
FLIP the (Flow) Table:

Fast LIghtweight Policy-preserving SDN Updates

Stefano Vissicchio

Université catholique de Louvain

ste.vissicchio@gmail.com

Luca Cittadini

RomaTre University

luca.cittadini@gmail.com

Abstract—We propose FLIP, a new algorithm for SDN network
updates that preserve forwarding policies. FLIP builds upon the
dualism between replacements and additions of switch flow-table
rules. It identifies constraints on rule replacements and additions
that independently prevent policy violations from occurring dur-
ing the update. Moreover, it keeps track of alternative constraints,
avoiding the same policy violation. Then, it progressively explores
the solution space by swapping constraints with their alternatives,
until it reaches a satisfiable set of constraints. Extensive simula-
tions show that FLIP outperforms previous proposals. It achieves
a much higher success rate than algorithms based on rule
replacements only, and massively reduces the memory overhead
with respect to techniques solely relying on rule additions.

I. INTRODUCTION AND RELATED WORK

Consider an SDN network where the forwarding has to

be updated, as can often happen, e.g., to better balance

traffic load, steer some flows through virtualized functions

or accommodate new security policies. The forwarding is

determined by per-flow rules that SDN switches apply to

packets. In the update, the controller has to instruct switches to

add, change or remove some rules. To avoid service disruption,

both forwarding correctness (i.e., packet delivery) and policies

(i.e., requirements on forwarding paths) have to be preserved

throughout the update. Moreover, the update strategy must be

robust with respect to factors (unpredictable to the controller)

like non-deterministic processing time on the switch to install

or modify rules, or delayed messages between the controller

and the switches. This excludes naive strategies like pushing

the final rules to the switches at the same time. Rather,

the controller has to apply a carefully-computed sequence of

operations, so that any single operation can be independently

rolled forward or back with no impact on policies.

Despite the abundance of literature on this topic, none

of the existing techniques supports policy-preserving updates

efficiently. Some proposals focus on congestion avoidance [5],

[3], [10] or forwarding correctness [12], [22], and do not

support policy preservation at all. Among the previous con-

tributions that do preserve policies, ordered replacement tech-

niques [13], [11] compute a specific order to replace rules.

They are efficient but their applicability is limited: It is known

that an order that guarantees both forwarding and policy

preservation might not exist [11]. Another approach [18], [7],

[6] consists in installing both the initial and final rules on all

Stefano Vissicchio is a postdoctoral researcher of the Belgian fund for
scientific research (F.R.S.-FNRS)

switches, and tagging packets to signal which rules should

be applied. We refer to this approach as two-phase commit.

While this natively preserves both correctness and policies, it

is highly inefficient, to the point to be unpractical [7], [14].

Its main drawback is that it doubles the number of rules

on every switch, wasting precious TCAM memory which is

a scarce, expensive, and power-hungry resource [9]. Switch

memory may be rather needed to deal with the always growing

number of services or to guarantee good network performance,

e.g., implementing (i) fine-grained traffic engineering, (ii) fast

reaction to security attacks, or (iii) fast failure recovery [17].

In this paper, we study how to compute operational se-

quences that preserve forwarding correctness and policies,

using additional rules only when necessary. We unveil the

degrees of freedom opened by the inter-changeability between

rule replacements and additions in preventing a correctness or

policy violation. Moreover, we show that combining replace-

ments and additions is more powerful than restricting to either

of the two, as all previous techniques do. Such combinations,

indeed, enable new ways to meet correctness and policy

requirements, e.g., by temporarily admitting forwarding paths

with loops that are traversed only once by packets before they

are correctly delivered to the destination.

Unsurprisingly, this additional expressiveness comes at the

cost of making the safe update problem more challenging.

First, it significantly increases the search space, e.g., because

a much higher number of solutions are possible (all com-

binations between rule replacements and additions). Second,

finding a safe sequence implies understanding the interactions

between rule replacements and additions applied to different

switches (e.g., distinguishing loops that are crossed only a

finite number of times from those disrupting connectivity).

We address those challenges with an original algorithm,

FLIP. To compactly represent the search space and quickly

compute an operational sequence, FLIP formalizes possibili-

ties to avoid correctness violations as constraints on rule re-

placements and additions. Moreover, it discovers relationships

between those constraints. Notably, it identifies alternative

constraints. For example, given a potential policy violation,

FLIP can determine that either constraints A and B need to be

enforced for certain rule replacements, or constraint C must

hold for a given rule addition. FLIP then explores the search

space by swapping constraints with their alternatives, until it

ends up with a satisfiable set of constraints.

IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications

978-1-4673-9953-1/16/$31.00 ©2016 IEEE

w

u v z

P(fu,d) = [[v, z], [z, v]]

state:
init final

LEGEND:

policy:

d
switch dest

source

Fig. 1. An update scenario with a policy to be preserved.

The rest of the paper details the following contributions.

Analysis (§II). We detail how combining rule replacements

and additions opens additional degrees of freedom in the

policy-preserving update problem. Also, we show how they

enable us to overcome limitations of prior techniques.

Modeling (§III). We formalize the safe update problem when

operational sequences can include rule replacements and ad-

ditions. We also describe how FLIP models the solution space

in terms of constraints on operations and their relationships.

Algorithms (§IV-V). We walk through the execution of FLIP,

and detail its core procedures to extract constraints, identify

relationships between them, and compute safe sequences.

Experimental evaluation (§VI). We evaluate our implemen-

tation of FLIP by simulating 50, 000 update scenarios for real-

istic networks. Our results show that FLIP hugely outperforms

previous techniques in terms of efficiency and success rate.

II. UNEXPLORED DEGREES OF FREEDOM

FOR SDN UPDATES

Fig. 1 shows a case where the SDN controller (not depicted

for brevity) has to update the controlled network. For the sake

of the example, the controller has to modify the forwarding

only for the flow fu,d of packets sourced at u and destined to

d. Dashed and solid arrows respectively represent the initial

and final states, i.e., the paths used before and after the update.

To perform the update, the controller can apply atomic

operations to switches. Specifically, it can add, modify or

delete flow rules used by a switch to process packets belonging

to fu,d. We distinguish three types of operations. A rule

replacement operation rep(s, f) instructs a switch s to replace

its current rules for flow f with the final rule. A tagging

operation tag(s, f, θ) requires switch s to mark packets in

flow f with a tag θ. A matching operation match(s, f, θi, θf)
requests switch s to install both the initial and final rules for

flow f , and apply the initial (final, resp.) rule to packets tagged

as θi (θf , resp.). In our notation, ∅ is a valid value for any tag θ,

and represents the absence of a tag. Both rule replacement and

tagging operations modify an existing rule, hence the number

of installed rules does not change after the operation is applied.

Conversely, a matching operation involves adding a new rule,

and consumes an additional slot in the TCAM memory of the

affected switch. We denote with app(op) the time at which

operation op is applied.

We say that the controller produces a safe update if (i) pack-

ets are guaranteed to be delivered to d; and (ii) policies are

satisfied throughout the update. In our case, the policy P(fu,d)
(see left side of Fig. 1) imposes that packets belonging to fu,d
must traverse link (v, z) in either of the two directions.

Despite both the initial and final states guarantee packet

delivery and satisfy P(fu,d), those properties can be violated

during the update, depending on the order in which operations

are applied to switches. In Fig. 1, for example, if the first

operation is replacing the rule on z, rep(z, fu,d), then packets

for flow fu,d are trapped in a permanent loop between v (that

applies its initial rule) and z (that applies its final rule) after

app(rep(z, fu,d)). The loop persists until app(rep(v, fu,d)).
Similarly, if rep(u, fu,d) is the first operation, then fu,d is

forwarded over path [u, z, w, d], hence violating the policy.

A. Previous techniques have limitations

Prior work achieves safe updates by either (i) computing a

proper sequence of rule replacements, when it exists (e.g., [13],

[11]); or (ii) applying matching operations on all switches

and progressively applying tagging operations on flow entry

points (u in our example) in order to make all the switches use

final rules (e.g., [18], [7], [6]). We refer to those approaches

as ordered replacement and two-phase commit respectively.

Unfortunately, they are limited or inefficient, because they

focus either only on rule replacements or exclusively on tag-

and-match operations.

Ordered replacement cannot always be applied. In Fig. 1,

an ordering of rule replacements that preserves both forward-

ing correctness and the given policy does not exist. In fact, we

need to replace rules on u, v, and z, and we cannot assume

simultaneous operations, because of uncontrolled factors like

different rule installation time across switches [6] or delayed

message delivery between the controller and the switches.

Thus, we have three cases. If we start from u and rep(u, fu,d)
is the first operation to be scheduled by the controller, then

fu,d is forwarded on path [u, z, w, d] upon app(rep(u, fu,d)).
This produces a violation of Pu,d. Otherwise, if we start

from v, then fu,d is forwarded on path [u, v, w, d] upon

app(rep(v, fu,d)), which also violates the policy. Finally, if

rep(z, fu,d) is the first operation in the update, packets of

fu,d are trapped in a permanent loop between v and z.

Two-phase commit techniques are inefficient. They are

based on applying tagging and matching operations on all

switches in the network, hence doubling memory utilization

at each switch. This comes with two possible consequences.

First, the technique may simply not be applicable if the

memory of a single switch (say, u) is fully used, e.g., by rules

for other flows or for backup paths [17]. Second, even if the

technique is applicable, it generates a huge overhead which

can make it impossible to install new rules, e.g., to deal with

traffic surges or security attacks during the update.

B. Combining operations is more powerful

The key intuition exploited by FLIP is that we can profitably

combine rule replacements, tagging and matching operations

u

w

v z

d

tag(v, fu,d, τ),FLIP
match(z, fu,d, τ, ∅)

rep(w, fu,d), ⇒ rep(u, fu,d)⇒ rep(v, fu,d)⇒rep(z, fu,d)

step 1 step 2 step 3 step 4

(a) t < step2

∅ τ

τ

(b) step2 ≤ t < step3 (c) t ≥ step3

∅

packet tag

}{

τ

τ

∅

∅
u

w

v z

d

∅

∅
u

w

v z

d

sequence:

Fig. 2. FLIP operational sequence for the scenario in Fig. 1: The overhead
is only one additional rule (due to matching operation on z) versus the four
additional rules needed by [18], [7].

on different switches. To this end, it builds upon basic proper-

ties verified if given operations are applied in a certain order. In

the example of Fig. 1, for instance, FLIP detects that matching

on z ensures that the (v, z) link is traversed at least once,

while tagging on v with z matching v’s tags ensures that

packets exit the loop between v and z after traversing z at

most twice. Hence, FLIP produces a safe update in which z

matches throughout the process, v starts tagging before any

rule replacement, and replacements are carefully ordered.

FLIP hugely reduces the number of added rules. When run

on the example in Fig. 1, FLIP’s overhead is a single additional

rule on z. This is much more efficient (66% additional rule

saving) than two-phase commit techniques that would install

additional rules on u, v, and z. The operational sequence

computed by FLIP is reported at the top of Fig. 2. It consists

of a sequence of update steps, so that operations in one step

have to be applied after those in the previous step. This means

that the controller must send operations in a step to switches

only after it is sure that operations in the previous step are

applied (e.g., after receiving an acknowledgment from the

switches [8]). In contrast, operations in the same step can be

sent simultaneously by the controller: This does not mean that

they are executed simultaneously; rather, it implies that their

relative order does not matter.

FLIP admits correct paths discarded by other approaches.

The bottom part of Fig. 2 provides an illustration of the paths

followed by packets of fu,d in any possible state explored

during the application of the FLIP sequence. It visually proves

that both packet delivery and policy compliance (i.e., traversal

of link (v, z)) are guaranteed. Indeed, packets either follow the

initial or final paths (see Fig. 2(a) and Fig. 2(c)), or traverse

link (v, z) in both directions before exiting the loop between

v and z after one lap (see Fig. 2(b)). Note that the path in

Fig. 2(b) would have been discarded by ordered replacement

techniques, since it contains a loop.

FLIP efficiently supports strong consistency, that is, policies

imposing that either the initial or the final paths have to be kept

for every flow throughout the update. Even in this case, FLIP

generally uses fewer rules than two-phase commit techniques.

In Fig. 1, for instance, it duplicates only on v and z, achieving

a 33% rule saving. Indeed, packets in fu,d are forwarded on

either the initial or the final path if v and z apply the initial

extract
constraints

Linear
Program LP

solve
yes

swap
constraints

no

constraint
relations

sequence

update
problem

divide
problem

. . . merge
sequences

operational
sequence

(input) (output)

(§4)

(§5)

flow1

sequence
flown

problem
flow1

problem
flown

. . .

compute
sequence

per-flow
problem

per-flow
sequence

compute
sequence

Fig. 3. High-level view of FLIP algorithm. Non-boxed text are used for FLIP
internal procedures, and text boxes for the corresponding input and output.

or final rule consistently with u. This can be ensured if v and

z match and u tags throughout the update, so that v and z

apply their respective final rules when u sets a given tag θf
to signal that it is in its final state.

III. FLIP OVERVIEW

Fig. 3 overviews FLIP. We now describe FLIP’s input

(§III-A), output (§III-B), and algorithmic core (§III-C). Since

we publicly released a FLIP implementation [21], we omit

its formalization (i.e., pseudo-code) and provide a plain-text

description. We use the terms switch and node interchangeably.

A. FLIP Input

FLIP takes as input an update problem, which is defined by

the pair of initial and final states, and the properties that have

to preserved during the update.

Initial and final states are defined by per-flow rules used by

switches before and after the update, respectively. We consider

the concept of flow in its broadest sense, as the collection of all

packets whose headers match a specific bitmask consistently

across switches. In Fig. 1, all switches match packets based

on a bitmask that captures the source address u and the des-

tination address d. Hence, packets sourced at u and destined

to d belong to the same flow fu,d. Each flow is associated to

a destination to which packets have to be delivered and a set

of sources, i.e., switches attached to the origin of the packets.

We define forwarding paths for a flow f as the network paths

[s0, s1, s2, . . . , d], where s0 is a source, each si is a switch, and

d is the destination. We admit equal-cost multipath (ECMP),

implying that multiple forwarding paths can exist between a

source and a destination for the same flow.

Properties to be guaranteed include forwarding correctness

and preservation of input policies.

Forwarding correctness means that every packet is eventu-

ally delivered to the destination. Even assuming that the initial

and final states are forwarding correct, two types of incorrect-

ness can be triggered in intermediate states. A blackhole occurs

when a forwarding path is [s, . . . , b] terminates in a switch b

different from the destination and without a rule to forward

the packet further. An evil loop can occur when packets of a

given flow are bounced back and forth indefinitely, among a

finite number of switches. In other words, a forwarding path

is infinite. Note that the loop in Fig. 2(b) is not evil since the

forwarding path used for fu,d, i.e., [u, z, v, z, w, d], is finite.

In the following we use the term loop to indicate an evil loop

occurring during the update, unless otherwise specified.

Policy preservation means that a set of input policies, satis-

fied in both the initial and final states, are not violated in any

intermediate state generated during the update. With respect

to previous works that either support strong consistency [6],

[18] or single-node traversal [11], FLIP supports a larger

variety of practical policies. Supported policies indeed include

traversal of single nodes or links (e.g., for firewalling [18]),

but also of sub-paths (e.g., for distributed middleboxing [16],

service chaining [4] or QoS-based traffic engineering [1]).

Generalizing the notation in Fig. 1, we indeed define a policy

as a set of non-empty paths, called policy paths. An input

policy P({f1, . . . , fk}) = [P1, . . . , Pm], with k,m ≥ 1,

imposes that every forwarding path of any flow fi, with

i = 1, . . . , k, includes one among policy paths P1, . . . , Pm.

If this condition holds, we say that the policy is satisfied;

otherwise, we say that it is violated. We assume that only one

policy is defined for any flow. This, however, does not prevent

us from forcing the same flow through multiple sub-paths (e.g.,

for service chaining). For example, if we want a given flow

to traverse both sub-paths P1 and P2, we can express this

requirement with a single policy including all paths P1QiP2,

where Qi is a path between P1 and P2.

B. FLIP Output

FLIP returns a partial order between operations. This par-

tial order represents an operational sequence, including rule

replacement, tagging and matching operations. This sequence

[G1, . . . , Gn] is such that (i) every Gi, with i = 1, . . . , n, is a

group of operations; (ii) operations in each group Gi guarantee

input property preservation independently of the relative order

in which they are actually applied by switches, hence they

can be sent by the controller in any order or in parallel; and

(iii) no operation of a group Gi+1 can be executed before any

operation in Gi. We refer to Gi as i-th update step.

To achieve maximum robustness, we assume that messages

between the controller and switches can be subject to an

arbitrary large but finite delay (they will be retransmitted if

lost), and that a switch can take a non-deterministic time [6]

to apply an operation once the message has been received. This

implies that the operational sequence produced by FLIP does

not rely on the simultaneous application of multiple operations.

C. Algorithmic Overview

At a high-level, FLIP adopts a divide-and-conquer approach

(see Fig. 3). It divides the input update problem into sub-

problems, one per impacted flow. For every sub-problem, FLIP

independently computes a sequence. Per-flow sequences are

finally merged into the output operational sequence.

Problem decomposition and solution composition are easy.

Flows are by definition independent of each other, so we

decompose the problem by simply tackling one flow at a time.

For the same reason, per-flow sequences can be arbitrarily

merged without impacting forwarding correctness and policy

preservation. FLIP relies on a simple yet generic strategy in

which per-flow sequences are merged on a per-step basis.

Starting from a set of per-flow sequences, FLIP computes the

i-th step of the final operational sequence as the union of the

i-th step of all per-flow sequences with at least i steps. This

implies that the final sequence is as long as the longest per-

flow sequence. Note that more sophisticated merging strategies

are possible. For example, we could treat each of the per-flow

sequences to be merged as a set of dependencies and use a

scheduling algorithm as in [6] to optimize update speed.

Computation of policy-preserving per-flow sequences is the

most novel part of FLIP. It is based on two core procedures.

The constraint extraction procedure takes as input a per-

flow problem and performs two tasks.

First, for each possible forwarding incorrectness or policy

violation, the procedure identifies the constraints that ensure

a safe update (if satisfied). We distinguish between replace-

ment and tag-and-match constraints. A replacement constraint

imposes a certain ordering between rule replacements. A

tag-and-match constraint imposes that some switches have

to tag packets consistently with the applied rule (initial or

final) and another switch has to match those tags during

the update. For example, to avoid the loop between v and

z in Fig. 1, the replacement constraint generated by FLIP

is app(rep(v, fu,d)) < app(rep(z, fu,d)). The corresponding

tag-and-match constraint imposes that z matches throughout

the update. To setup packet tagging and matching, it requires

that tag(v, fu,d, τ),match(z, fu,d, τ, ∅) are in the first update

step G1. Moreover, to stop matching only at the end of the

update, it mandates app(rep(z, fu,d)) > app(rep(n, fu,d)) for

any non-matching switch n.

Second, the constraint extraction procedure infers relation-

ships between constraints, namely it pinpoints alternative and

dependent constraints. A set of constraints A is alternative to

another set of constraints B if satisfying A prevents all the

potential correctness violations that would be prevented by

satisfying B. For example, applying a rule replacement on v

before z, applying a matching operation on z (with v tagging),

and applying a matching operation on v (while z tags) are all

alternative constraints to avoid the evil loop between z and

v in Fig. 1. In contrast, one constraint c1 depends on another

constraint c2 if every time we want to impose c1 we must also

impose c2. We will discuss dependencies in more detail in §V.

After having extracted constraints, FLIP selects all rule

replacement constraints and marks them active. FLIP tries

to compute a solution that satisfies all active constraints by

translating the set of active constraints into a linear program

(LP) where the objective function is to minimize the number

of update steps. FLIP then tries to solve this LP with standard

optimization algorithms. If a solution can be found, FLIP

outputs the corresponding operational sequence. Otherwise,

FLIP applies the constraint swapping procedure to replace

some active constraints with alternative ones (and their de-

pendencies). Since a matching constraint is always satisfiable,

w

v z

d
state: initial final

e c b a

g lh

P(f) = [[a, b, c, e], [a, b, h, c, z, w], [l, g, h]]]policies:

LEGEND:

Fig. 4. An instance of our update problem.

FLIP eventually reaches a combination of active matching and

replacement constraints for which a solution exists.

In the following sections, we provide more details on both

constraint extraction and swapping.

IV. FLIP CONSTRAINT EXTRACTION

We now describe the constraint extraction procedure using

Fig. 4 for illustration.

We start by defining the concept of crucial predecessors,

which is used in the entire procedure. Intuitively, crucial

predecessors of a node n are the nodes that can interrupt

an initial or final forwarding path traversing n depending

on whether they are updated or not. More precisely, given

a node n, a flow f , and a state σ, with σ ∈ {init, fin},

we define crucial predecessors of n for f in σ as a set C of

nodes such that for every forwarding path Q = [s . . . n . . . d]
in σ (i) Q can be written as [s . . . p,m . . . n . . . d] with

p ∈ C and m next-hop of p in σ (possibly,m = n); and

(ii) m is not a next-hop of p in any forwarding path for

f in the state {init, fin} \ {σ}. Crucial predecessors are

initial if σ = init, and final otherwise. In Fig. 4, a set of

initial crucial predecessors of w for flow f is {z}. Indeed, all

initial paths [s . . . w, d], with s ∈ {l, a}, can be rewritten as

[s . . . z, w, d] and w is not the next-hop of z in the final state.

A node can have multiple sets of crucial predecessors. For

example, {z} and {c} are two distinct sets of initial crucial

predecessors of w for f in Fig. 4. Whenever this case holds, we

always consider a specific set of crucial predecessors which we

denote as cpreds(n, f, σ). This set has the additional property

that for every forwarding path Q = [s . . . p . . . n . . . d], with

p ∈ cpreds(n, f, σ), every node in the sub-path of Q from p

to n uses the same next-hop in both the initial and the final

states for f . As a result, cpreds(w, f, init) = {z} in Fig. 4.

FLIP computes crucial predecessors with a single backward

visit (from n to flow sources) of the graph associated to σ.

We also denote the graphs corresponding to the initial and

final state for a flow f respectively as Gi
f and Gt

f .

A. Forwarding correctness constraints

A blackhole is defined as the absence of rules for a flow

f on a switch b traversed by a forwarding path. Given that

the initial and final states are forwarding correct, blackholes

can occur during an SDN update if and only if (i) b has

no rule for f in either the initial or final state, and (ii) in

an intermediate state, a forwarding path for f traverses b

while it has no rule for f . Following this observation, for

each node b with no rule for a flow f in the state SB ∈
{init, fin} but with a rule only in S̃B = {init, fin} \ SB ,

we generate a replacement constraints of the form ∀p ∈
cpreds(b, f, S̃B) app(rep(b, f)) < app(rep(p, f)) if SB =
init and app(rep(b, f)) > app(rep(p, f)) otherwise. This

ensures that (i) if b has no rule before the update (SB = init),

it is ready to apply its final rule when any of its final crucial

predecessors has installed its final rule, hence whenever a

forwarding path can cross n; and (ii) if b has no rule after the

update (SB = fin), it keeps its initial rule until all its initial

crucial predecessors apply their respective final rules, and a

forwarding path cannot cross b anymore. In contrast, FLIP

generates no tag-and-match constraint to avoid blackholes.

Indeed, since switches responsible for blackholes do not have

rules in the initial or final states, matching operations on them

coincide with replacement constraints, forcing the application

of that single rule throughout the update.

Extracting constraints to avoid evil loops is also quite

intuitive. Consider any potential evil loop L for flow f , as

obtained by enumerating cycles in the graph Gi
f ∪ Gt

f . For

replacement constraints, we adopt an approach similar to [20]:

We identify the set Linit of nodes such that their respective

next-hops in L are next-hops in the initial but not in the final

state. Similarly, the set Lfin includes nodes whose next-hop

in L is a final but not initial next-hop for the considered flow.

In Fig. 1, v ∈ Linit since z is an initial but not final next-hop

of v, and z ∈ Lfin for symmetrical reasons. We then generate

a replacement constraint forcing any of the nodes in Linit to

be updated before any of the nodes in Lfin. This has already

been proved to prevent evil loops during the update [20]. Also,

we generalize the intuition used in Fig. 2, and generate tag-

and-match constraints imposing that one node in Linit ∪Lfin

matches tags used by its crucial predecessors. Indeed, since

both the initial and final states are correct, matching on a

single node m in Linit ∪ Lfin provably avoids the evil loop

corresponding to L, since m will force packets out of the loop

after at most one lap in the loop (as in Fig. 2(b)).

B. Policy preservation constraints

Policy-preservation constraints are the trickiest to identify:

No previous work actually provides means to enumerate

and formalize them. Abstractly, for every flow subject to an

input policy, FLIP separately colors Gi
f and Gt

f . We then

generate constraints based on those colors. In the following,

we textually explain how constraints are extracted for any flow

f subject to a policy P(f) and why they are semantically

correct. As a reference for explanations, colors assigned by

FLIP for cases in Fig. 1 and 4 are reported in Fig. 5 and 6.

Node coloring. Given any graph G, with G = Gi
f or G = Gt

f ,

colors are assigned by FLIP using the following algorithm.

First, it identifies all the nodes not having a rule for f in G,

and colors them as blue. Moreover, by analyzing forwarding

paths for f in G, it assigns the yellow color to nodes that

w

v z

d

initial state Gi
f final state Gt

f

u v zu

P(f) = [[v, z], [z, v]]POLICY:

wd

Fig. 5. Coloring for the update scenario in Fig. 1.

w

v z

e

c b a

g lh

initial state Gi
f

final state Gt
f

POLICY:

w

v z

e

c b a

g lh

P(f) = [[a, b, c, e], [a, b, h, c, z, w], [l, g, h]]]

Fig. 6. Coloring for the update scenario in Fig. 4.

are not part of any forwarding path (from any source of the

flow) even if they have a rule for f . For instance, in the initial

graph of Fig. 4, e is blue since it has no rule for f , as shown

by Fig. 6. Moreover, v is yellow since it has a rule for f

but it is not traversed by any path from any path from a or

l (sources of the flow) to d. To determine other colors, FLIP

removes from G all the edges part of a satisfied policy path

for f (e.g., (v, z) in Fig. 5). Since policies must be satisfied

by any path in G, this disconnects G, separating sources and

destination into different connected components. FLIP colors

all the nodes reachable from any source as green, and all the

nodes in the connected component of the destination as white.

Consistently, Fig. 5 shows that FLIP colors u and v as green

in the initial graph, while z and w are white. By definition,

a node g is green if and only if all the paths from g to the

destination satisfy P(f). Symmetrically, a node w is white if

and only if all the paths from a source of f to w satisfy P(f).
All the nodes in a connected component that does not include

neither sources nor the destination are colored as cyan. For

example, nodes that are in the middle of a policy path (i.e.,

excluding the first and the last ones) used to satisfy P(f) from

some sources are cyan. Consistently, Fig. 6 shows that g, h,

b, c and z are cyan in Gi
f for the example in Fig. 4.

Constraint extraction from colored graphs. Starting from

node-colored graphs, FLIP extracts multiple sets of constraints

for P(f), according to Table I. In the table, we use expressions

like n < cpreds(n, f, S) instead of ∀p ∈ cpreds(n, f, S)

green cyan white, yellow

green -
n>cpreds(n,f,Gt

f
) n>cpreds(n,f,Gt

f
)

match on n match on n

cyan
n<cpreds(n,f,Gi

f
)

enum
n>cpreds(n,f,Gt

f
)

match on n match on n

white, n<cpreds(n,f,Gi
f

) n<cpreds(n,f,Gi
f

)
-

yellow match on n match on n

n=analyzed node, f=flow, Gi
f

=initial state, Gt
f

=final state

TABLE I
FLIP CONSTRAINT EXTRACTION FOR ANY NODE n, WITH INITIAL AND

FINAL COLORS SPECIFIED BY ROWS AND COLUMNS, RESPECTIVELY. NO

CONSTRAINT IS GENERATED IF n IS BLUE IN THE INITIAL OR FINAL STATE.

app(rep(n, f)) < app(rep(p, f)) for brevity.

Table I shows that FLIP does not generate constraints for

nodes which are either (i) green in both Gi
f and Gt

f , or

(ii) white in both Gi
f and Gt

f . The rationale is that those nodes

cannot be responsible for possible policy violations. Consider

a node g which is green in both Gi
f and Gt

f . By definition

of green node, P(f) has to be satisfied by successors of g in

both the initial and final state, hence updating g cannot create

policy violations. The same applies to any node w which are

white in both Gi
f and Gt

f , since P(f) has to be satisfied before

reaching w in both the initial and final state.

In contrast, some constraints are needed for nodes with

different colors in Gi
f and Gt

f . Consider, for example, any

node r which is white in Gi
f and green in Gt

f , like z in Fig. 5.

A rule replacement on r can induce a policy violation from a

given source s in Gi
f , as the initial policy path can be bypassed

via the final path from s to r (e.g., [u, z], and the final policy

path can be circumvented with the initial path from r to the

destination of the flow (e.g., [z, w, d]). To prevent this case,

we constrain the rule replacement on r to be applied before

those of all its initial crucial predecessors. This guarantees

that no source reaches r with the final path before r uses its

final rule. In our example, FLIP adds a replacement constraint

app(rep(z, f)) < app(rep(u, f)). If respected, this constraint

ensures that during the update either (i) u uses its initial rule,

and the initial, policy-compliant path is followed from u to

z; or (ii) u uses its final rule and z uses its own final rule as

well, hence the policy is satisfied after z (since it is green in

the final state). With a similar rationale, we generate a tag-

and-match constraints in which r matches tags added by its

initial and final crucial predecessors. Similar arguments apply

to other combinations of different colors in Gi
f and Gt

f .

Finally, nodes that are cyan in both Gi
f and Gt

f (like b

and c in Fig. 6) have to be treated differently. In this case,

even computing whether constraints are needed is not obvious.

Indeed, there is no simple condition to check whether switches

in the middle of a policy path can be part of paths violating

P(f) in intermediate states, since it depends on possible next-

hops of both their respective predecessors and successors. For

those nodes, FLIP enumerates paths in Gi
f ∪Gt

f that contain

at least one node which is cyan in both states. Note that this is

a sort of limited path enumeration, which is restricted on the

basis of potentially-dangerous nodes (cyan in both states) due

to complex policy paths (with more than two nodes). FLIP

then pinpoints those among the enumerated paths that violate

P(f). This way, it detects that [a, b, c, z, w, d] is a possible

forwarding path for f which violates P(f) in Fig. 4. Once a

policy-violating path V is found, FLIP generates a replacement

constraint on a specific node s, such that the sub-path of V

ending in a next-hop of s is not included in any policy path for

the considered flow. In Fig. 4, c is the constrained switch for

V = [a, b, c, z, w, d], since no policy path in P(f) starts with

[a, b, c, z]. In particular, FLIP constrains c’s rule replacement

to be applied before its crucial predecessor on V , that is b

in our case. With a similar rationale, FLIP also adds a tag-

and-match constraint in which the same switch used for the

replacement constraint (c in our example) matches and all its

crucial predecessors in both Gi
f and Gt

f tag.

C. Tracking relationships between constraints

FLIP also identifies alternative and dependent constraints.

FLIP stores constraints generated by the same potential

violation as alternative. This generalizes the intuition used in

§II to produce the operational sequence reported in Fig. 2. In

the generation of that sequence, a key observation is that the

evil loop between v and z can be broken by either (i) replacing

v’s rule before z’s one, (ii) tagging on v and matching on z,

or (iii) tagging on z and matching on v. Consistently, FLIP

records those constraints as alternative. More in general, for

every potential blackhole, loop and policy violation, the dif-

ferent constraints generated by FLIP are stored as alternative.

FLIP tracks dependencies between constraints generated

by different violations and involving the same nodes. For

example, consider again Fig. 1, and assume that the policy

is to preserve strong consistency, i.e., ensure that either the

initial path [u, v, z, w] or the final one [u, z, v, w] is followed.

A tag-and-match constraint in which v tags and z matches still

avoids the evil loop between v and z. However, if we match on

z we must also match on v to avoid paths different from both

the initial and final ones (like the one in Fig. 2(b)). Hence,

FLIP stores the tag-and-match constraint which matches on

v as dependent on the tag-and-match constraint on z. Such

a dependency is identified during the enum procedure in the

policy constraint extraction (see Table I), when considering

nodes cyan in both the initial and final state, and involved in

the same loop (like v and z in the example just discussed).

V. FLIP CONSTRAINT SWAPPING

Starting from a set of active constraints, this procedure

swaps an active constraint with one of its alternatives. Select-

ing the constraints to swap can be done in different ways. FLIP

is tailored to efficiently find a safe sequence with few matching

operations, to limit the memory overhead of the update.

FLIP always swaps replacement constraints with tag-and-

match ones, never the opposite. This means that replacement

constraints are never added back, i.e., swapping a replacement

constraint translates into permanently discarding it. This strat-

egy is guaranteed to eventually converge because all matching

constraints are set as active in an extreme case. Also, it implies

that FLIP is complete. Indeed, FLIP always finds a solution to

its input problems since it falls back to the always-applicable

two-phase commit approach [18] in the worst case.

At each invocation of the constraint swapping procedure, we

select constraints to be swapped using a heuristic targeted to

quickly find a solvable set of constraints. Indeed, FLIP selects

a pair of constraints (R,M), where R is the replacement

constraint to be swapped with the M tag-and-match one,

in such a way that (i) R is in an Irreducible Infeasible

Set [2], a minimal set of active constraints that cannot be

satisfied simultaneously; and (ii) M has the minimal number

of dependent constraints among alternatives for R.

After having selected the pair of constraints (R,M) to be

swapped, FLIP updates all active constraints to take into ac-

count the effect of the swap. First, it removes any replacement

constraint R′ that has M as alternative from the set of active

constraints: Indeed, the potential incorrectnesses that R′ is

meant to avoid are now prevented by M . Second, FLIP adds

all M ’s dependencies to the set of active constraints, i.e.,

respecting the definition of dependent constraints (see §IV).

Third, FLIP rewrites existing replacement constraints. Let r

be the switch matching in M . For each replacement constraint

C = app(rep(x, f)) < app(rep(r, f)), FLIP replaces C with

a set of constraints C ′

i = app(rep(x, f)) < app(rep(y, f)) for

every crucial predecessor y of r. This is needed to preserve the

semantics of C after we have decided that switch r will have

to match. Indeed, applying a matching operation to r implies

that r uses its initial or final rule depending on the tag in the

traversing packets. Since the original intent for constraint C

was to prevent r from using its final rule if x was still using its

initial one, we need to transfer C on the crucial predecessors

of r, which add tags to packets. With the rewritten constraints

C ′

i, we indeed impose that the final rule is installed on x

before one of the crucial predecessors of r installs its final rule

(and adding final tags), therefore indirectly forcing r to use

its final rule too. We apply a similar rewriting for constraints

app(rep(x, f)) > app(rep(r, f)).
An example of constraint swapping for the case in Fig. 1 is

reported in Fig. 7. This constraint swap leads to the solution

displayed in Fig. 2. In the figure, the first set of constraints (top

left of the figure) is the one extracted by FLIP from the original

update problem. Initially, all and only replacement constraints

are active. This translates to an infeasible LP, where rx
stands for app(rep(x, fu,d)), with x = u, v, z. The swapping

procedure selects app(rep(v, fu,d)) < app(rep(z, fu,d)) as

constraint to be swapped, since it is in the set of contradictory

constraints. Hence, it updates the set of active constraints by

removing the constraint to be swapped and adding one of its

alternatives, namely match on z. Further, app(rep(z, fu,d)) <
app(rep(u, fu,d)) is also removed from the active constraints,

since match on z was an alternative to it. No other constraint

is added or modified because match on z does not have

dependencies and z is not involved in any other replacement

constraint. The LP deriving from the new set of active con-

straints is shown in the bottom right part of the figure. In

this LP, rz > ru, rv, rw derives from the formalization of the

app(rep(v, fu,d)) < app(rep(z, fu,d))loop (v, z)

app(rep(u, fu,d)) < app(rep(v, fu,d))

active constraints

policy P

alternatives

rv < rz
ru < rv

min ru + rv + rz + rw

ru, rv, rz, rw integerapp(rep(z, fu,d)) < app(rep(u, fu,d))

match on z

match on v

match on v

match on z

cause

LPconstraints

swap app(rep(v, fu,d)) < app(rep(z, fu,d))

rz < ru

loop (v, z)

app(rep(u, fu,d)) < app(rep(v, fu,d))

active constraints

policy P

alternatives

match on z

match on v

cause
ru < rv

min ru + rv + rz + rw

ru, rv, rz, rw integer
rz > ru, rv, rw

with match on z

Fig. 7. A constraint swapping solving the scenario in Fig. 1.

match-and-tag constraints on z, as discussed in §III-C. Note

that match on z also implies other constraints, imposing that

tag(v, fu,d, τ) and match(z, fu,d, τ, ∅) have to be in the first

update step. Since they do not impose constraints on any other

operation, FLIP does not include them into the LP but post-

processes the LP solution by simply adding those operations

to the very first element of the returned sequence.

VI. EVALUATION

We evaluate FLIP by performing 50, 000 experiments. In

each experiment, we generate an update problem on which

we run our FLIP implementation, available at [21]. We verify

that the operational sequence computed by FLIP is correct

by simulating its application to the corresponding network.

To this end, we apply one operation at the time, following

the sequence generated by FLIP, and we check forwarding

correctness and policy preservation after each operation. For

efficiency reason, we apply operations in the same step in

a random order rather than simulating all possible permuta-

tions. While this can theoretically lead to false positives (i.e.,

sequences accidentally considered correct), the sheer number

of experiments provides statistical confidence on the absence

of false positives. We focus on single-flow updates, since FLIP

works on a per-flow basis (see Fig. 3).

As dataset, we use the publicly-available Rocketfuel topolo-

gies [19]. We select uniformly at random a node as destination,

and a random 10% of the nodes as sources. All the equal-cost

(ECMP) shortest paths from any node to the destination in

the original topology are taken as the initial state. To simulate

significant forwarding changes, we then pick 80% of the links

at random, and replace their weight with a value chosen uni-

formly at random among the weights of the original topology.

The ECMP shortest paths in the reweighted graph constitute

the final state. Finally, we add random policies so that every

path from a source to the destination is compliant with at least

one policy. We choose non-trivial policies composed of paths

longer than 2 nodes, to show FLIP’s support for more complex

policies than single-node traversal ones considered by [11].

FLIP always computes safe updates and prevents any possi-

ble blackhole, evil loop or policy violation in each and every

experiment. FLIP’s 100% success rate marks an important

difference with previous techniques based on ordered rule

replacement, e.g., [13]. Those techniques can preserve policies

only by ensuring strong consistency, i.e., using either the initial

or the final paths for each flow. We run an exhaustive search

approach to compute the number of cases in which strong

consistency can be guaranteed by ordered rule replacements.

Results are displayed in Fig. 8(a). They show that ordered

replacement techniques cannot find an operational sequence in

more than ≈ 25% of the experiments on any topology. Even

worse, their success rate greatly depends on the specific topol-

ogy, and larger topologies (e.g., 1239) are virtually impossible

to tackle. In contrast, FLIP finds a safe sequence in all our

update scenarios. This is because FLIP explores a much larger

solution space, including operational sequences tailored to

guarantee the input policy (rather than strong consistency) and

combining rule replacements with match-and-tag operations

(rather than restricting to the former ones).

FLIP hugely reduces the number of added rules. The 99.9th

percentile of additional rules is 8.7% of the total number

of rules, that is, one rule has to be added for 8.7% of the

nodes. We now compare FLIP’s overhead with the one of

two-phase commit techniques [18]. For each experiment, we

compute the number NDUP of additional rules added by [18],

the number NFLIP of additional rules added by FLIP. We

compare those numbers, calculating the percentage of saved

rules as NDUP−NFLIP

NDUP

× 100. To be fair, we assumed that the

two-phase commit approach does not match on nodes with

the same next-hops in the initial and final states, as suggested

in [18] to reduce the number of additional rules. Fig. 8(b)

shows the Cumulative CDF of the results. A data point (x, y)
on the plot indicates that, for a fraction y of the experiments,

FLIP saved at least x% of the flow rules that would be used

by [18]. Across all topologies, the figure highlights that in

98% of the experiments (y = 0.98) FLIP saves at least

94% (x = 94) of the rules added by [18]. Across all our

experiments, at least 87.8% of the rules are saved by FLIP.

FLIP’s savings are fundamentally different from those of

previous variants of two-phase commit techniques. Promi-

nently, [7] proposes to reduce the update overhead by updating

groups of flows in different rounds. In contrast to FLIP, this

workaround does not avoid rule additions, but only distributes

them over time. Moreover, it degenerates to [18] in our

experiments, since a single flow is updated in them.

FLIP computes fast updates. In all our experiments, the

median number of update steps is 5, the 95th percentile is

8, and the 99.9th percentile 12. This distribution does not vary

significantly across different topologies. The only exception

is represented by 1221, the smallest topology, where FLIP’s

sequences have less than 4 steps in 95% of the experiments.

FLIP often terminates in sub-seconds. FLIP’s median exe-

cution time across all our experiments is 0.176 seconds when

run on a commodity server (8-core 2.66GHz CPU1 and 16

GB of RAM). Moreover, 94% of the instances are solved

1Our FLIP implementation is single-threaded, but the used LP solver
libraries rely on parallel code

Topology

%
 o

f
s
o

lv
e

d
 i
n

s
ta

n
c
e

s

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

1221 1239 1755 3257 3967 6461

ordered replacement FLIP

(a) Success rate of FLIP and of ordered re-
placement techniques like [13].

90 92 94 96 98 100

0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

Percentage of flow rules saved

C
C

D
F

1221

1239

1755

3257

3967

6461

(b) Additional rules that FLIP saves relatively to two-
phase commit techniques like [18], [6].

Fig. 8. Comparison between FLIP and state-of-the-art approaches.

in less than 1 second, and 99% in less than 4 seconds. The

topology showing the worst performance is 1239, the largest

one, where the 95th percentile of the execution time was 3.38

seconds and the 99th was 15 seconds. Those results show

that FLIP readily supports realistic SDN-update scenarios,

ranging from accommodation of new policy changes to online

traffic engineering (typically performed at the timescale of few

minutes [4]) and pre-computation of failure reaction.

VII. CONCLUSIONS

In this paper, we present FLIP, an algorithm to compute

operational sequences for safe updates of SDN networks. By

design, FLIP enables updates that preserve both forwarding

correctness and forwarding policies. Thanks to its novel way

to systematically combine rule replacements and additions,

FLIP’s updates are fast and lightweight. Indeed, as shown by

our extensive simulations, they tend to terminate in a very

limited number of steps and with minimal overhead on the

memory of the switches. Our evaluation also shows that FLIP

outperforms previous approaches: In our experiments, it saves

more than 90% of the additional rules needed by two-phase

commit techniques, and supports 90% more update scenarios

than ordered replacement ones.

The model that FLIP uses to reason about the dualism

between rule replacement and additions makes FLIP exten-

sible. For instance, FLIP can easily support domain-specific

constraints such as memory restrictions on specific switches.

We indeed successfully tested one of such cases, in which we

prevented any rule addition on a specific switch by manually

injecting an additional constraint to FLIP’s model. As future

work, we plan to provide better support for domain-specific

constraints, and to investigate FLIP’s extensions for additional

types of operations (e.g., time-based rule modifications [15]).

ACKNOWLEDGEMENTS

This work has been partially supported by ARC grant 13/18-

054 from Communauté française de Belgique.

REFERENCES

[1] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou. A Roadmap for
Traffic Engineering in SDN-OpenFlow Networks. Computer Network,
71:1–30, 2014.

[2] J. W. Chinneck. Feasibility and Infeasibility in Optimization: Algorithms

and Computational Methods. Springer, 2007.
[3] S. Ghorbani and M. Caesar. Walk the line: Consistent network updates

with bandwidth guarantees. In HotSDN, 2012.
[4] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure, C. Filsfils,

T. Telkamp, and P. Francois. A Declarative and Expressive Approach
to Control Forwarding Paths in Carrier-Grade Networks. In SIGCOMM,
2015.

[5] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer. Achieving High Utilization with Software-driven
WAN. In SIGCOMM, 2013.

[6] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer. Dynamic Scheduling of Network
Updates. In SIGCOMM, 2014.

[7] N. P. Katta, J. Rexford, and D. Walker. Incremental Consistent Updates.
In HotSDN, 2013.

[8] M. Kuzniar, P. Peresini, and D. Kostić. Providing Reliable FIB Update
Acknowledgments in SDN. In CoNEXT, 2014.

[9] A. Liu, C. Meiners, and E. Torng. TCAM Razor: A Systematic Ap-
proach Towards Minimizing Packet Classifiers in TCAMs. IEEE/ACM

Transactions on Networking, 18(2):490–500, April 2010.
[10] H. Liu, X. Wu, M. Zhang, L.Yuan, R. Wattenhofer, and D. Maltz. zUp-

date: Updating Data Center Networks with Zero Loss. In SIGCOMM,
2013.

[11] A. Ludwig, M. Rost, D. Foucard, and S. Schmid. Good Network
Updates for Bad Packets: Waypoint Enforcement Beyond Destination-
Based Routing Policies. In HotNets, 2014.

[12] R. Mahajan and R. Wattenhofer. On Consistent Updates in Software
Defined Networks. In HotNets, 2013.

[13] J. McClurg, H. Hojjat, P. Cerny, and N. Foster. Efficient Synthesis of
Network Updates. In PLDI, 2015.

[14] R. McGeer. A Safe, Efficient Update Protocol for Openflow Networks.
In HotSDN, 2012.

[15] T. Mizrahi, O. Rottenstreich, and Y. Moses. TimeFlip: Scheduling
Network Updates with Timestamp-based TCAM Ranges. In INFOCOM,
2015.

[16] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. SIMPLE-
fying Middlebox Policy Enforcement Using SDN. In SIGCOMM, 2013.

[17] M. Reitblatt, M. Canini, A. Guha, and N. Foster. FatTire: Declarative
Fault Tolerance for Software-defined Networks. In HotSDN, 2013.

[18] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker.
Abstractions for network update. In SIGCOMM, 2012.

[19] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP Topologies
with Rocketfuel. In SIGCOMM, 2002.

[20] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and O. Bonaventure.
Seamless Network-Wide IGP Migrations. In SIGCOMM, 2011.

[21] S. Vissicchio. FLIP Web site. http://inl.info.ucl.ac.be/softwares/flip.
[22] S. Vissicchio, L. Cittadini, O. Bonaventure, G. G. Xie, and L. Vanbever.

On the Co-Existence of Distributed and Centralized Routing Control-
Planes. In INFOCOM, 2015.

