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Abstract

In this paper, the exact solution of average path length in Barabási–Albert model is given. The average path length is an
important property of networks and attracts much attention in many areas. The Barabási–Albert model, also called scale
free model, is a popular model used in modeling real systems. Hence it is valuable for us to examine the average path length
of scale free model. There are two answers, regarding the exact solution for the average path length of scale free networks,
already provided by Newman and Bollobas respectively. As Newman proposed, the average path length grows as log(n)
with the network size n. However, Bollobas suggested that while it was true when m = 1, the answer changed to log(n)/
log(log(n)) when m > 1. In this paper, as we propose, the exact solution of average path length of BA model should
approach log(n)/log(log(n)) regardless the value of m. Finally, the simulation is presented to show the validity of our result.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

When exploring a large system, people used to divide it into small parts, and then examine each part respec-
tively. However, many proofs show that the relation between parts is at least as import as the part itself. Nev-
ertheless, the structures of these systems are unknown which make the relation unobserved. The desire to
understand these systems has boosted the study for complex networks.

There are many models which are used to simulate the structures of large systems. Some of them are worth
noticing: the first model of complex networks was proposed by Erdös and Rényi which is called Erdös–Rényi
(ER) model [1]. In this model, the probability of the appearance of each arc is fixed, denoted by p. In 1998,
Watts and Strogatz proposed a simple model used to generate the small-world effect of real systems (Fig. 1) [2].
However, until now, the most popular model is the Barabási–Albert model [3,4], in short BA model, which
reproduces power-law distributions regarding the degree of nodes.
1007-5704/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.cnsns.2006.12.003

* Corresponding author.
E-mail address: chernf@gmail.com (F. Chen).

mailto:chernf@gmail.com


(1) p=0 (2) p=0.1 (3) p=1

Fig. 1. The evolution process of small-world model. Three figures correspond to three different values of rewiring probability p, which is 0,
0.1 and 1 respectively.
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The observation from real world networks shows that the degrees of most of the nodes are very low while
some others are high which means that the degree distributions of these networks follow power-law distribu-
tions. The examples include the WWW, the Internet, metabolic network, etc. Moreover, the systems observed
in real world are almost dynamic, which means the nodes are evolving. Barabási and Albert propose a trac-
table model to reproduce such features, called BA model in short [3,4]. The model is described as follows:

(1) Starting with m0 nodes. At each time step, we add a node with m(m 6 m0) edges connected to the nodes
already in the network.

(2) When selecting the edges, the probability of a node being selected is proportional to the degree of that
node.

Fig. 2 shows a BA model with 100 nodes and the parameter m = 1.
The average path length of the network is defined as the average distance between all pair of its nodes [5]. It

is relevant in many areas such as: circuit design [6], epidemic spreading [7], etc [8–12]. The average path length
of the WWW has been studied by Réka Albert [13] indicating that the web forms a small world. The analytical
result of average path length of networks was first studied by Newman et al. [14] using generating function,
which suggested that the average path length should approach log(n). But the solution proposed by Bollobas
and Riordan [15] suggested that it was true only for m = 1. When m > 1, the answer changed to log(n)/
log(log(n)). In this paper, we provide an exact solution for the average path length of BA Model which says
that the average path length always approaches log(n)/log(log(n)) regardless of m. This gives people another
choice when predicting the average path length of a network and the method we used is easy to understand.
Fig. 2. An example of BA model with 100 nodes and m is set to 1.
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Moreover, we give some simulations which are lacking in the previous papers [14,15] to make our result
convictive.

The rest of the paper is organized as follows: in Section 2, the exact solution of average path length for BA
model is presented. Section 3 is devoted to the simulation of our result. Finally, in Section 4, some conclusion
are drawn to complete our discussion.

2. Theoretical analysis of average path length

Let di denotes the degree of a given node i. The change of di is described by the following equation, where ti

denotes the adding time of node i [16]:
di ¼ m
t
ti

� �1
2

ð1Þ
So we get
ti ¼
nm2

d2
i

ð2Þ
Since ti P 1 and the nodes are born with degree m, hence
m 6 di 6 m
ffiffiffi
n
p

ð3Þ

The degree distribution of BA model follows a power law.
pðkÞ ¼ 2m2k�r ð4Þ

where r is the exponent of the power law and r = 3 in Eq. (4).

The distribution p(k) denotes the probability of the degree of a randomly selected node is k. The expecta-
tion of the degree is easily be obtained from Eq. (4).
hki ¼ 2m ð5Þ

Suppose now we randomly select a node, then the number of its first neighbors, which means the number of
nodes that directly connect to this node, follows a power-law distribution p(k) as described by Eq. (4). How-
ever what is the distribution of its second neighbors. Since the probability that the outgoing edges of the first
neighbors connect to the original vertex or its immediate neighbors goes as n�1 where n denotes the number of
nodes in this network, it can be neglected [1] when the networks size is large. Moreover, we notice a fact that
the number of second neighbors equals the sum of degrees of all its first neighbors, each minus one to allow for
the original vertex. The degree distribution of each of these first neighbors is the same and follows:
qðkÞ ¼ kpðkÞR
kpðkÞ ð6Þ
Solving Eq. (6), we obtain
qðkÞ ¼ mk�2

1� 1ffiffi
n
p

ð7Þ
Then the expectation of the degree of each of the first neighbors is
hkqi ¼
m logðnÞ
2ð1� 1ffiffi

n
p Þ ð8Þ
Now we can use the Wald Theorem to make an estimate for the number of second neighbors.

Theorem 1. Let X1, X2, X3, . . . be a sequence of random variables with the same distribution, and let T be a
stopping time for them, which has finite expectation. Define
S ¼ X 1 þ X 2 þ � � � þ X T
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Then
EðSÞ ¼ EðX 1ÞEðT Þ
We notice that the number of terms added to S is itself a random variable, but this is well defined when T is
almost surely finite, and we’re even assuming finite expectation. Using the Wald theorem, the expectation of
the number of second neighbors is obtained:
EðN 2Þ ¼ EðN 1Þhkq � 1i ð9Þ
Where N1, N2 denote the number of first neighbors and second neighbors respectively. Since E(N1) = hki,

EðN 2Þ ¼ hkihkq � 1i ð10Þ
Eq. (10) can be generalized into nth neighbors as
EðNnÞ ¼ hkihkq � 1in�1 ð11Þ
Since the number of all its neighbors up to the average path length l, equals the number of nodes in this
network,
1þ
Xl

i¼1

EðN iÞ ¼ n ð12Þ
where n is the size of network. Combining with Eq. (11), we obtain
1þ
Xl

i¼1

hkihkq � 1in�1 ¼ n ð13Þ
Solving Eq. (13),
l ¼ log

1�n�1
2m 2� m logðnÞ

2 1� 1ffiffi
n
p

� �
0
@

1
A

m logðnÞ

2 1� 1ffiffi
n
p

� ��1
ð14Þ
As n!1, Eq. (14) reduces to
l � logðnÞ
logðlogðnÞÞ ð15Þ
3. Simulation

In the following we give the simulation of the average path length of different BA models. The algorithm
used to find the nearest distance between any pair of nodes is Dijkstra algorithm. The time complexity for
obtaining a average path length using Dijkstra algorithm is O(n3). Due to this fact, the number of nodes used
in our simulation is no more than 10,000.

Fig. 3 shows the curve of average path length versus number of nodes when m = 5 as described above. The
number of nodes is from 100 to 10,000. The circles correspond to the real data, the squares denote our the-
oretical result and the diamonds represent the curve of log(n). It can be easily deduced from the slopes of these
curves that our result is in good agreement with the simulation and is much better than log(n). Moreover, as
the network size grows our result will be much better. Furthermore, when the network is sparse, the assump-
tion we made before becomes more accurate, therefore we would expect our analytical result becomes more
precise.

Fig. 4 shows the curve of average path length versus number of nodes when m = 3 as described above. The
symbols have the same meaning as before. It is evident that our result is in very good agreement with the
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Fig. 3. The average path length versus the number of nodes when m = 5. The number of nodes is from 100 to 10,000. The circles
correspond to the real data, the squares denote our theoretical result and the diamonds represent the analytical result provided by
Newman. It is evident that our result is much better than the result provided by Newman et al. and is in good agreement with the
simulation result.
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Fig. 4. The average path length versus the number of nodes when m = 3. The number of nodes is from 100 to 10,000. The circles
correspond to the real data, the squares denote our theoretical result and the diamonds represent the analytical result provided by
Newman et al. It is evident that our result is in very good agreement with the simulation result even when the number of nodes is not very
large (no more than 10,000).
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simulation and is better than the case m = 5 which is denser than m = 3. Moreover, since most of the real net-
works are sparse, our result may get a lot of applications in practice.
4. Conclusions

In this paper, we give the exact solution of average path length for BA model. The result shows that the
average path length of BA model goes as logðnÞ

logðlogðnÞÞ which is identical with the solution provided by Bollobas
and Riordan [15] when m > 1. The present result provides another good choice when predicting the average
path lengths of scale free networks. And we find that our result is much better than log(n). Furthermore, when
the networks is sparse, our result is found to be in very good agreement with the simulation. Since most of the
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real networks are sparse, our result can be applied in many areas for predicting the networks’ average path
lengths.
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