CS 6973, SS-CS Network Optimization and Algorithms Summer 2004

Class Web Page

http://www.cs.utsa.edu/~korkmaz/teaching/cs6973

Time and Location

MW 4:00 pm - 5:50 pm	Topic:
HSS 3 02 30	CHAPTER 1. INTRODUCTION
Jun 01, 2004 - Aug 06, 2004	CHAPTER 2. PATHS, TREES AND CYCLES
	CHAPTER 3. ALGORITHM DESIGN AND ANALYSIS
	CHAPTER 4. SHORTEST PATHS: LABEL SETTING ALGORITHMS
Instructor	CHAPTER 5. SHORTEST PATHS: LABEL CORRECTING ALGORITHMS
Dr. Turgay Karkmaz	CHAPTER 6. MAXIMUM FLOWS : BASIC IDEAS
DI. Turgay Korkinaz	CHAPTER 7. MAXIMUM FLOWS : POLYNOMIAL ALGORITHMS
Office: SB 3.02.01B	CHAPTER 9. MINIMUM COST FLOWS : BASIC ALGORITHMS
Email: korkmaz@cs.utsa.edu	CHAPTER 10. MINIMUM COST FLOWS : POLYNOMIAL ALGORITHMS
Phone: (210) 458-7346	CHAPTER 16. LAGRANGIAN RELAXATION AND NETWORK
$\frac{11010}{210} + \frac{30}{430} + \frac{30}{400}$	OPTIMIZATION
Fax: (210) 458-4437	CHAPTER 17. MULTICOMMODITY FLOWS

Office Hours

MW 3:00-4:00pm (or by appointment)

Class Materials

- *Textbook*: R.K. Ahuja, T.L. Magnanti, J.B. Orlin, *Network Flows: Theory, Algorithms and Applications*, Prentice Hall, 1993
- Also instructoris notes and technical papers.

Prerequisite

Programming experience, algorithms (CS5633 or equivalent)

Course Description and Objectives

Many real-life problems, particularly computer networking problems, are formulated and solved using network (or graph) structures and algorithms. The objective of this course is to provide knowledge and skills to students so that they can comfortably use network structures and algorithms in their research or workplace.

Grading

- Midterm: 20% (EXAM DATE: TBA)
- Final Exam: 30% (EXAM DATE: TBA)
- Assignments: 35% (paper-based problem solving and at least 3 programming)
- Term Project: 15% (Pick a problem and develop a network model and algorithm for it, and implement the algorithm. Due date:TBA)

Make-up examinations will be given if you have an officially acceptable excuse.