
Consistent Updates in Software Defined Networks:
On Dependencies, Loop Freedom, and Blackholes

Klaus-Tycho Förster
ETH Zurich

foklaus@ethz.ch

Ratul Mahajan
Microsoft Research

ratul@microsoft.com

Roger Wattenhofer
ETH Zurich

wattenhofer@ethz.ch

Abstract—We consider the problem of finding efficient meth-
ods to update forwarding rules in Software Defined Networks
(SDNs). While the original and updated set of rules might both
be consistent, disseminating the rule updates is an inherently
asynchronous process, resulting in potentially inconsistent states.
We highlight the inherent trade-off between the strength of the
consistency property and the dependencies it imposes among rule
updates at different switches; these dependencies fundamentally
limit how quickly the SDN can be updated. Additionally, we
consider the impact of resource constraints and show that fast
blackhole free migration of rules with memory limits is NP-
hard for the controller. For the basic consistency property of
loop freedom, we prove that maximizing the number of loop free
update rules is NP-hard for interval-based routing and longest-
prefix matching. We also consider the basic case of just one
destination in the network and show that the greedy approach
can be nearly arbitrarily bad. However, minimizing the number
of not updated rules can be approximated well for destination-
based routing. For applying all updates, we develop an update
algorithm that has a provably minimal dependency structure.
We also sketch a general architecture for consistent updates that
separates the twin concerns of consistency and efficiency, and
lastly, evaluate our algorithm on ISP topologies.

I. INTRODUCTION

The Internet as a whole is a wild place, full of autonomous

participants. As such, it is naturally difficult to control cen-

trally; instead, routing and congestion control is achieved

through a selection of distributed protocols such as BGP

and TCP. However, distributed protocols degrade performance,

BGP cannot find the least congested path, and TCP will

only crudely approximate the available bandwidth on the path

selected by BGP. As a result, a loss of performance is to be

expected and accepted. Many desirable properties such as drop

freedom of packets, good utilization of links, or packet coher-

ence are not as important as robustness. In contrast, individual

networks that make up the Internet are controlled by single

administrative entites. These include enterprise networks, ISP

networks, data center networks, and wide area networks that

connect the data centers of large organizations. The owners

of these networks want to get the maximum out of their

massive financial investment, which often runs into hundreds

of millions of dollars per year (amortized). Towards this end,

they have started replacing inefficient distributed protocols.

The technological driver to this paradigm shift are so-called

Software Defined Networks (SDNs): In an SDN, the data plane

is separated from the control plane, allowing the decision of

where and how much data is sent to be made independent

of the system that forwards the traffic itself. A centralized

controller monitors the current state of the network, then

calculates a new set of forwarding rules, and distributes them

to the routers and switches [1], [2], [3], [4].

Are centrally controlled SDNs the beginning of the end

of distributed protocols? Not so fast! After all, the central

SDN controller has to inform the switches about updates, and

a network is an inherently asynchronous place, where nodes

might even be temporarily not accessible to the controller [4]!

In this paper we will discuss the problems that arise when

updating rules in an asynchronous SDN-based network. We

will show that despite the central control, distributed com-

puting will have an important role, depending on the kind of

consistency model one expects from the network. One of the

most basic consistency properties is that packets should not

loop. As a result, this property, which we call “loop freedom,”

is the starting point of our discussion. We will then discuss

the broader space of consistency properties and highlight the

inherent trade-off between the strength of the property and

the intricacy of dependencies it induces among the actions

of different switches. These dependencies fundamentally limit

how quickly the SDN can be updated.

We build on our prior work [5], which showed that single-

destination networks can be updated loop free in a distributed

fashion, but did not consider the inherent computational com-

plexity or dynamic architectures. We also extend the view on

the consistency space, especially regarding blackholes.

We start in Section III by formally modeling consistent

single-/multi-destination network updates, and show that not

all updates can be sent out in one flush. In Section IV, we

follow up by studying the NP-hardness of loop free updates.

In Section V, we study maximizing the number of sent out

updates at once and how to build a minimal dependency

structure for applying all updates. Afterwards, in Section VI,

we reveal the trade-off between consistency properties and

update dependencies. Additionally, we consider the impact

of resource constraints and show that fast blackhole free

migration of rules with memory limits, i.e., a packet arriving at

a switch must always have a matching rule to handle it, is NP-

hard. We sketch a general architecture for consistent network

updates in Section VII and conclude with Section VIII, where

we present practical evaluation results.ISBN 978-3-901882-83-8 c© 2016 IFIP

1Networking 2016



II. BACKGROUND AND RELATED WORK

From early papers on the topic (e.g., [6], [7]), we can learn

that the primary promises of SDNs were that i) centralized

control plane computation can eliminate the ill-effects of dis-

tributed computation (e.g., looping packets), and ii) separating

control and data planes simplifies the task of configuring the

data plane in a manner that satisfies diverse policy concerns.

For example, to eliminate oscillations and loops that can

occur in certain iBGP architectures, the Routing Control

Platform (RCP) [6], [7] proposed a centralized control plane

architecture that directly configured the data plane of routers in

an autonomous system. However, as we gain more experience

with this paradigm, a nuanced story is emerging. Even with

SDNs, packets can take paths that violate policy [8] and traffic

greater than capacity can arrive at links [3]. What explains

this gap between the promise and these inconsistencies? The

root cause is that promises apply to the eventual behavior of

the network, after the data plane state has been changed, but

inconsistencies emerge during data plane state changes.

Recent works have tackled specific pieces of this consistent

update problem. Reitblatt et al. [8], [9] propose a per-packet

consistency solution that we call “packet coherence”—each

packet is routed entirely using the old rules or the new rules,

and never a mix of the two sets; Katta et al. [10] propose

extensions to this solution to reduce switch memory overhead.

SWAN [3] and [11], [12], [13] propose solutions to ensure

that link capacity is not exceeded. The work of Moses et

al. [14] discusses balancing update performance versus periods

of inconsistencies in a time-based update approach.

We make two contributions to this nascent line of work.

First, beyond looking at consistency properties in isolation,

we outline the broader consistency space and the fundamental

hardness of ensuring different consistency properties. This

perspective helps uncover the trade-off between the strength

of the consistency property and the difficulty of ensuring it.

Second, we investigate in detail loop freedom, a property that

has not been considered despite being basic, except for the

recent parallel work of [15], [16], [17]. The packet stamping

solution of Reitblatt et al. [8] can ensure loop freedom by

adding version numbers to packets, but because it ensures

the much stronger property of packet coherence, it is slow

and has high memory overhead. The whole network needs

to be updated first, before being able to use the system—a

long delay in updating single node induces a long delay for

the complete network. Further, despite the extensions of Katta

et al. [10], which trade-off switch memory for speed, packet

stamping has high memory overhead because it simultaneously

stores both old and new rules. Switch memory is a scarce

commodity, with even future generations of switches reaching

their memory limit easily when optimizing the network [3].

Our solutions, designed specifically for loop freedom, are

faster and memory efficient. Interestingly, a majority of the

motivating examples in [8] do not need packet coherence, only

loop freedom.

Francois et al. [18],[19] consider avoiding transient loops

during the convergence of link-state routing protocols. They

argue that, due to high reliability requirements nowadays,

one should try to avoid all packet losses. For the case of

single-destination rules, they consider the routing tree T of

the destination, layered into ranks equivalent to the depth.

The ranks are then updated after another, causing depth(T )
updates in total. Their mechanism design can achieve fast

convergence even in tier-1 ISPs and is carefully fine-tuned for

practical deployment [20]. Our work allows for updating nodes

from different ranks in one update. As such, our number of

updates is not linked to the maximum chain length in the tree,

but rather on the maximum chain length in the dependencies

imposed by the update in general.

Finally, Vanbever et al. [21] work on a related problem, and

study the migration of a conventional (non-SDN) network to

a new IGP protocol. The main differences to our work arise

from the fact that they impose two restrictions on their model:

First, every node must update all its rules at once. Second, only

a single node may be updated at a time, one after another. In

contrast, we can update individual forwarding entries for many

nodes in parallel.

III. MODEL FOR LOOP FREE ROUTING UPDATES

We model a network as a set of connected routers and

switches (from now on, nodes). Packets must be forwarded to

their destination without loops. More formally, a network is a

directed multi-graph with a set of nodes V , a set of destinations

D ⊆ V , and a set of destination-labeled edges s.t. all edges

labeled with the same set of destinations will not contain a

directed loop. These edges form a directed spanning tree with

d being the root and all edges being oriented towards d.

Definition 1: Let Td = (V,Ed) be a directed graph with V
being the set of nodes, d ∈ D being the sole destination, and

Ed being the set of edges each labeled with d. The edge from

u ∈ V to v ∈ V for destination d is noted as (u, v)d. The

labeled directed graph Td is a single-destination network, if

Td is a spanning tree with all directed edges being oriented

towards d.

Definition 2: Let V be a set of nodes and D ⊆ V be

a set of destinations. For all d ∈ D, let Td = (V,Ed) be

a single-destination network and let ED =
⋃

d∈D Ed. Then

the labeled directed multi-graph TD = (V,ED) is a multi-
destination network.

When a network needs to be updated, some (potentially all)

nodes receive a new set of forwarding rules, leaving the

network in a sort of limbo state. At some point all nodes will

be updated, but until then, the network might not be consistent,

i.e., it might induce loops.

Definition 3: Let T old
D = (V,Eold

D ) and Tnew
D = (V,Enew

D )
be multi-destination networks for the same set of nodes V and

destinations D. Then UD = (V,Eold
D , Enew

D ) is called a multi-
destination network update. If the labeled directed multi-graph

TD = (V,Eold
D ∪ Enew

D ) does not contain any loops of edges

with the same label, then the update UD is called consistent
or loop free. A single-destination network update Ud can be

defined analogously.

2Networking 2016



v yxu d

Fig. 1. Illustrating loop freedom. Not all updates can be sent out at once.
Dotted edges are new, solid edges are old.

For an introductory example, consider the five-node single-

destination network in Figure 1. Assume that we want to

update the routing to destination d from the old pattern (solid

edges) to the new pattern (dotted edges). A naı̈ve method is to

send out all updates (e.g., ask v to send packets destined to d to

x) in one shot. However, during application of these updates,

it might happen that x updates its rule before y, introducing

a routing loop between x and y. This loop will eventually

disappear, once y updates its rule, but in an asynchronous

system with possible message delays and losses, we cannot

guarantee when this will happen. Asynchronicity is not a

technicality, as nodes in a production network can often react

slowly (some switches might take up to 100× longer than

average to update [12]), or may not be accessible for some

time to the controller [4]. Thus, solutions in which the network

can quickly start using as many of the new rules as possible,

while maintaining the consistency properties, are preferable.

IV. UPDATES AND DEFAULT RULES

Interval routing and longest-prefix matching are common

routing techniques for large networks. In interval routing

(introduced in [22], cf. [23]), destinations {d1, . . . , d|D|} are

ordered cyclically, and forwarding rules for a node are defined

as disjoint intervals over the destinations, cf. [24], [25], [26].

In contrast, longest-prefix routing defines forwarding rules

via prefixes of the destination IDs, which may overlap: If

two rules are in conflict, the one with the longer matching

prefix is chosen, cf. [27], [28]. Both techniques have great

practical advantages, since multi-destination routing does not

scale well: Even when considering just IPv4 (and not IPv6),

no router on the market could store an individual rule for

every IP–address. Furthermore, this fine–grained information

is not available, since the complete knowledge over a network

is usually restrained to one’s own Autonomous System.

A subset of both techniques is multi-destination routing

with the possibility of default routes. Nodes can either have

individual forwarding rules for each destination or a default

rule, cf. [29], i.e., all packets go to a specific other node (except

for those that reached their destination at the current node).

In this section, we show that maximizing a loop free update

with default rules is an NP-hard problem – and therefore also

NP-hard for both supersets.

Definition 4: Let TD = (V,ED) be a multi-destination

network and let u, v ∈ V . If all outgoing edges from u
point at v in ED, then those edges Eu may be merged into a

default edge, labeled with all labels from D (but packets for a

destination u do not get forwarded from u). We denote such

an edge with (u, v)∀. I.e., we remove Eu from ED and add

{(u, v)∀}. Let the resulting set of edges of this iterated process

be ED,∀. We call TD,∀ = (V,ED,∀) a multi-destination

network with default routes or multi-default network.

Definition 5: Let T old
D,∀ = (V,Eold

D,∀) and Tnew
D,∀ = (V,Enew

D,∀ )
be multi-default networks for the same set of nodes V and

destinations D. Then UD,∀ = (V,Eold
D,∀, E

new
D,∀ ) is called a

multi-default network update. If the labeled directed multi-

graph TD,∀ = (V,Eold
D,∀ ∪ Enew

D,∀ ) does not contain any loops

of edges with the same label, then the update UD,∀ is called

consistent or loop free.

∀∀
∀

v1 v2 v3

Fig. 2. Illustrating circular dependencies with default routes. Note that both
in the old and new rules, no packet will loop: E.g., in the old rules, a packet
sent out from v1 will be forwarded to v3, and possibly to v2, but never to
v1 again - as all possible destinations were already reached on the path.

Let us start with an example of just three nodes in Figure

2. We want to update the three old default edges (drawn

solid) to the three new default edges (drawn dotted). However,

due to circular dependencies, not even a single edge can be

updated without causing a loop. This problem can be handled

by relaxing the constraints of default routing: One can prevent

loops by breaking a single (default) rule into one helper rule

for each of the two other destinations, introducing these rules

during the update process and then removing them later. In

general, this is not desirable, as memory constraints on routers

can easily prevent introducing these additional helper rules,

cf. [3]. Nonetheless, one can directly check if a non-empty

update exists: Check each new edge individually, since adding

more edges cannot remove existing cycles. However, even if a

multi-default network can be updated with some edges, it is a

hard optimization problem. We define the problem of updating

multi-default networks as finding the maximum number of

edges that can be included in an update at once:
Problem 1: Let UD,∀ = (V,Eold

D,∀, E
new
D,∀ ) be a multi-default

network update. Find a set Emax
D,∀ ⊆ Enew

D,∀ , s.t. i) Umax
D,∀ =

(V,Eold
D,∀, E

max
D,∀ ) is a loop free multi-default network update

ii) for all loop free multi-default network updates Uother
D,∀ =

(V,Eold
D,∀, E

other
D,∀ ) with Eother

D,∀ ⊆ Enew
D,∀ it holds that they do

not contain more edges, i.e., |Eother
D,∀ | ≤ |Emax

D,∀ |.
Theorem 1: Problem 1 is NP-hard.

Proof: Our proof is a reduction from the classic NP-

complete satisfiability problem 3-SAT, in the variant with

exactly three pairwise different variables per clause [30]:

1) Consider the routes for destination Y in the triangle-

gadget from Figure 3. If node Xi updates, then node Xi

cannot update without inducing a loop for Y , and vice

versa. Choosing one of the two update rules corresponds

to a variable assignment for a variable xi in the instance

I of 3-SAT: xi is either true or false, but not both.

2) Let C be a clause in the instance I of 3-SAT. If there is a

variable assignment S that satisfies I , then updating the

triangle-gadgets for the variables according to S does not

induce a loop for any destination C in the cycle-gadget

for the corresponding clause in Figure 4. If no such

variable assignment S exists, then at least one triangle-

gadget cannot be updated at all without causing a loop

for a destination representing a clause.

3Networking 2016



Y

∀ ∀

Y

∀Y

Xi Yi

Xi

Y

Fig. 3. Triangle-gadget for
a variable xi. New edges are
drawn dotted, old solid.

C

C
CC

CC

C
C

Y Y Y

∀ ∀ ∀ ∀ ∀ ∀

∀∀
∀

C X1 Y1

X1

X2 Y2

X2

X3 Y3

X3

Y

B

Fig. 4. Cycle-gadget for the clause C = (x1 ∨x2 ∨x3). All edges not shown point directly at their destination. Only if all
three nodes X1, X2, X3 update their forwarding rule for C, then there is a loop for the label C (via B−X1−X1−X2−
X2 −X3 −Y3 −B). E.g., C = (x1 ∨x2 ∨x3) could only induce a cycle via B−X1 −Y1 −X2 −Y2 −X3 −X3 −B.

Y

∀ ∀

Y
∀

Y

Z

Z
Z

Z

Z

Z

Z

Z

Xi Yi

Xi

Y

X
′
i

X′
iZi

Z

Fig. 5. Extension of the triangle-gadget for a variable xi

from Figure 3. New edges are drawn dotted, old solid.
Edges not shown point at their destination. The four possible

cycles for destination Z are i) Xi, X
′
i , ii) Xi, X

′
i, iii)

X
′
i, X

′
i, Z

′
i, iv) X

′
i, Xi, Xi, X

′
i, Zi. No other new cycles

are introduced.

# in sequence conflicting clauses variable false variable true

1 Y, Z, Yi Y, Z, Yi, Xi Y, Z, Yi, Xi

2 Xi, Xi X
′
i, Xi X′

i, Xi

3 X′
i, X

′
i X′

i, Zi X
′
i, Zi

4 Zi ∅ ∅

Fig. 6. Table depicting the fastest possible migration scenarios for the nodes in Figure 5. i)

Xi cannot update before X′
i , ii) Xi not before X

′
i, iii) Z′

i not before X
′
i or X′

i , and iv)

Xi or X′
i must update before X

′
i and Xi and Zi can all three be updated. Note that Y, Z, Yi

can always update right away. However, if there are conflicting clauses (i.e., the corresponding
instance is not satisfiable), then neither Xi nor Xi can update right away, but must wait for
the next update to be sent out – after the conflicts with the clauses have been cleared, thus
requiring a sequence of length four. Else, one could update with a sequence of length three, as
shown in the two rightmost columns.

3) Let k be the number of variables in I . If k rules from

the nodes Xi, Xi in the triangle-gadgets can be updated

loop free, then there exists a variable assignment S that

satisfies the instance I of 3-SAT. If less than k rules can

be updated from the nodes Xi, Xi in the triangle-gadgets,

then I cannot be satisfied.
We now examine interval routing updates: Since the for-

warding rules have to be disjoint, we may only apply updates

that result in a valid state for each node. I.e., after applying an

update, the forwarding rules have to cover all destinations and

be disjoint. Removing all current rules and replacing them with

a default rule matches this requirement. In a similar fashion,

we specify longest-prefix matching updates: A new prefix rule

may contain a set of rules it overrides when the rule is inserted

at a node. Else, applying an “update” might not change the

routing behavior of a node at all.

Corollary 1: Maximizing loop free updates for interval

routing or longest-prefix matching is NP-hard.

A. Future Hardware

Even though asynchronicity is inherent in current hardware

solutions (e.g., node failures [4] or highly deviating update

times [12]), one could imagine these issues being tackled in

future work. For example, the method of updating routing

information could be decoupled from the remaining compu-

tational load of a node, resulting in roughly the same update

time for all nodes in a network. Then one would want to find

a shortest sequence of precomputed updates that migrate the

network from the current old to the desired new routing rules.

I.e., the controller will send out a first loop free multi-default

update and wait until all affected edge changes are confirmed.

This sending out of updates is iterated until all nodes switched

their edges to the new desired routing rules. Nonetheless, this

problem of updating a network remains hard, i.e., how long is

the sequence of updates that are sent out:

Problem 2: Let UD,∀ = (V,Eold
D,∀, E

new
D,∀ ) be a multi-default

network update. Find a sequence of r loop free multi-default
network updates U1

D,∀ = (V,Eold
D,∀, E

new1

D,∀ ), U2
D,∀, . . . ,

Ur
D,∀ with vertex sets V and corresponding pairwise disjoint

new edge sets Enew1

D,∀ , Enew2

D,∀ , . . . , Enewr

D,∀ s.t. Enew1

D,∀ ∪Enew2

D,∀ ∪
· · · ∪ Enewr

D,∀ = Enew
D,∀ s.t. r ∈ N is minimal.

Theorem 2: Problem 2 is NP-hard.

Proof: Note that the construction for the proof of The-

orem 1 is not enough to show that Problem 2 is NP-hard:

While it is NP-hard to decide if k rules from the nodes Xi, Xi

in the triangle-gadgets can be updated, the whole network

in the proof can always be updated in a sequence of just

two updates. In the first step, one would update all nodes

(except for the nodes Xi, Xi in the triangle-gadgets). Then, in

the second step, all the nodes Xi, Xi in the triangle-gadgets

can be updated, since the possibility of loops in the gadgets

created from variables and clauses have vanished after the first

update. However, we can extend our construction s.t. for a

solution of sequence-length three, all k triangle-gadgets need

to update either Xi, Xi in the first element of the sequence

of updates. Else, a sequence of length four would be needed.

The construction is described in the Figures 5 and 6.

Corollary 2: It is NP-hard to approximate the length of the

sequence of updates needed for Problem 2 with an approxi-

mation ratio strictly better than 4/3.

V. ALGORITHMS FOR LOOP FREE ROUTING UPDATES

We first consider variants for single-destination updates and

then extend the discussion to the other models. While dynamic

updates (i.e., update as much as you can at once) are desirable

due to fault-tolerance (see Section I, e.g., a node might be

4Networking 2016



v

u

w d

Fig. 7. Illustrating multi-
ple maximal solutions. The
nodes u and v cannot up-
date together.

u v y z

a b d

Fig. 8. An update of the nodes a and b is a
maximal update, but an update of the nodes
u, v, . . . , y, z and b would be a maximum
update.

temporarily unable to update), we also study how to apply all

updates in this section. Some proofs are in the Appendix.

We start with single-destination updates: Given an up-

date Ud = (V,Eold
d , Enew

d ), find a loop free update Ud =
(V,Eold

d , E
′
d) with E

′
d ⊆ Enew

d . We begin by setting E
′
d = ∅:

An update is maximal, if adding more edges from Enew
d

to E
′
d violates loop freedom. Maximal updates do not have

to be unique, see Figure 7. Node w may switch to the new

rule immediately, but not nodes u and v. If they both switch

immediately, and w is still using the old rule, we get a loop. So,

one of them must wait for w to switch. Either one is fine, i.e.

either u must wait for w (and v, w may switch immediately),

or v must wait for w (and u,w may switch immediately).

Algorithm 1:
1) Check for an edge (u, v)d = e ∈ Enew

d if the update
Ud = (V,Eold

d , E
′
d ∪ {e}) is loop free. This loop test can

be performed, e.g., by a DFS from node v to find node
u on edges with label d.

2) If adding e does not introduce a loop, set E
′
d = E

′
d∪{e}.

3) Repeat step 1 until all edges were checked.
Lemma 1: The update calculated by Algorithm 1 is loop

free and maximal.

While a maximal solution might seem like a good approach at

first glance, it can be far from optimal regarding the number of

updates sent out in one flush, see Figure 8: Even for just one

destination, a maximum update can be of size |Enew
d | − 1,

but a maximal might just be 2 edges. Can we do better?

Since we want to include as many edges as possible, we

are essentially solving restricted instances of the NP-complete

Feedback Arc Set Problem (FASP) [30]: Given a directed

graph, what is the minimum number of edges that needs to

be removed to break all cycles. FASP can also be considered

in a variant with weighted edges: This allows us to exclude

old edges from removal, by giving all old edges an arbitrarily

high weight, and all new edges a weight of just 1. The best

known approximation algorithm for weighted FAS has an

approximation ratio of O (log n log log n) [31], allowing us

to enhance the greedy algorithm for maximal updates:

Algorithm 2:
1) Set the weight of all edges contained in Eold

d to ∞, and
the weight of all other edges to just 1.

2) Calculate a FAS F for the weighted graph (V,Eold
d ∪

Enew
d ) according to [31].

3) Set E
′
d = Enew

d \ F .
4) Apply Algorithm 1 to make the update maximal.
Lemma 2: The update calculated by Algorithm 2 is loop

free and maximal. The number of removed edges from Enew
d

can at most be reduced by a factor of O (log n log log n).

Proof: The removal of a FAS implies by definition loop

freedom for the network. However, old edges are not allowed

to be removed: But since all edges contained in the set of

old edges Eold
d = Eold

d ∪ (
Eold

d ∩ Enew
d

)
have their weight

set to infinity, there is always an infinitely better solution than

removing any old edge. One would just set the edges being in

E
′
d to ∅, which results in a loop free network by definition.

Maximality is ensured by applying Algorithm 1 afterward,

which also preserves the loop free property for the network,

see Lemma 1. Since Algorithm 1 can only add more edges

to the update, and not remove any, the approximation ratio of

O (log n log log n) from [31] is still valid.

Let us now consider how to apply the whole desired update

for a single destination via sending out multiple smaller loop

free updates. In the worst case, we will need |Enew
d | loop free

updates, for example when reversing the links in a ring – only

one edge can be updated loop free at a time.

Algorithm 3:
1) Use Algorithm 1/2 to send out a first update Ed,g1 .
2) Once a set of nodes has reported back to the central

controller that they have performed the rule updates
E′

d,g1
⊆ Ed,g1 for destination d (and discarded their old

rules Eold′
d,g1

), the controller can calculate a current set of
old rules. Take into account that the nodes applying the
rules Ed,g1 \E′

d,g1
are still in a limbo state: Either they

applied the update already or not, but it is not known
due to the asynchronicity until they report in.

3) Calculate and send out the next set of update edges
Ed,g2 ⊆

(
Enew

d \Ed,g1

)
with Algorithm 1/2, which are de-

rived from
(
V,

(
Eold

d \ Eold′
d,g1

)
∪ Ed,g1 , E

new
d \ Ed,g1

)
.

4) Iterate the process until all new edges are sent out.
Algorithm 3 computes a series of loop free updates Ed,g1 ,

. . . ,Ed,gk , with
⋃k

i=1 Ed,gi = Enew
d . For Algorithms 1 and 2,

this can be understood as a dynamic dependency forest, which

is minimal in the sense that an edge e ∈ Ed,gj cannot be added

to Ed,gi , if i < j.

Lemma 3: Iterating either Algorithm 1 or 2 to construct a

dynamic dependency forest needs at most |Enew
d | non-empty

updates to switch the network to the new rules in Enew
d .

Proof: If an update is non-empty, then it contains at least

one new edge. Thus, |Enew
d | non-empty updates suffice to

update the network to only new rules. We now show that we

can always include at least one new edge in an update, once

all sent out rules are applied. Assume that there is no node that

is currently applying a new rule, i.e., all nodes that received a

new rule for d applied it and reported back to the controller.

Thus, no node is in a limbo state, where the node was ordered

to apply a new rule, but has not successfully reported back yet.

For contradiction, let us now assume that Algorithm 1 does

not find any new edge to be sent out as an update. Thus, all

not yet applied edges were checked, and each would induce a

loop when adding it to the network in an update.

However, at least one edge exists that would not induce a

loop. For ease of notation, let us call nodes that still need to

apply a new rule old, and new elsewise. Note that currently no

5Networking 2016



nodes are in limbo. Start from an arbitrary old node, and move

along the set of new rules towards the destination d. Since the

destination is (by definition) new, along this new-rules path,

there must be a last pair of nodes c, p, where the new edge

of c points at p, and c is old and p is new. The edge (c, p)d
cannot induce a loop: It points only to nodes which are in the

new state already, that is, there are no more old rules which

can cause loops. Therefore, Algorithm 1 would have found at

least one more edge to be included in a non-empty update to

be sent out (and thus, Algorithm 2 as well).

Lemma 4: The structure of the dynamic dependency forest

is minimal: Any e ∈ Ed,gj cannot be added to Ed,gi , if i < j.

Proof: W.l.o.g. let e ∈ Ed,gj and consider any update

Ed,gi with i < j. The set of edges for Ed,gi was maximal,

i.e., no more edges could have been added, see the Lemmas

1 and 2.

Note that the Algorithms 1, 2, and 3 can be applied to

multi-destination network updates by treating them as a set

of single-destination network updates: We can compute the

variants separately for each label and apply updates in parallel,

as edges with different labels will not interfere with each other

regarding loop freedom.

A more complex case is where individual rules control

routing to multiple destinations and different rules control

overlapping sets of destinations. (For non-overlapping destina-

tion sets, the situation is similar to above; replace destination

sets with a virtual destination.) This situation can emerge in

interval-based routing and longest-prefix matching. One can

still use adapted versions of Algorithm 1 within Algorithm

3 for maximal loop free updates, but those updates might be

empty: In this case, no (loop free) dependency forests to apply

all new rules may exist (cf. the network in Figure 2).

We note that in practice, one should divide the multi-graphs

G = (V,Eold ∪ Enew) into strongly connected components

(SCCs), e.g., by implementing Tarjan’s algorithm [32]: Edges

from different SCCs cannot be part of the same loop, allowing

to partition the problem into smaller instances. However, this

does not lead to better theoretical approximation bounds.

Also, if we were able to calculate the set of all loops for

each label in the multi-graph G induced by an update G =
(V,Eold∪Enew), then we can even improve the approximation

ratio for some cases: First, consider each loop for each label

as a set of edges, but only add new edges to the sets. The

set of old edges was loop free, meaning there are no empty

sets. Second, solve the Minimum Hitting Set Problem (MHSP)

[30] by choosing a minimum set of new update edges s.t.

each loop is broken. MHSP is NP-complete as well, but a

greedy approach yields an approximation ratio of H(|Enew|)
(with some improvement possible [33]), where H(n) is the

nth harmonic number, H(n) ≈ lnn, cf. [34].

VI. CONSISTENCY SPACE

We now take a broader view of the range of consistency

properties. Table 9 helps frame this view. Its rows correspond

to consistency properties. We defined loop freedom in Section

III; the others are:

None Self Downstream
subset

Downstream
all

Global

Eventual
consistency

Always
guaranteed

Blackhole
freedom

Impossible Add before
remove

Loop freedom
(Section V)

Impossible (Lemma 5) Rule dep.
forest

Packet
coherence

Impossible (Lemma 6) Per-flow ver.
numbers

Global ver.
numbers [8]

Congestion
freedom

Impossible (Lemma 7) Staged partial
moves [3], [11],

[12], [13]

TABLE 9
BASIC CONSISTENCY PROPERTIES & THEIR DEPENDENCIES.

• Eventual consistency No consistency is provided during

updates. If the new set of rules computed by the controller

are consistent (by any definition), the network will be

eventually consistent.

• Blackhole freedom No packet should be blackholed

during updates. Blackholes occur if a packet arrives at

a switch when there is no matching rule to handle it.

• Packet coherence The set of rules seen by a packet

should not be a mix of old and new rules; they should

be either all old or all new rules.

• Congestion freedom The amount of traffic arriving at a

link should not exceed its capacity. Physical link capacity

is a natural limit, but other limits may be interesting as

well (e.g., margin for burstiness). Congestion freedom

must be maintained without dropping traffic; otherwise,

we can trivially meet any limit.

The consistency properties are listed in rough order of

strength, and satisfying a property lower on the list often (but

not always) satisfies a property above it. Obviously, packet

coherence implies blackhole and loop freedom (assuming

that the old and new rules sets are free of blackholes and

loops). Perhaps less obviously, congestion freedom implies

loop freedom because flows in a loop will likely surpass any

bandwidth limit. Note that flows may be splittable [35].

However, these properties cannot be totally ordered. Packet

coherence and congestion freedom are orthogonal, as packet

coherence does not address congestion, and congestion free-

dom can be achieved with solutions beyond packet coherence.

Blackhole freedom and loop freedom are also orthogonal.

In fact, trivial solutions for one violates the other—dropping

packets before they enter a loop guarantees loop freedom, and

just sending packets back to the sender provides blackhole

freedom but creates loops.

The columns in Table 9 denote dependency structures. They

capture rules at which other switches must be updated before a

new rule at a switch can be used safely. Thus, the dependency

is at rule level, not switch level; dependencies are often circular

at switch level—a rule on switch u depends on a rule on v,

which in turn depends on u for other rules. The structures in

Table 9 are:

• None The rule does not depend on any other update.

• Self The rule depends on updates at the same switch.

• Downstream subset The rule depends on updates at a

subset of switches downstream for impacted packets.

• Downstream all The rule depends on updates at all

6Networking 2016



switches downstream for impacted packets.

• Global The rule depends on updates even at potentially

all switches, including those that are not on the path for

packets that use the rule.

These dependency structures are qualitative, not quantita-

tive. For instance, they do not capture the time it might take

for the update to complete. They also assume that switch

resources, such as forwarding table memory or internal queues

for unfinished updates, are not a bottleneck. Resource limita-

tions induce additional dependencies on the order in which

updates can be applied (see below).
In general, update procedures with fewer dependencies (i.e.,

to the left) are preferable. The cells in Table 9 denote whether a

procedure exists to update the network with the corresponding

consistency property and dependency structure. We can prove

that certain combinations are impossible (proofs are in the

Appendix). For example, packet coherence cannot be achieved

in a way that rules depend on updates at only a subset of

downstream switches.
As we can see, weaker consistency properties (towards

the top of Table 9) need weaker dependency structures (to-

wards the left). At one extreme, eventual consistency (i.e.,

no consistency during updates) has no dependencies at all.

Slightly stronger properties, such as blackhole freedom, have

dependencies on other rules at the switch itself. A simple

procedure for blackhole freedom is to add the new rule in

the switch before the old rule is removed. When installed

with higher priority, the new rules become immediately usable,

without wait.
At the other extreme, maintaining congestion freedom re-

quires global coordination. The intuition here is that main-

taining congestion freedom at a link requires coordinating all

flows that use it, and some of these flows share links with

other flows, and so on.
Interestingly, all cells to the immediate right of impossible

cells are occupied in Table 9, which implies that, across past

work and this paper, (qualitatively) optimal algorithms for

maintain all these consistency properties are known. However,

one must not infer from this observation that finding consistent

update procedures is a “solved problem,” for three reasons.

First, some networks may need different properties, for which

effective procedures or even best-case structures are unknown

(e.g., load balancing across links and maintaining packet

ordering within a flow).
Second, even for the properties in Table 9, the picture

looks rosy partly because it assumes plentiful switch re-

sources (e.g., forwarding table memory). If switch resources

are constrained, maintaining consistency becomes harder. For

instance, maintaining blackhole freedom with plentiful switch

memory is straightforward and induces no dependencies across

switches—we can just add all new rules with high priority

before deleting any old rules. But in the presence of switch

memory limits, this becomes challenging because introducing

a new rule at a switch might require removing another rule

first, which can only be removed after having added a new

rule at some other switch.

In fact, we can show that in the presence of memory limits,

even maintaining a simple property like blackhole freedom is

NP-hard. Formally:

Problem 3: Let ci ∈ N be the total interval rule memory of

a switch vi, the combined number of interval rules in current

use and the interval rules it can receive in one update. Let

G = (V,E) be the directed graph on which packets can be

routed, with the destinations D ⊆ V and the sources S ⊆ V
for the packets. In one round, a central controller can send out

a set of any interval rules as an update to each node in the

network. What is the minimum number of rounds, to migrate

the network from a set of blackhole free old rules to a new set

of blockhole free rules, if no blackholes should be introduced

during migration and routing should be possible at all times?

Theorem 3: Problem 3 is NP-hard.

Proof: The proof for Theorem 3 is based on a reduction

from the NP-hard directed Hamiltonian Cycle problem (HC),

cf. [30]: Given a directed graph G = (V,E), is there a

cycle that visits each node exactly once? The construction

with further details is shown in Figure 10: It is possible to

migrate blackhole free in two rounds if and only if there is a

Hamiltonian Cycle in G, thus allowing to first use the cycle

for intermediate routing via default rules, and then installing

the new rules; Else it will take three rounds, one for each new

rule. Thus, it is NP-hard to decide whether one can migrate

in two or three rounds, even if the diameter is just two. The

construction for the memory limit of c = 4 for all nodes in V
can be directly extended to any c ∈ N with c ≥ 4.

Furthermore, note that blackhole freedom is easy to guar-

antee for each node in the presence of default rules, if one

does not care about routing: Just set a default rule to any

neighboring node. While packets might not arrive at all (and in

addition violate other consistency properties, e.g., congestion

freedom), blackhole freedom is guaranteed.

Corollary 3: It is NP-hard to approximate the number of

rounds needed for Problem 3 with an approximation ratio

G = (V,E)

vold1

vold2

vold3

vnew1

vnew2

vnew3

Fig. 10. The center node represents the graph G = (V,E) from an instance I
of the directed Hamiltonian Cycle problem, with nodes v1, . . . , vn. The sets
of edges to (n each) and from (n/3 each) the outer six nodes are bundled into
single edges in this figure. Each node in V = S = D has a memory limit c
of four rules, with S being the set of packet sources and D being the set of
packet destinations. The solid edges represent the edges used for the three old
rules ∀v ∈ V , the dotted edges the edges used for the three new rules ∀v ∈ V .
All nodes in V currently use the three nodes vold1 (for v1, . . . , v(n/3)), vold2

(v(n/3)+1, . . . , v(2n/3)), vold3 (v(2n/3)+1, . . . , vn) on the left for 2-hop
routing to the respective destinations in D = V , and want to migrate to use
the nodes vnew

1 (for v1, . . . , v(n/3)), vnew
2 (v(n/3)+1, . . . , v(2n/3)), vnew

3
(v(2n/3)+1, . . . , vn) on the right for 2-hop routing.

7Networking 2016



strictly better than 3/2.
Third, the table only shows the qualitative part of the story,

ignoring quantitative effects, which may be equally important.

Even though [8] and [3] both have global dependencies, [8]

can always resolve the dependencies in two rounds, whereas

[3] may need more stages. Because of these three reasons, we

believe that what is presented in this paper is just the tip of the

iceberg for consistent updates in Software Defined Networks.

VII. AN ARCHITECTURE FOR SDN UPDATES

We have argued that maintaining consistency during rule

updates is a key hurdle towards realizing the promise of

SDNs. The question is: how can we accomplish this in a

flexible, efficient manner? A straightforward possibility is that

a single software module (controller) decides on new rules

and then micro manages the update process in a way that

maintains consistency. However, this monolithic architecture

is undesirable because it mixes three separable concerns —

i) the rule set should be policy-compliant; ii) rules updates

should maintain the desired consistency property; iii) the

update process should be efficient, which depends on the

asynchronicity in the network.
We propose an alternative architecture (Figure 11) with

three parts, one for each concern above: i) the rule generator
produces policy-compliant rules; ii) the update method selec-
tor chooses the method of how to apply the rules, based on

data from past updates; and iii) the update executor schedules

the updates efficiently in a dynamic fashion, taking current

asynchronicity into account.

Rule

generator
Update

method selector

Update

executor

Routing policy Consistency property Network behaviour

New

rules

Preferred

method

Fig. 11. Proposed dynamic architecture for SDN updates

The update method selector proceeds in two steps. It

first generates, using the old rules and collected data from

past updates of the network, a model of the current state of

the network. This includes, e.g., the mean and variance of

applying an update to a switch or the amount of unallocated

memory/bandwidth. In the second step, multiple methods of

applying the update are checked and simulated on the model

of the network. Depending on the outcome, a preferred method

for updates is selected: For example, if the current amount of

free memory on switches is small, packet stamping is not a

viable update method. However, if a long chain of links needs

to be reversed loop free, and memory is not an issue, packet

stamping might be the best way to proceed. In this step, it

is also possible to issue helper rules, that are neither in the

old or new set of rules, but allow consistent updates via a

specific method. Consider the network in Figure 2: One can

prevent loops by breaking a single (default) rule into one for

each of the other destinations, introducing these rules during

the update process and then removing them later.

The update executor computes a maximal set of updates

that can be sent out immediately with the selected method,

using the old rules, the new rules, and the desired consistency

property. Once a set of nodes reported back on the successful

implementation of the new rules, another batch of updates

can be sent out into the network. Since the update process

is a dynamic one, faulty nodes only induce a limited delay,

independent parts of the network can still be updated. Nodes

that did not report back yet have to be considered in a limbo

state: Either they applied the new rules already or not, but to

not break consistency properties, one has to assume that they

are in both the new and the old state at the same time.
An example for an update executor would be Algorithm

3: Maximal sets of loop free updates are sent out each time

nodes report back about the successful implementation of

rules, inducing a minimal dependency structure in form of

a dynamic dependency forest.

VIII. EVALUATION

We took Rocketfuel ISP topologies with intra-domain rout-

ing weights [36] and considered link failures in these topolo-

gies, with our goal being loop free network updates from pre-

to post-failure least-cost routing.
Figure 12 plots the distribution of the length of dependency

chains that emerge across ten trials, where a randomly selected

link was failed in each. We see that roughly half of the updates

depended on 0 or 1 other switch, and 90% of all forwarding

rules were dependent on at most 3 other switches. In contrast,

had we used Reitblatt’s procedure [8], which ensures the

stronger property of packet coherence, rules would have had

to wait for all other switches (well over a hundred in some

cases), and a single slow switch can impede everyone.

Fig. 12. Chain lengths in loop free updates in six Rocketfuel topologies. The
x-axis label denotes the ASN.

Francois et al. [18] evaluated their work on a tier-1 ISP with

200 nodes and 800 links, resulting in chain lengths of 14. We

had a chain length of at most 7, even for tier-1 ISPs such as

ASN 1239 (Sprintlink) with 547 nodes and 1647 links.

IX. SUMMARY

We argued that consistent updates in Software Defined

Networks is an important and rich area for future research.

We highlighted the trade-off between the strength of the con-

sistency property and the dependency structure it imposes, and

developed minimal algorithms for loop freedom. For the basic

consistency properties of loop and blackhole freedom, we

showed that fast updates are NP-hard optimization problems.

We also sketched an architecture for consistent updates and

showed that our loop freedom algorithm performs well in

evaluations on ISP topologies.

8Networking 2016



ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their

helpful comments, which helped us to improve the presenta-

tion of this paper. We would also like to thank Stefan Schmid

and Stefano Vissicchio for pointing us to [15], [16], [17]

shortly before this article was accepted for publication. Klaus-

Tycho Förster was supported in part by Microsoft Research.

REFERENCES

[1] M. Borokhovich and S. Schmid, “How (Not) to Shoot in Your Foot with
SDN Local Fast Failover,” in OPODIS, 2013.

[2] M. Casado, N. Foster, and A. Guha, “Abstractions for software-defined
networks,” Commun. ACM, vol. 57, no. 10, pp. 86–95, Sep. 2014.

[3] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
WAN,” in SIGCOMM, 2013.

[4] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hoelzle, S. Stuart,
and A. Vahdat, “B4: Experience with a globally-deployed software
defined WAN,” in SIGCOMM, 2013.

[5] R. Mahajan and R. Wattenhofer, “On consistent updates in software
defined networks,” in HotNets, 2013.

[6] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. van der Merwe, “Design and implementation of a routing control
platform,” in USENIX NSDI, 2005.

[7] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and K. van der
Merwe, “The Case for Separating Routing from Routers,” in SIGCOMM
Workshop on Future Directions in Network Architecture (FDNA), 2004.

[8] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in SIGCOMM, 2012.

[9] M. Reitblatt, N. Foster, J. Rexford, and D. Walker, “Consistent updates
for software-defined networks: Change you can believe in!” in 10th ACM
Workshop on Hot Topics in Networks, 2011.

[10] N. P. Katta, J. Rexford, and D. Walker, “Incremental consistent updates,”
in HotSDN, 2013.

[11] S. Brandt, K.-T. Förster, and R. Wattenhofer, “Augmenting anycast
network flows,” in ICDCN, 2016.

[12] X. Jin, H. Liu, R. Gandhi, S. Kandula, R. Mahajan, J. Rexford,
R. Wattenhofer, and M. Zhang, “Dionysus: Dynamic Scheduling of
Network Updates,” in SIGCOMM, 2014.

[13] S. Brandt, K.-T. Förster, and R. Wattenhofer, “On Consistent Migration
of Flows in SDNs,” in INFOCOM, 2016.

[14] T. Mizrahi, O. Rottenstreich, and Y. Moses, “TimeFlip: Scheduling
network updates with timestamp-based TCAM ranges,” in INFOCOM,
2015.

[15] A. Ludwig, J. Marcinkowski, and S. Schmid, “Scheduling Loop-free
Network Updates: It’s Good to Relax!” in PODC, 2015.

[16] S. Vissicchio and L. Cittadini, “FLIP the (Flow) Table: Fast LIghtweight
Policy-preserving SDN Updates,” in INFOCOM, 2016.

[17] A. Ludwig, S. Dudycz, M. Rost, and S. Schmid, “Transiently Secure
Network Updates,” in Sigmetrics, 2016.

[18] P. François and O. Bonaventure, “Avoiding transient loops during the
convergence of link-state routing protocols,” IEEE/ACM Trans. Netw.,
vol. 15, no. 6, pp. 1280–1292, 2007.

[19] P. François, C. Filsfils, J. Evans, and O. Bonaventure, “Achieving sub-
second IGP convergence in large IP networks,” Computer Communica-
tion Review, vol. 35, no. 3, pp. 35–44, 2005.

[20] P. Francois and O. Bonaventure, “Loop-free convergence using oFIB,”
Internet-Draft, IETF, 2011.

[21] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and O. Bonaventure,
“Lossless Migrations of Link-state IGPs,” IEEE/ACM Trans. Netw.,
vol. 20, no. 6, pp. 1842–1855, Dec. 2012.

[22] N. Santoro and R. Khatib, “Routing without routing tables,” SCS-TR-6,
Carleton University, Ottawa, Tech. Rep., 1982.

[23] C. Gavoille, “A survey on interval routing,” Theor. Comput. Sci., vol.
245, no. 2, pp. 217–253, 2000.

[24] M. Flammini, G. Gambosi, and S. Salomone, “Boolean Routing,” in
WDAG, 1993.

[25] P. Fraigniaud and C. Gavoille, “A characterization of networks support-
ing linear interval routing,” in PODC, 1994.

[26] J. Van Leeuwen and R. B. Tan, “Interval routing,” The Computer
Journal, vol. 30, no. 4, pp. 298–307, 1987.

[27] D. Comer, Ed., Internetworking with TCP/IP - Principles, Protocols,
and Architectures, Fourth Edition. Prentice-Hall, 2000.

[28] A. S. Tanenbaum and D. J. Wetherall, Computer Networks, 5th ed.
Upper Saddle River, NJ, USA: Prentice Hall Press, 2010.

[29] V. Fuller and T. Li, “RFC 4632, Classless Inter-domain Routing (CIDR):
The Internet Address Assignment and Aggregation Plan,” 2006.

[30] M. R. Garey and D. S. Johnson, A Guide to the Theory of NP-
Completeness. New York, NY, USA: W. H. Freeman & Co., 1990.

[31] G. Even, J. Naor, B. Schieber, and M. Sudan, “Approximating minimum
feedback sets and multicuts in directed graphs,” Algorithmica, vol. 20,
no. 2, pp. 151–174, 1998.

[32] R. E. Tarjan, “Depth-first search and linear graph algorithms,” SIAM J.
Comput., vol. 1, no. 2, pp. 146–160, 1972.

[33] A. Srinivasan, “Improved approximations of packing and covering
problems,” in STOC, 1995.

[34] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A
Foundation for Computer Science, 2nd ed. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1994.

[35] R. Cohen and G. Nakibly, “Maximizing restorable throughput in mpls
networks,” IEEE/ACM Trans. Netw., vol. 18, no. 2, pp. 568–581, 2010.

[36] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “Inferring link
weights using end-to-end measurements,” in IMW, 2002.

X. APPENDIX FOR SECTION 5

Proof of Lemma 1:
We start with loop freedom: The invariant of the algorithm

is that the current edges in the network are without loops.

The invariant is true at the beginning, since no new edge is

included, and the old edges form an in-tree to the destination

d. When a new egde (u, v)d is added, a now existing loop must

contain this edge, i.e., there is a path from v to u. If a DFS

starting at v cannot reach u, then there is no path from v to u,

and the network is loop free. We now look at maximality: The

algorithm checks each edge once if it can be added without

inducing a loop. Consider an edge e = (x, y)d, that is being

tested w.l.o.g. as the i-th edge, but cannot be added to the

network, because it would induce a loop x, y, z, . . . , x. If e is

being tested again after the (j− 1)-th edge, with i < j, could

e be added to a loop free network without inducing a loop in

the network? No, because it would still induce the same loop,

as edges were never removed, only possibly added.

XI. APPENDIX FOR SECTION 6

Lemma 5: Loop freedom depends on other nodes.

Proof: In Figure 1, node x depends on node y.

Lemma 6: Packet coherence depends on all non-trivial

downstream switches.

Proof: Let u be a switch router that is non-trivial, in the

sense that u is affected by a rule change, i.e. u’s old rule

differs from its new rule. If the source starts to route packets

according to the new rule, switch u will forward the packets

wrongly, or drop them, which is not packet coherent.

Lemma 7: Congestion freedom depends on all switches.

Proof: Let f be a flow that wants to use a new path p,

or increase its capacity on an existing path. The network may

be able to adapt to flow f , however, only if other flows use

different paths as well, which in turn may (recursively) move

even other flows (some of which have no single switch/link in

common with the new path p). As such, any f may potentially

depend on any single switch in the network.

9Networking 2016



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


