
Cupid: Congestion-free Consistent Data Plane

Update In Software Defined Networks

Wen Wang∗, Wenbo He∗, Jinshu Su†, Yixin Chen∗
∗School of Computer Science, McGill University, Montreal, QC, Canada

†School of Computer, National University of Defense Technology, Changsha, Hunan, China

Email: wen.wang4@mail.mcgill.ca, wenbohe@cs.mcgill.ca, sjs@nudt.edu.cn, yixin.chen@mail.mcgill.ca

Abstract—With the popular applications of SDN in load
balancing and failure recovery, the controller schedules affected
flows to redundant paths to avoid network congestions and fail-
ures by updating flow tables in data plane. However, inconsistent
flow table updating may lead to transient incorrect network
behaviors or undesired performance degradation. Therefore, the
consistency imposes dependencies among updates, so that the
order of updates must be carefully considered to keep the
consistency. To update flow tables consistently and efficiently,
in this paper, we propose an update ordering approach – Cupid.
To avoid high overhead in update ordering, we divide the global
dependencies among updates into local restrictions by: 1) par-
titioning a new routing path into several independent segments,
2) identifying critical nodes controlling traffic shifting between
the old path and new path, and 3) constructing a dependency
graph among critical nodes for potential congested links. We then
design a heuristic algorithm to resolve the dependency graph. To
save the flow table space, a switch keeps only one flow entry with
multiple ports for a flow during updating. Our simulation shows
that Cupid schedules updates at least 2 times faster and has less
throughput losses than the state-of-the-art approaches in both
fat-tree and mesh networks.

I. INTRODUCTION

Software defined networking has been widely applied for

traffic engineering [1], [2] and failure recovery [3] with its

global view. The SDN controller schedules affected flows to

other available paths and updates flow tables in concerned

switches for load balancing or failure recovery. Although

plenty of researches [4], [5], [6], [7] have been carried out

to compute optimized routing paths based on current network

topology and traffic distribution to protect against failures

and congestions, a common challenge faced in all centrally-

controlled networks is updating the data plane consistently and

efficiently [8].

The consistency requires that flows are migrated to new

routing paths seamlessly, never with loops nor black-holes dur-

ing flow tables updating, which imposes dependencies among

rules in flow tables along a routing path [9]. The missing

or mismatch of forwarding rules in switches may interrupt

a flow for a while. Therefore, the ordering of updating flow

tables in concerned switches must be carefully considered.

Moreover, in networks where communications usually have

sensitive performance requirements, such as data centers, a

stronger consistency instructs that traffic should not exceed

The authors’ research was supported by the fund FRQ-NT NC-182928.

link bandwidth capacity during updating, i.e., congestion-free

consistency [10]. With limited bandwidth resource of links,

even though the bandwidth demands of flows are satisfiable

before and after data plane updating, flows may be rerouted

to a link before offloading original flows on the link, which

may result in congestions and throughput degradation during

updating. Therefore, the congestion-free consistency further

poses more dependencies among updates.

To update flows to new routing paths without any perfor-

mance degradation, [10], [11] formulates the problem as LP

(Linear Program) to find a transition sequence from the initial

state to the target state. However, this approach would be quite

slow and does not scale to large networks with a large number

of flows. Heuristic approaches trying to find an updating

order to resolve dependencies among updates, e.g., [8], [12],

also suffer substantial overhead due to the high dependency

complexity. Meanwhile, to ensure the loop free and black-

hole free consistency of each flow, two-phase update [13] is

proposed which forwards packets either with the new path

or the old path, but never with a mixed path. Unfortunately,

the atomic commit adds to the complexity of dependencies

among updates. As congestions may occur on any hop of a new

routing path during updating, to avoid throughput degradation,

a flow only could migrate to the new path until all these hops

have enough available bandwidth, which brings down updating

efficiency. Moreover, a flow table may hold multiple entries

of different versions for each flow in two-phase update. This

may overload the limited flow table space. Attempts to reduce

flow table space overhead during updating have been made in

[14], [15], but they always have to make trade-offs between

flow table space and updating efficiency.

In this paper, we present a congestion-free update ordering

approach while maintaining the black-hole free, loop free

consistency properties. We firstly find that the new routing

path of each flow could be divided into several independent

segments, and identify the critical nodes which control traf-

fic shifting between the old path and new path. To avoid

congestions during updating, instead of resolving a global

dependency graph composed of updates and network resources

in [8], we divide dependencies among updates into local

dependencies among critical nodes, and then construct a

dependency graph with potential congested links. The divided

local dependencies improve update parallelism, and ensure the

IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications

978-1-4673-9953-1/16/$31.00 ©2016 IEEE

A

B C

D

E

s1

s2

d1

d2

f1: 0.8

f2: 0.5

(a) Initial State

A

B C

D

E

s1

f2: 0.5

s2

d1

d2

f1: 0.8

F G

(b) Target State 1

A

B C

D

E

s1

s2

d1

d2

G

f1: 0.8

f2: 0.5

(c) Target State 2

A

B C

D

E

s1

s2

d1

d2

f1: 0.8

f2: 0.5

(d) Target State 3

Fig. 1: Routing update of flows: (a) shows the current routing paths (solid lines) of flows f1 (blue from s1 to d1) and f2 (red

from s2 to d2), and then f1 and f2 may be rerouted to new paths (dotted lines) in (b), (c), (d) respectively with three different

routing schemes. The bandwidth capacity of each link is 1 unit, and throughputs of f1 and f2 are 0.8 unit and 0.5 unit.

efficiency and scalability of congestion-free updating. In this

way, we successfully restrict the problem space while keeping

the dependency relationships. We then design and implement

a heuristic dependency resolution algorithm. Meanwhile, to

reduce the flow table space overhead, we use multiple input

and output ports with weights in each flow entry, so that a

switch keeps only one rule for each flow during updating.

The results of simulation show that Cupid schedules update

ordering at least 2 times faster than Dionysus [8] and has less

throughput losses in both fat-tree and mesh topologies.

The rest of the paper is organized as follows: Section II

checks the challenges of congestion-free consistent updating.

Section III describes critical nodes and segment partition for

each flow. Section IV constructs the dependency graph with

critical nodes. Section V presents the dependency resolution

algorithm. In Section VI, we evaluate Cupid and compare with

other approaches. Finally, Section VII concludes the paper.

II. CHALLENGES AND RELATED WORK

A. Complexity of Congestion-free Updating

To achieve high network utilization during flow tables

updating, [10], [11] formulates the updating problem as a LP

problem to find a transition sequence from the initial state to

the target state for inter-data center WANs and inside data

center networks respectively. However, real-world networks

are usually more complicated than the well organized inter-

and intra- data center networks. A more complex network

tends to involve stronger dependency among updates and

even dependency deadlocks which complicates the update

ordering. In Figure 1a, flows f1 and f2 are rerouted to other

paths to release more available bandwidth for future flows

on links A → B, C → E and E → D. With different

rerouting schemes, the target routing paths (dotted lines) are

different in Figure 1b, 1c, 1d, which results in differences in

update ordering. Moreover, the three updating scenarios vary

in dependency complexity.

In Figure 1b, when flow f1 is rerouted from subpath C →
E → D to C → D, it has to wait for the removal of f2 on

link C → D due to the bandwidth limitation. Meanwhile, the

rerouting of f2 from subpath A → E → B to A → B depends

on the remove of f1 on link A → B. As f1 could update from

A → B to A → E → B, and f2 could also shift from C → D

to C → G → D freely without any bandwidth restriction, the

dependencies are released. Thus, we can schedule a feasible

update order to solve the dependencies.

In Figure 1c, when f1 updates from subpath A → B to

A → E → B, it requires moving f2 from A → E → B to

A → B firstly. However, due to the bandwidth restriction, it

is impossible to make the exchange without any performance

reduction with single path forwarding. Therefore, [8], [10],

[11] use multipath to migrate flows gradually to new paths,

e.g., splitting f1 into 0.5 unit and 0.3 unit on subpaths A →
E → B and A → B respectively, thus f2 could shift to A →
B completely with 0.5 unit, and then f1 finally migrates 0.3

unit on the old subpath to A → E → B. Unfortunately, in this

scenario, if we split f1 into two subflows with A → B and

A → E → B before updating the rule in C from C → E to

C → D, we will get a loop {E,B,C} on f ′
1s routing path.

Despite of the multipath transition with A → B and A →
E → B, Figure 1d also requires multipath transition with

C → D and C → E → D for f1 and f2. Furthermore, to

avoid loop {E,B,C}, the removal of rule C → E for f1 in

switch C requires the multipath transition of f1 and f2 with

C → D and C → E → D, which further requires the removal

of rule A → E for f2 in switch A to avoid loop {E,D,A}, so

that a deadlock occurs between the two multipath transitions.

B. Efficiency Of Update Ordering

Although congestion-free updating is usually complicated in

real-world networks, updates should react in time to routing

changes to minimize the duration of performance degradation

and network failures [16]. However, maintaining congestion-

free consistency during updating usually requires global coor-

dination due to complex dependencies among updates, which

poses challenges for update ordering efficiency. LP [10], [11]

would be too slow to find a feasible ordering with the complex

dependency. Dionysus [8] proves that finding the fastest update

scheduling is a NP-complete problem, and dynamically sched-

ules a dependency graph among updates and network resources

with a heuristic algorithm. However, with the complicated

topology and strong dependencies in real-world networks, the

global dependency graph coordination is of great overhead.

[10], [17] also note that careful ordering of updates cannot

always guarantee congestion freedom during updating. [16],

[18] reduce the consistency problem to a model checking

problem instead of designing a new ordering algorithm.

In spite of the low efficiency due to the global coordination

overhead, the consistency in two-phase update [13] requires

never forwarding packet with a mixed path, so that all the

switches in a new path must be updated before shifting any

traffic of a flow to the new path. Thus, the strong property of

consistency would lead to a long delay for rerouting update.

Moreover, we must make sure neither the new path nor the

old path is congested, while any hop on a routing path may be

exposed to congestions during updating. To improve the update

efficiency, [9] notes that dependency structures are simpler for

weaker consistency properties than stronger properties, and

makes a trade-off between the strength of consistency property

and dependencies.

III. INDEPENDENT SEGMENTS OF A SINGLE FLOW

A. Consistency With Mixed Path

Considering the low efficiency of the strong consistency,

we note that the black-hole free and loop free consistency

could still be preserved with mixed paths without the atomic

committing in two-phase update, e.g., a packet of flow f1 in

Figure 1b going through s1 → A → B → C → D → d1 or

s1 → A → F → B → C → E → D → d1 with mixed path.

[16] notes that black-hole free and loop free consistency is

a downstream-dependent property, updating from downstream

to upstream switches along the routing path is sufficient to

ensure it (Lemma 1).

Lemma 1. The reverse order updating of a routing path is

black-hole free and loop free.

With Lemma 1, upstream switches always have to wait for

the update completion of downstream switches in reverse order

updating. Actually, some upstream switches are independent

from downstream updates as long as connectivity maintains.

In Figure 1b, switch A does not need to know the downstream

path of C is C → E → D → d1 or C → D → d1 for flow

f1 provided the connectivity between C and d1. Similarly,

C also does not care about the upstream path of flow f1 is

s1 → A → F → B or s1 → A → B as long as packets

arrive at C correctly. In other words, the updates of flow f1
to subpaths A → F → B and C → D are independent.

To understand how switches migrate a flow from its old

routing path to a new routing path, we identify the critical

nodes which control the routing path switching. The critical

nodes C(f) of a flow f are the common switches {nf} on

both the old path Po(f) and the new path Pn(f), but using

different rules.

C(f) ={nf |nf ∈ Po(f) ∩ Pn(f), rule(nf , Po(f)) 6=

rule(nf , Pn(f))}

As critical nodes connect the new path with the old path,

such as switches A,E,B on f1’s routing paths in Figure 1c,

these critical nodes control the traffic shifting between the

old path and new path. Therefore, the updates of critical

nodes are of great importance during updating. Based on the

modifications made to flow entries, critical nodes could be

divided into three classes: (inport, output) in which both the

input and output ports require to be modified (e.g., E for f1),

(∗, output) changes the output port of flow entry while the

input port stays unchanged (e.g., A for f1), and (inport, ∗)
only changes the input port (e.g., B for f1).

To save flow table space, each flow entry is equipped with

multiple input or output ports during updating in critical nodes.

Thus, there is only one flow entry kept for each flow in a

switch. Especially for the critical nodes which require output

port modifications, these nodes control how to forward packets

through mix paths with multiple outports. Each outport is

associated with a weight, so that these weights determine

the amount of traffic on the new path and old path to avoid

congestions during updating.

B. Segment Partition of A flow

To make the updating flexible and reduce the updating

latency, we divide the new routing path of flow f into

several segments S(f) and each segment could be updated

independently. Each segment s ∈ S(f) consists of a minimum

sequence of switches on the new path which starts and ends

with critical nodes (or the source and destination switches for

the first and last segments), so that the beginning and ending

nodes control traffic switching between the old subpaths and

new segments. Adjacent segments only share the ending or

beginning nodes and never overlap on nodes inside segments.

Thus, each segment is an atomic sequence.

S(f) ={s ⊆ Pn(f)|min {s.length},

s.start, s.end ∈ C(f) ∪ {Pn(f).start, Pn(f).end},

∀s′ ∈ S(f), s ∩ s′ = ∅ or = s.start ≡ s′.end

or = s.end ≡ s′.start,

lasthop(s) 6∈ Circle(Po(f) ∪ Pn(f))}

As the beginning and ending nodes of each segment are

critical nodes, they always need to update either input port

or output port. Even though a beginning node may require

updating the input port, to make each segment independent,

the updating of the beginning node in a segment only modifies

the output port field (∗, outport) of the flow entry, while the

modification of the input port (inport, ∗) belongs to the ending

node of last segment. Similarly, the updates of input and output

ports in an ending node are also divided into two segments.

To avoid loops during updating, the last hop of a segment

should not belong to any circle formed by the old path and new

path. If there is a segment of flow f1 in Figure 1c ending with

→ E → B → C which is involved in the circle {E,B,C},

packets will be circulated if we update the routing path to

E → B → C in the segment before removing the rule C → E

in C which belongs to the next segment. Hence, the circle

makes the updating of E → B → C depends on updating

f1 to C → D. Thus, C → D should be added to the end of

the segment to break the circle, otherwise the updating of the

segment depends on the next segment.

We design an algorithm to calculate segments set S(f)
for each flow f in Algorithm 1. Non-critical nodes and

the nodes belonging to any circle are added to a segment

Algorithm 1 Segment Partition

1: S(f) = ∅

2: for n : Pn(f) do

3: s = n

4: m = successor node of n on Pn(f)
5: while m 6= ∅ ∧ (m 6∈ C(f) or (n → m) ∈

Circle(Po(f) ∪ Pn(f))) do

6: s = s → m

7: n = m, m = successor node of n on Pn(f)
8: end while

9: s = s → m

10: S(f) = S(f) ∪ s

11: n = m

12: end for

until meeting a critical node breaking the circle in lines 5-

8. Circle(Po(f) ∪ Pn(f)) is the circle set formed by the old

path and new path, such as circles {E,B,C} formed by f1’s

routing paths and {E,D,A} formed by f2’s routing paths in

Figure 1d. By traversing switches along a new path (line 2),

any switch on the new path is assigned to its segment.

C. Properties of Segments

Theorem 1. A segment s ∈ S(f) is black-hole free and loop

free with reverse order updating.

Proof. As s.start, s.end are the common nodes of the new

and old paths, we construct a flow f ′ from s.start to s.end

with the same header of f . The routing update of f ′ follows

Lemma 1 with reverse order updating, thus the black-hole free

and loop free properties preserve in s.

Theorem 2. Segments in S(f) are independent from each

other, which means updates in a segment do not depend on

updates in other segments.

Proof. If the updating of switch s(i) in segment s depends

on another segment s′ ∈ S(f), the updating of s(i) before

updates in s′ will result in a loop l or black hole b.

Switch s(i)(0 6 i < s.length − 1) updates the rule

rule(s(i), Po(f)) to rule(s(i), Pn(f)) which establishes a

path s(i) → s(i + 1) ∈ s. As s(i) 6∈ s′, s(i) → s(i + 1) 6∈ s′,

which means no path changes in segment s′. Thus, l, b 6∈ s′.

Meanwhile, segment s is black-hole free and loop free with

reverse order updating (Theorem 1), which conflicts with l, b.

Therefore, s(i) does not depend on any node in s′.

With Theorem 1 and 2, each segment acts as an independent

routing path with reverse order updating. Thus, segments could

be updated in parallel to improve updating efficiency. During

updating of independent segments, packets of a flow f may be

forwarded along a path composed of mixed nodes belonging

to Po(f) or Pn(f), while the connectivity always maintains.

According to Algorithm 1, the segments of flows in Fig-

ure 1b,1c,1d are showed in Table I. Although segments start

and end with critical nodes, a lot of segments do not need any

update due to the divided updating of inport and outport

TABLE I: Segments of flows

Figure Segments of f1 Segments of f2
1b {s1 → A,A → F → B,

B → C,C → D,D → d1}
{s2 → C,C → G → D,
D → A,A → B,B → d2}

1c {s1 → A,A → E,E →
B → C → D,D → d1}

{s2 → C,C → G → D,
D → A,A → B,B → d2}

1d {s1 → A,A → E,E →
B → C → D,D → d1}

{s2 → C,C → E,E →
D → A → B,B → d2}

between beginning and ending nodes. For instance, the seg-

ment s1 → A of flow f1 ends with a critical node A in

Figure 1b. Switch A only needs to update the outport field for

f1 with the beginning node in the next segment A → F → B,

so that no node requires updating in segment s1 → A.

Therefore, segments requiring no update are shadowed in

Table I, such that only partial segments require updates, which

further reduces updating overhead.

IV. CONGESTION-FREE UPDATING OF MULTIPLE FLOWS

Topology changes and load balancing usually require rerout-

ing multiple flows to other available paths in a short time.

To ensure performance of flows during updating, we have to

schedule a feasible congestion-free updating order.

A. Potential Congested Links During Updating

To avoid congestions during updating, we have to discover

potential congestions at first. We define the criteria to identify

a potential congested link l between switch u and v as follow:

Definition 1 (Potential Congested link l = u → v). With flows

desire to use the link Fn(l) = {f | ∀f, l ∈ Pn(f) − Po(f)},

flows to be moved away from the link Fo(l) = {f | ∀f, l ∈
Po(f)−Pn(f)}, and unchanged flows going through this link

Fu(l) = {f | ∀f, l ∈ Pn(f) ∩ Po(f)} during updating, the

throughputs of flows b(f) on a potential congested link l satisfy
∑

fi∈Fo(l)∪Fu(l)

b(fi) ≤ c(l),
∑

fi∈Fn(l)∪Fu(l)

b(fi) ≤ c(l) (1)

∑

fi∈Fo(l)

b(fi) +
∑

fi∈Fn(l)

b(fi) +
∑

fi∈Fu(l)

b(fi) > c(l) (2)

The consumed bandwidth does not exceed the bandwidth

capacity c(l) in both the initial and final states (1). However,

flows in Fn(l) may be scheduled to link l at any time

before moving some old flows in Fo(l) away during updating,

which exceeds the link bandwidth capacity (2). To avoid any

throughput degradation, we must find all potential congestion

combinations of Fn(l) and Fo(l) on link l. With Definition 1,

we can find a set of potential congested links CL which

contains all the links that may be congested during updating.

Proof. If link l is congested during updating, but l 6∈ CL, there

must exists a subset of newly added flows F ′
n(l) ⊆ Fn(l) and

old flows F ′
o(l) ⊆ Fo(l) on link l when the congestion occurs.∑

fi∈Fo(l)

b(fi) +
∑

fi∈Fn(l)

b(fi) +
∑

fi∈Fu(l)

b(fi) ≥
∑

fi∈F ′

o(l)

b(fi) +
∑

fi∈F ′

n(l)

b(fi) +
∑

fi∈Fu(l)

b(fi) > c(l)

Therefore, l must be a potential congested link.

B. Dependency Graph For Congestion-free Updating

Intuitively, if flows in Fo(l) are moved away from the

potential congested link l before flows in Fn(l) shifting to l,

congestions will be avoided. As Figure 1b shows, the update

of f1 depends on the removal of f2 on potential congested

link C → D, while f2 depends on the removal of f1 on

potential congested link A → B. The dependencies seem make

a deadlock. With segments partition, the updating of f1 to

C → D falls into segment (C → D)f1 while the removing of

f2 from C → D is in segment (C → G → D)f2 . Similarly,

the updating of f2 to A → B is in segment (A → B)f2 ,

while the removing of f1 falls into (A → F → B)f1 .

Thus, dependencies among flows could be divided into local

dependencies among segments, e.g., (A → F → B)f1
depends on (A → B)f2 and (C → G → D)f2 depends on

(C → D)f1 .

To resolve local dependencies, we would like to find the

exact local critical nodes controlling traffic on potential con-

gested links. Thus, the updates of these nodes are critical to

avoid congestions locally.

Lemma 2. For flows ∀f ∈ Fn(l) ∪ Fo(l) on a potential

congested link l = u → v ∈ Pn(f)−Po(f) or Po(f)−Pn(f),
there must exists at least a critical node ∃nf ∈ C(f) preceding

u on Pn(f) or Po(f) respectively.

Proof. If u ∈ C(f), nf = u. Otherwise, u 6∈ C(f),
for ∀f ∈ Fo(l), l 6∈ Pn(f). If we can not find a critical

node from Po(f)[0] to u along Po(f), as the source node

Po(f)[0] ∈ Pn(f) ∩ Po(f) and Po(f)[0] 6∈ C(f), link

Po(f)[0] → Po(f)[1] ∈ Pn(f). Iteratively, Po(f)[1] →
Po(f)[2], ..., u → v ∈ Pn(f), which conflicts with l 6∈ Pn(f).
Therefore, there must ∃nf ∈ C(f) between Po(f)[0] and u.

for ∀f ∈ Fn(l), l 6∈ Po(f). u ∈ segment s, and the begin-

ning node s.start ∈ C(f) ∪ {Pn(f)[0]}. If s.start ∈ C(f),
nf = s.start. Otherwise, similar with the proof of flows in

Fo(l), ∃nf ∈ C(f) between Pn(f)[0] and u.

With Lemma 2, we always could find a critical node for each

flow to control the amount of traffic on a potential congested

link. Moreover, during the multipath transition, the critical

node splits traffic of a flow between the old subpath and

new subpath, and shifts traffic gradually to the new path with

different weights on the new path and old path. Therefore,

the dependency among segments could be transformed into

dependency among critical nodes controlling traffic on each

potential congested link.

Definition 2 (Critical nodes dependency for potential con-

gested link l = u → v). The last critical node nf (l) of

each flow f ∈ Fn(l) ∪ Fo(l) preceding u controls traffic on

l. Thus, the critical node set of Fn(l) depends on the critical

node set of Fo(l): CN(Fn(l)) = {nfn(l)|∀fn ∈ Fn(l)} ⇀

CN(Fo(l)) = {nfo(l)|∀fo ∈ Fo(l)}.

With local critical nodes dependencies for potential con-

gested links, we get a dependency graph in which each

potential congested link l matches to a directed edge from the

TABLE II: Dependency Graph

Figure Dependency Graph

1b Af2 ⇀ Af1 Cf1 ⇀ Cf2

1c Af1 ⇋ Af2 ↼ Ef1 Cf1 ⇀ Cf2

1d Af1 ⇋ Af2 Cf1 ⇋ Cf2 Ef1 ⇋ Ef2

critical node set CN(Fn(l)) to CN(Fo(l)). The critical nodes

dependency of link A → B in Figure 1b is Af2 ⇀ Af1 in

which Af2 and Af1 are critical nodes of f2 and f1 respectively

for link A → B. Likewise, the dependency graph for the

three updating scenarios in Figure 1 are showed in Table II.

For the dependency graph of Figure 1b, Af1 and Cf2 should

update before Af2 and Cf1 to resolve the two dependencies

independently. With independent segments in Table I, the

updates in Figure 1b could be scheduled by updating segments

(A → F → B)f1 , (C → G → D)f2 before (A → B)f2 and

(C → D)f1 , so that Af1 and Cf2 update before Af2 and Cf1 .

V. DEPENDENCY RESOLUTION

While the global dependency among updates is divided into

local dependencies to reduce resolution complexity, switches

should also follow reverse order updating in segments to pre-

serve black-hole free and loop free consistency. In this section,

we design a heuristic algorithm to resolve the dependency

graph while considering update order in each segment.

A. Direct Dependency Resolution

After constructing the dependency graph (lines 4-7) in

Algorithm 2, the nodes which do not belong to the dependency

graph could be updated with UpdateSegment(s) (line 8) and

added to the update sequence US, as long as the downstream

nodes in the same segment have already been updated.

For the nodes involved in the dependency graph D, if the

update of a critical node nf ∈ CN(Fo(l)) does not depend

on others, which means no other CN(Fn(l
′)) contains nf

and the downstream nodes in the same segment have been

updated (CanUpdateInSegment(nf)), nf could be updated

immediately (lines 10-14). After the update of nf , nodes in the

same segment s previously blocked by nf due to the reverse

order updating are able to update with UpdateSegment(s),
and then nf is removed from the dependency graph (line 13).

Furthermore, if the updates of some nodes in CN(Fo(l))
relieve potential congestions on l (line 15), lines 16-21 update

free critical nodes in CN(Fn(l)), and line 22 removes the

dependency d(l) from dependency graph D and deletes l from

potential congested link set CL.

Although the dependency Cf1 ⇀ Cf2 in Figure 1c could be

scheduled sequentially with lines 10-24 in Algorithm 2, Af1

and Af2 depend on each other which makes a deadlock. The

deadlocks in Table II are clear, as each critical node set has

only one node. However, the critical node sets of each link

may contain several critical nodes. We define the deadlock as

a circle in which CN(Fo) and CN(Fn) of adjacent critical

node dependencies share at least one critical node.

Algorithm 2 Direct Dependency Resolution

1: US = ∅ #update sequence

2: D = ∅ #dependency of critical nodes

3: CL = potential congested links

4: for each link l : CL do

5: d(l) = CN(Fn(l)) ⇀ CN(Fo(l))
6: D = D ∪ d(l)
7: end for

8: US = US + UpdateSegment(s) (∀f, s ∈ S(f))
9: # Critical node update without deadlocks:

10: while (∃d(l) ∈ D) ∧ (d(l).CN(Fo) = ∅ or ∃nf ∈
d(l).CN(Fo) ∧ nf 6∈ ∀d(l′).CN(Fn)) do

11: if CanUpdateInSegment(nf) then

12: US = US + nf + UpdateSegment(s) (nf ∈ s)
13: remove nf from all D

14: end if

15: if IsPotentialCongested(l) == false then

16: for nf : d(l).CN(Fn) do

17: if CanUpdateInSegment(nf) ∧ nf 6∈
∀d(l′).CN(Fn) then

18: US = US+nf+UpdateSegment(s) (nf ∈ s)
19: remove nf from D

20: end if

21: end for

22: D = D − d(l), CL = CL− l

23: end if

24: end while

25: # Schedulable critical node update in deadlock:

26: while (∃d(l) ∈ D) ∧ (∃nf ∈ d(l).C(F0) ∧
InDeadlock(nf) ∧ CanSchedule(nf)) do

27: if CanUpdateInSegment(nf) then

28: US = US + nf + UpdateSegment(s) (nf ∈ s)
29: remove nf from D

30: end if

31: end while

f1: 0.2

f3: 0.5

f4: 0.4

f2: 0.3

A

B

C

D

(a) Current State

Af1 , Af2 ⇋ Af3 , Af4

(b) Dependency Graph

Fig. 2: Schedulable flows in deadlock: the link bandwidth

capacity is 1 unit, and throughputs of flows are marked.

Definition 3 (Deadlock L). For a set of potential congested

links {l0, l1, l2, ..., lk}, CN(Fo(l0)) ∩ CN(Fn(l1)) = cn0 6=
∅, CN(Fo(l1))∩CN(Fn(l2)) = cn1 6= ∅, ..., CN(Fo(lk))∩
CN(Fn(l0)) = cnk 6= ∅, the intersection critical node sets

cn0, cn1, ..., cnk form a deadlock L.

Actually, not all the nodes involved in a deadlock are

blocked. As Figure 2 shows, there are 4 flows from A to D

using A → B → D and A → C → D respectively. If we want

Algorithm 3 Multipath Transition

1: while L 6= ∅ do

2: {nf , ab} = CanUpdateInSegment(nf) ∧
max
nf∈L

{min{nf .old, min
nf∈∀d(l′).CN(Fn)

AvailBw(l′)}}

3: if ab ≤ 0 then

4: RateLimit(f) (f = max
f ′∈Pn(f)

(b(f ′)))

5: end if

6: nf .old : nf .new = (nf .old− ab) : (nf .new + ab)
7: US = US + nf

8: if nf .old == 0 then

9: US = US + UpdateSegment(s) (nf ∈ s)
10: L = L− nf , remove nf from D

11: end if

12: end while

to exchange the routing paths of f1, f2 with f3, f4 to release

more available bandwidth for other flows on link A → C, the

exchanging is recognized as a deadlock in Figure 2b. Indeed,

the exchanging could be serialized with the update sequence

f3, f1, f2, f4, as the available bandwidth on new paths is large

enough to reroute flows directly. Therefore, schedulable nodes

in a deadlock may be updated directly with an appropriate

update order. In Algorithm 2, line 26 checks whether nodes in

deadlocks (InDeadlock(nf)) could be scheduled with enough

bandwidth (CanSchedule(nf)), and then add schedulable

nodes to the update sequence in lines 27-30.

B. Updating With Multipath Transition

Although schedulable critical nodes could update directly

to resolve the deadlock in Figure 2, there may be situations

in which no node in a deadlock could update completely in a

step due to the limitation of bandwidth capacity. For example,

if throughputs of f2 and f3 are both 0.4 unit, none of these 4

flows could be updated directly. Therefore, we use multipath

transition by spitting traffic of a flow between the old path and

new path with critical nodes. For the deadlock Af1 ⇋ Af2 in

Figure 1c, we split both flows f1 and f2 with link A → B

and A → E to shift traffic to their new paths gradually. To

reduce the multipath transition overhead, we design a greedy

algorithm to shift the largest amount of traffic to minimize

multipath transition steps. For example, Af1 in Figure 1c shifts

0.5 unit of f1 to A → E firstly, as 0.5 unit on A → E available

for f1 is larger than 0.2 unit for f2 on A → B. In Algorithm 3,

line 2 searches the non-blocked critical node with the largest

available bandwidth ab in deadlock L. The available shifting

bandwidth ab for nf is the minimum value of traffic amount on

the old path nf .old and minimum available bandwidth along

the new subpath. If ab > 0, lines 6-7 reassign weights nf .old :
nf .new for the old path and new path, and add the node to

update sequence. With the multipath migration, all the traffic

on the old path is finally shifted to the new path (line 8), so

that line 10 removes nf from the dependency graph. After the

completion of multipath transition in Figure 1c, Ef1 is able to

update as the dependency on Af2 has been resolved.

Unfortunately, multipath transition may be blocked by fully

utilized links. For example, in Figure 2, if throughputs of the

4 flows are 0.5 unit, no flow could migrate as there is no

available bandwidth at all. In this case, the maximum available

bandwidth ab ≤ 0 (line 3), so that we need to limit throughputs

of some flows to release a small amount of available bandwidth

for multipath transition. Thus, if we would like to shift f1 with

multipath in Figure 2, we should limit rate of flows f3 or f4
on the new path of f1, e.g., reducing 0.2 unit of f3, so that

f1 could split traffic with weights 0.2 : 0.3 on the new path

and old path, and then multipath transition is able to carry out

as normal. After the multipath transition, the throughputs of

rate-limited flows are restored to reduce throughput losses.

C. Dependency Resolution With Segments

For Figure 1d, the dependency graph requires multipath

transitions for (Af1 , Af2), (Cf1 , Cf2) and (Ef1 , Ef2). While

a multipath transition updates multiple nodes in a deadlock

simultaneously, nodes should follow reserve order updating

in each segment (checked by CanUpdateInSegment(nf) in

Algorithm 3). Combining the dependency graph and segments

of Figure 1d together, Figure 3a shows that multipath tran-

sitions of (Af1 , Af2) and (Cf1 , Cf2) are independent from

each other, so that these two deadlocks could be scheduled

concurrently as long as their downstream nodes have been

updated. After the resolution of Af1 ⇋ Af2 and Cf1 ⇋ Cf2 ,

switch D in segment s2 of f2 and switch B in segment s2
of f1 are able to update, and then the multipath transition of

(Ef1 , Ef2) resolves the dependency graph finally.

Although dependency graph could be resolved following

reverse order updating of each segment in Figure 3a, there

are still situations in which dependency can not be solved

due to conflicts between the dependency graph and segments.

Figure 3b requires multipath transitions for (Afa , Ffb) and

(Cfa , Efb). Meanwhile, the reserve order updating of seg-

ments sa and sb instructs that Cfa updates before Afa and Ffb

updates before Efb respectively. Consequently, the multipath

transition of (Afa , Ffb) has to wait for the update completion

of Cfa , while the update of Cfa in multipath transition of

(Cfa , Efb) requests Ffb in (Afa , Ffb) to update firstly. Thus,

there is a conflict between dependency graph and segment. We

detect this kind of conflicts by checking circles formed by the

dependency graph and reserve order of segments. The circle

A → B → C ⇋ E → F ⇋ A in Figure 3b is composed of

critical nodes dependencies and sub-segments, while there is

no circle formed in Figure 3a.

Theorem 3. If no circle forms with the dependency graph and

reverse order of segments, we could always find an update

order with Algorithms 2 and 3.

Algorithm 2 firstly updates free nodes and schedulable

nodes in deadlocks, and then Algorithm 3 resolves deadlocks

with multipath transition and rate-limit. After resolving dead-

locks, nodes previously blocked by deadlocks are now relieved

and could be scheduled by running Algorithm 2 again.

A E

E B C D

D

C E

E BA

f2: s1

f1: s1

f1: s2

f2: s2

(a) Dependencies and segments
in Figure 1d

fa: sa

fb: sb

A B C D

E F G

(b) Conflicts between dependency
graph and segments

Fig. 3: Combining dependency graph with segments

VI. EVALUATION

A. Evaluation Setup

We implement Cupid with 2000+ lines of Java code. Cupid

sits between the routing modules (e.g., failure recovery, load

balancing) and the control message communication module

in the controller. In the architecture showed in Figure 4, all

control messages to manipulate forwarding rules in flow tables

are captured to schedule an appropriate updating order before

applied in switches. The new routing path of each flow is par-

titioned into several independent segments with Algorithm 1.

We identify potential congested links with Definition 1, and

then generate a dependency graph among critical nodes for

these links with Definition 2. Loops in routing paths and

deadlocks in the dependency graph are recognized with strong

connected components. Finally, with Algorithm 2 and 3, a

feasible updating order is scheduled to update flow tables

consistently.

Fig. 4: Cupid Architecture

We evaluate Cupid with fat-tree and mesh networks. These

two topologies have different path deployments and traffic

distributions, so that the dependencies imposed by congestion-

free consistency are quite different. Each network consists of

100 switches connected by 1Gbps links.

• Fat-tree: We use a three-layer fat-tree topology [19] with 12

edge switches, 22 aggregate switches and 66 core switches,

so that link bandwidth capacities of aggregated layer and

core layer are balanced. Traffic distribution in the fat-tree

network follows the data center traffic characteristics in [20].

• Mesh: The diameter of the mesh topology is 18, and the

degree of each node in mesh network is 4. The traffic

in the mesh network is randomly generated and uniformly

distributed among all node pairs.

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

time(ms)

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

Dionysus Lgt
Dionysus Med
Dionysus Hvy

Cupid Lgt
Cupid Med
Cupid Hvy

(a) Fattree

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

time(ms)
c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

Dionysus Lgt
Dionysus Med
Dionysus Hvy

Cupid Lgt
Cupid Med
Cupid Hvy

(b) Mesh

Fig. 5: Ordering latency at different traffic load

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

time(ms)

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

Dionysus S
Dionysus M
Dionysus L

Cupid S
Cupid M
Cupid L

(a) Fattree

0 5000 10000 15000
0

0.2

0.4

0.6

0.8

1

time(ms)

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

Dionysus S
Dionysus M
Dionysus L

Cupid S
Cupid M
Cupid L

(b) Mesh

Fig. 6: Ordering latency with different flow size

More than 10,000 flows are running simultaneously in each

network. During simulation, we assign link failures in the

network and reroute affected flows to other available paths,

and also schedule flows to other less loaded paths for load

balancing. We compare the update ordering efficiency of Cupid

with Dionysus [8] and random update ordering.

B. Evaluation Results

1) Update Ordering Latency: Figure 5 shows the ordering

latency of updating 1000 flows simultaneously at light (<40%

network utilization), medium (40∼80% network utilization)

and heavy (>80% network utilization) traffic load. The net-

work utilization is measured by weighted link utilization. In

both fat-tree and mesh networks, Cupid takes shorter time to

schedule a feasible updating order than Dionysus. With divided

independent segments and local dependencies among critical

nodes, Cupid reduces dependency resolution complexity and

ensures a faster update ordering. For the three layer fat-tree

network, the longest routing path is only 4 hops and each

switch has its own dedicated links to the higher and lower layer

switches, so that flows have fewer chances to collide to congest

links during updating. Thus, the dependency graph is relatively

simple due to the short and dedicated routing paths in the

fat-tree. Therefore, Cupid could finish ordering within 500ms

in most cases while Dionysus solves the global dependency

graph in 1000ms. On the other hand, the mesh network tends

to encounter more congestions during updating compared with

fat-tree, especially on links in the middle of network shared

by a lot of flows. Meanwhile, the routing paths in the mesh

topology are usually longer than 4 hops in the fat-tree, and

there may be loops formed with new and old paths during

updating, which adds to the complexity of dependency graph.

For the light and medium traffic load, although Dionysus could

schedule the ordering within 2000ms, the ordering time of

Cupid is 500ms which is 4 times faster than Dionysus. The

situation is much worse for Dionysus at heavy traffic load.

As the highly complex dependency graph is more difficult to

resolve due to the scarcity of available bandwidth, Dionysus

takes even tens of seconds to find a feasible ordering, while

Cupid is still able to schedule the ordering within 1000ms.

2) Dependency Resolution Analysis: Although a lot of

researches [4], [5], [6] discover and reroute large flows to less

congested path for load balancing, large flows are more likely

to be stuck by limited bandwidth resource during updating.

Thus, large flows tend to migrate to new paths with multipath

transition, while small flows probably could be scheduled

freely with a small amount of available bandwidth. To show

this difference in updating, we classify flows into three classes

according to flow size: small flow (<1M), medium flow

(1∼10M) and large flow (>10M). Figure 6 shows the order

scheduling time for 1000 flows with the three classes at heavy

traffic load. In the fat-tree topology, the update ordering of

small and medium flows in Cupid takes much shorter than

Dionysus. However, the ordering of large flows updates in

Cupid may be worse than Dionysus at times. Figure 7 shows

most of flows in the fat-tree topology have only 1 segment,

as the ingress and egress switches are the only common

nodes in the new and old paths, so that the segment partition

brings few benefits for fat-tree. Moreover, with large flows

at heavy traffic load, Cupid identifies almost all the links

as potential congested links and constructs dependencies for

these links, so that the resolution of the large dependency

graph takes longer. Nevertheless, the overall update ordering

time of Cupid is much shorter than Dionysus in most cases

(over 90%). Compared with the fat-tree topology, flows usually

have longer routing paths in mesh network and also larger

number of segments as Figure 7 shows. With the benefits of

independent segments and local dependencies, Cupid always

outperforms Dionysus in mesh network. Especially for large

flows, Dionysus takes even tens of seconds to resolve the

complicated global dependency graph, while Cupid is able to

finish ordering within 2000ms.

To understand how dependencies are resolved, we divide

the resolution process into 4 phases: non-deadlock, sched-

deadlock, multipath and rate-limit, which correspond to the

updates without deadlock, schedulable updates in deadlocks,

multipath transition and rate-limit respectively in Algorithm 2

and 3. Figure 8 shows phases at which dependencies are

resolved for different size of flows at heavy traffic load. As

small flows almost could be freely scheduled in the fat-tree

network, few flows are involved in dependency resolution, and

the dependencies could be solved in the non-deadlock phase.

Compared with the mesh topology, the update ordering in fat-

tree could be scheduled in the first three phases, while updates

in mesh network tend to be scheduled in the last three phases

due to the higher dependency complexity. Especially for the

large flows updating in the mesh network, over 2% orderings

fall into the rate-limit phase which results in throughput losses.

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

number of segments

p
ro

b
a
b
ili

ty

Fattree

Mesh

Fig. 7: Segments Count

non−deadlock sched−deadlock multipath rate−limit
0

0.2

0.4

0.6

0.8

1

dependency resolution phases

p
ro

b
a
b
ili

ty

Fattree−S
Fattree−M
Fattree−L

Mesh−S
Mesh−M
Mesh−L

Fig. 8: Dependency Resolution Phases

0 5% 10 15% 20%
0

2000

4000

6000

8000

10000

12000

ratio of rerouted flows

ti
m

e
(m

s
)

Fattree−Dionysus

Fattree−Cupid

Mesh−Dionysus

Mesh−Cupid

Fig. 9: Ordering latency with different flow

counts (50th percentile with [10th, 90th])

TABLE III: Network utilization losses (90th percentile)

Topology Approach Small Medium Large

Fattree

Cupid 0 0 0

Dionysus 0 1.59 ×10
−16 2.46 ×10

−9

Random 0 0.06% 0.48%

Mesh

Cupid 0 0 0.16%

Dionysus 0.12% 0.79% 4.71%

Random 0.54% 1.41% 7.39%

3) Throughput Losses: Due to the limited link bandwidth,

flows have to reduce their throughputs once fall into the rate-

limit phase during updating. Cupid could schedule updates

without any throughput loss in non-deadlock, sched-deadlock

and multipath phases. Only a small percentage of orderings

fall in the rate-limit phase as Figure 8 shows. We compare the

network utilization losses of Cupid with Dionysus and random

update ordering. In Table III, there are always less network

utilization losses with Cupid than Dionysus and random update

ordering in both fat-tree and mesh networks. Even though the

losses in the fat-tree network are quite low using Dionysus,

Cupid does not experience any loss. Moreover, for the large

flows migration in the mesh network, the network utilization

loss in Cupid is 0.16% while the losses of Dionysus and

random update order are 10 times larger than Cupid.

4) Scalability: We further study how the update ordering

latency scales with the number of involved flows at heavy

traffic load, and find that Cupid always schedules faster than

Dionysus when migrating 0∼20% of flows in the network

to new paths in Figure 9. Especially for mesh topology, the

ordering time in Dionysus rises steeply with the increasing

number of involved flows, as more flows adds to the global

dependency graph size and complexity. Cupid is able to sched-

ule the ordering within 4000ms, while Dionysus takes more

than 10 seconds for updating 20% flows in mesh network.

VII. CONCLUSION

With increasing SDN applications scheduling flows for load

balancing and failure recovery, in this paper, we focus on

updating flow tables in data plane consistently and efficiently

while preserving throughputs of flows. To reduce the overhead

of finding a feasible updating order, we firstly partition the

rerouted path into independent segments, and then divide the

global dependency among updates into local dependencies

among critical nodes. We then design and implement a heuris-

tic dependency resolution algorithm with the dependency

graph and reverse order updating within each segment. To

reduce the flow table space overhead, we use multiple ports

with weights in each flow entry during updating, so that there

is only one rule kept for each flow in a switch. The results of

simulation show that Cupid is able to schedule update ordering

at least 2 times faster than Dionysus and has less throughput

losses in both fat-tree and mesh topologies.

REFERENCES

[1] S. Jain, A. Kumar, S. Mandal, J. Ong et al., “B4: Experience with a
globally-deployed software defined wan,” in SIGCOMM, 2013.

[2] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in
software defined networks,” in INFOCOM, 2013.

[3] C.-Y. Chu, K. Xi, M. Luo, and H. J. Chao, “Congestion-aware single
link failure recovery in hybrid sdn networks,” in INFOCOM, 2015.

[4] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang et al., “Hedera:
Dynamic flow scheduling for data center networks.” in NSDI, 2010.

[5] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula et al., “De-
voflow: Scaling flow management for high-performance networks,” in
SIGCOMM, 2011.

[6] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: Fine grained
traffic engineering for data centers,” in CoNEXT, 2011.

[7] M. Suchara, D. Xu, R. Doverspike, D. Johnson et al., “Network architec-
ture for joint failure recovery and traffic engineering,” in SIGMETRICS,
2011.

[8] X. Jin, H. H. Liu, R. Gandhi, S. Kandula et al., “Dynamic scheduling
of network updates,” in SIGCOMM, 2014.

[9] R. Mahajan and R. Wattenhofer, “On consistent updates in software
defined networks,” in HotNets, 2013.

[10] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang et al., “Achieving high
utilization with software-driven wan,” in SIGCOMM, 2013.

[11] H. H. Liu, X. Wu, M. Zhang, L. Yuan et al., “zupdate: Updating data
center networks with zero loss,” in SIGCOMM, 2013.

[12] S. Ghorbani and M. Caesar, “Walk the line: consistent network updates
with bandwidth guarantees,” in HotSDN, 2012.

[13] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger et al., “Abstractions
for network update,” in SIGCOMM, 2012.

[14] N. P. Katta, J. Rexford, and D. Walker, “Incremental consistent updates,”
in HotSDN, 2013.

[15] T. Mizrahi, O. Rottenstreich, and Y. Moses, “Timeflip: Scheduling
network updates with timestamp-based tcam ranges,” in INFOCOM,
2015.

[16] W. Zhou, D. Jin, J. Croft, M. Caesar et al., “Enforcing customizable
consistency properties in software-defined networks,” in NSDI, 2015.

[17] L. Shi, J. Fu, and X. Fu, “Loop-free forwarding table updates with
minimal link overflow,” in ICC, 2009.

[18] J. McClurg, H. Hojjat, and N. Foster, “Efficient synthesis of network
updates,” in PLDI, 2015.

[19] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in SIGCOMM, 2008.

[20] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding data
center traffic characteristics,” in SIGCOMM, 2010.

