01

0.1

1

10

100

Order Two-phase Time4 B4 SWAN Time4B4 Time4SW

P
a

ck
et

 L
o

ss
 (

lo
g

a
ri

th
m

ic
)

B4

Time4SWTimed

Untimed

(b) The number of packets lost in a flow
swap in different update approaches

(with n = 32).

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10

P
a
ck

et
 L

o
ss

Scratch Capacity [%]

Time4 + SWAN

SWAN

(c) The number of packets lost
in a flow swap using SWAN and
TIME4 + SWAN (with n = 32).

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10

P
a

c
k

e
t

L
o

ss

Flow Bandwidth Reduction [%]

Time4 + B4

B4

(d) The number of packets lost
in a flow swap using B4 and
TIME4 + B4 (with n = 32).

Fig. 8: Flow swap performance: in large networks (a) TIME4 allows significantly less packet loss than untimed approaches.
The packet loss of TIME4 is slightly higher than SWAN and B4 (b), while the latter two methods incur higher overhead.
Combining TIME4 with SWAN or B4 provides the best of both worlds; low packet loss (b) and low overhead (c and d).

to the conventional SWAN-based update. We repeated the
experiment for various values of scratch capacity, from 0% to
10%. As illustrated in Fig. 8c, the TIME4+SWAN approach
can achieve the same level of packet loss as SWAN with
less scratch capacity. We performed a similar experiment
with a timed B4 update, varying the bandwidth reduction rate
between 0% and 10%, and observed similar results.

Number of switches. We evaluated the effect of n, the
number of switches involved in the flow swap, on the packet
loss. We performed an n-swap with n = 2, 4, 8, 16, 32. As
illustrated in Fig. 8a, the number of packets lost during an
untimed update grows linearly with the number of switches
n, while the number of packets lost in a TIME4 update is less
than one on average, and is not affected by the number of
switches. As n increases, the update duration7 is longer, and
hence more packets are lost during the update procedure.

Installation latency variation. Our next experiment
(Fig. 9a) examined how the installation latency variation,
denoted by IR, affects the packet loss during an untimed
update. We analyzed different values of IR: in each update we
synthetically determined a uniformly distributed installation
latency, I ∼ U [0, IR]. As shown in Fig. 9a, the switch’s
installation latency range, IR, dramatically affects the packet
loss rate during an untimed update. Notably, when IR is on the
order of 1 second, as in the extreme scenarios of [16], [39],
TIME4 has a significant advantage over the untimed approach.

Scheduling error. Figure 9b depicts the packet loss as a
function of the scheduling error of TIME4. By Fig. 8a, 9a
and 9b, we observe that if δ is sufficiently low compared
to IR and (n − 1)∆, then TIME4 outperforms the untimed
approaches. Note that even if switches are not implemented
with extremely low scheduling error δ, we expect TIME4 to
outperform the untimed approach, as typically δ < IR, as
further discussed in Section V.

Summary. The experiments presented in this section
demonstrate that TIME4 performs significantly better than
untimed approaches, especially when the update involves mul-
tiple switches, or when there is a non-deterministic installation

7The update duration is the time elapsed from the instant the first switch
is updated until the instant the last switch is updated. In our setting the update
duration is roughly (n− 1)∆.

0

20

40

60

80

100

120

140

160

0 0.5 1

P
a
c
k

e
t

L
o

ss

IR [seconds]

Untimed

(a) The number of packets lost
in a flow swap vs. the

installation latency range, IR.

0

20

40

60

80

100

120

140

160

0 0.5 1

P
a
c
k

e
t

L
o

ss

δ [seconds]

Time4

(b) The number of packets lost
in a flow swap vs. the

scheduling error, δ.

Fig. 9: Performance as a function of IR and δ.

latency. Interestingly, TIME4 can be used in conjunction with
existing approaches, such as SWAN and B4, allowing the same
level of packet loss with less overhead than the untimed
variants.

V. DISCUSSION

Scheduling accuracy. The advantage of timed updates
greatly depends on the scheduling accuracy, i.e., on the
switches’ ability to accurately perform an update at its sched-
uled time. Clocks can typically be synchronized on the order
of 1 microsecond (e.g., [4]) using PTP [3]. However, a switch’s
ability to accurately perform a scheduled action depends on
its implementation.
• Software switches: Our experimental evaluation showed

that the scheduling error in the software switches we
tested was on the order of 1 millisecond.

• Hardware-based scheduling: The work of [18] has shown
a method that allows the scheduling error of timed events
in hardware switches to be as low as 1 microsecond.

It is an important observation that in a typical system we
expect the scheduling error to be lower than the installation
latency variation, i.e., δ < IR. Untimed updates have a non-
deterministic installation latency. On the other hand, timed
updates are predictable, and can be scheduled in a way that
avoids conflicts between multiple updates, allowing δ to be
typically lower than IR.

Model assumptions. Our model assumes a lossless network
with unsplittable, fixed-bandwidth flows. A notable example

of a setting in which these assumptions are often valid is
a WAN or a carrier network. In carrier networks the max-
imal bandwidth of a service is defined by its bandwidth
profile [15]. Thus, the controller cannot dynamically change
the bandwidth of the flows, as they are determined by the SLA.
The Frame Loss Ratio (FLR) is one of the key performance
attributes [15] that a service provider must comply to, and
cannot be compromised. Splitting a flow between two or more
paths may result in packets being received out-of-order. Packet
reordering is a key performance parameter in carrier-grade
performance and availability measurement, as it affects various
applications such as real-time media streaming [40]. Thus, all
packets of a flow are forwarded through the same path.

Network latency. In Fig. 1, the switches S1 and S3 are
updated at the same time, as it is implicitly assumed that all
the links have the same latency. In the general case each link
has a different latency, and thus S1 and S3 should not be
updated at the same time, but at two different times, T1 and
T3, that account for the different latencies.

VI. CONCLUSION

Time and clocks are valuable tools for coordinating up-
dates in a network. We have shown that dynamic traffic
steering by SDN controllers requires flow swaps, which are
best performed as close to instantaneously as possible. Time-
based operation can help to achieve carrier-grade packet loss
rate in environments that require rapid path reconfiguration.
Our OpenFlow time extension can be used for implementing
flow swaps and TIME4. It can also be used for a variety
of additional timed update scenarios that can help improve
network performance during path and policy updates.

VII. ACKNOWLEDGMENTS

We gratefully acknowledge Oron Anschel and Nadav
Shiloach, who implemented the TIME4-enabled OFSoftswitch
prototype. We thank Jean Tourrilhes and the members of the
Extensibility working group of the ONF for many helpful
comments that contributed to the OpenFlow time extension.
We also thank Nate Foster, Laurent Vanbever, Joshua Reich
and Isaac Keslassy for helpful discussions. We gratefully
acknowledge the DeterLab project [36] for the opportunity to
perform our experiments on the DeterLab testbed. This work
was supported in part by the ISF grant 1520/11.

REFERENCES

[1] ITU-T G.8271/Y.1366, “Time and phase synchronization aspects of
packet networks,” ITU-T, 2012.

[2] J. C. Corbett et al., “Spanner: Google’s globally distributed database,”
ACM Transactions on Computer Systems (TOCS), 2013.

[3] IEEE TC 9, “1588 IEEE Standard for a Precision Clock Synchronization
Protocol for Networked Measurement and Control Systems Version 2,”
IEEE, 2008.

[4] H. Li, “IEEE 1588 time synchronization deployment for mobile back-
haul in China Mobile,” keynote presentation, IEEE ISPCS, 2014.

[5] IEEE Std C37.238, “IEEE Standard Profile for Use of IEEE 1588
Precision Time Protocol in Power System Applications,” IEEE, 2011.

[6] “ONF SDN Product Directory,” https://www.opennetworking.org/
sdn-resources/onf-products-listing, January, 2015.

[7] N. McKeown, et al., “OpenFlow: enabling innovation in campus net-
works,” ACM SIGCOMM Computer Communication Review, 2008.

[8] Open Networking Foundation, “OpenFlow Switch Specification,” Ver-
sion 1.4.0, 2013.

[9] “Interface to the Routing System (I2RS) working group,” https://
datatracker.ietf.org/wg/i2rs/charter/, IETF, 2016.

[10] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks.,” in NSDI,
2010.

[11] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
WAN,” in ACM SIGCOMM, 2013.

[12] S. Jain et al., “B4: Experience with a globally-deployed software defined
WAN,” in ACM SIGCOMM, 2013.

[13] Open Networking Foundation, “OpenFlow-enabled mobile and wireless
networks,” ONF Solution Brief, 2013.

[14] Metro Ethernet Forum, “Mobile backhaul - phase 2 implementation
agreement,” MEF 22.1, 2012.

[15] Metro Ethernet Forum, “Carrier ethernet class of service - phase 2
implementation agreement,” MEF 23.1, 2012.

[16] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, J. Rexford,
R. Wattenhofer, and M. Zhang, “Dionysus: Dynamic scheduling of
network updates,” in ACM SIGCOMM, 2014.

[17] T. G. Edwards and W. Belkin, “Using SDN to facilitate precisely timed
actions on real-time data streams,” in ACM SIGCOMM Workshop on
Hot topics in Software Defined Networks (HotSDN), 2014.

[18] T. Mizrahi, O. Rottenstreich, and Y. Moses, “TimeFlip: Scheduling
network updates with timestamp-based TCAM ranges,” in IEEE IN-
FOCOM, 2015.

[19] P. François and O. Bonaventure, “Avoiding transient loops during the
convergence of link-state routing protocols,” IEEE/ACM Transactions
on Networking (TON), 2007.

[20] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and O. Bonaventure,
“Seamless network-wide IGP migrations,” ACM SIGCOMM Computer
Communication Review, vol. 41, no. 4, pp. 314–325, 2011.

[21] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. Maltz,
“zUpdate: updating data center networks with zero loss,” in ACM
SIGCOMM, 2013.

[22] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in ACM SIGCOMM, 2012.

[23] N. Pippenger, “On rearrangeable and non-blocking switching networks,”
Journal of Computer and System Sciences, 1978.

[24] T. Mizrahi and Y. Moses, “Time-based updates in software defined
networks,” in ACM SIGCOMM Workshop on Hot topics in Software
Defined Networks (HotSDN), 2013.

[25] T. Mizrahi and Y. Moses, “On the necessity of time-based updates in
SDN,” in Open Networking Summit (ONS), 2014.

[26] T. Mizrahi, E. Saat, and Y. Moses, “Timed consistent network updates,”
in ACM SIGCOMM Symposium on SDN Research (SOSR), 2015.

[27] Open Networking Foundation, “OpenFlow switch specification,” Version
1.5.0, 2015.

[28] Open Networking Foundation, “OpenFlow extensions 1.3.x package 2,”
2015.

[29] “TIME4 source code,” https://github.com/TimedSDN, 2015.
[30] T. Mizrahi and Y. Moses, “TIME4: Time for SDN,” technical report,

arXiv preprint, 2016.
[31] J. M. Kleinberg, “Single-source unsplittable flow,” in Symposium on

Foundations of Computer Science (FOCS), 1996.
[32] T. Mizrahi and Y. Moses, “Time-based Updates in OpenFlow: A Pro-

posed Extension to the OpenFlow Protocol,” technical report, Technion,
http://tx.technion.ac.il/%7Edew/OFTimeTR.pdf, 2013.

[33] T. Mizrahi and Y. Moses, “Using REVERSEPTP to distribute time in
software defined networks,” in IEEE ISPCS, 2014.

[34] “CPqD OFSoftswitch,” https://github.com/CPqD/ofsoftswitch13, 2014.
[35] “Precision Time Protocol daemon,” http://ptpd.sourceforge.net/, 2013.
[36] “The DeterLab project,” http://deter-project.org/, 2015.
[37] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker, “Applying NOX

to the datacenter,” in HotNets, 2009.
[38] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,

“On controller performance in software-defined networks,” in Hot-ICE,
2012.

[39] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore,
“OFLOPS: An open framework for openflow switch evaluation,” in
Passive and Active Measurement, 2012.

[40] ITU-T Y.1563, “Ethernet frame transfer and availability performance,”
ITU-T, 2009.

