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Abstract—This paper proposes KAR (Key-for-Any-Route), a
new intra-domain resilient routing system in which edge-nodes
set a route ID to select any existing route as an alternative to
safely forward packets to their destination. In KAR routing
system, a route is defined as the remainder of the division
between a route ID and a set of switch IDs along the path(s)
between a pair of nodes. KAR-enabled switches explore the
existing routes by using special properties of Residue Number
System as our encoding technique. Packets are deviated from
the faulty link (liveness condition) with routing deflections.
Deflected packets are guided to their original destination due
to resilient forwarding paths added to the route ID. Three
deflection methods are discussed along emulation experiments.
Results show that KAR efficiently allows deflected packets to
automatically reach their destination, imposing a bound on
packets disordering measured in TCP throughput.

Index Terms—Source routing, routing deflections, reliability.

1. Introduction
Networking is evolving toward extremely complex sys-

tems with ever increasing state maintaining demands re-
quired by elements sitting in the network core. This problem
is particularly critical with new paradigms for future network
architectures based on software-defined networking (SDN)
[1]. Its fundamental point is to decouple networking data
plane from control plane; the latter holds the network intelli-
gent decisions while the former merely hosts executive tasks
based on tables to process incoming flows. Individual flows
are defined by packet match fields, flow priority, counters,
packet processing instructions, flow timeouts and a cookie.
Controllers also decide on new forwarding rules for new
incoming flows and faults detected by data plane elements.

Entries in flow tables can be set proactively for services
requiring strict bandwidth and delay control policies, but
current limited flow table space will not meet the needs
of core networks for a huge number of per-flow states to
be simultaneously handled and stored in every single node.
On the other hand, reactive schemes, suited to best-effort
services such as online load balancing, will face both control
plane communication and data plane convergence latency
limitations. Control plane overloading due to the large num-
ber of events to be processed, such as first packet forwarding

to controller, and per-hop flow installation procedure, will
not address the needs of core networks.

Per-flow state limitation for core networks can be tackled
by encoding a particular physical path to be used, a service
chaining scheme, or any other scheme right on the packet
header. This paradigm is known as source routing (SR) or
explicit routing. Basically, the edge nodes would stick such
labels (encoding a desired service in the core) to incoming
packets, core elements would simply implement the required
policy and egress edge would remove such service labels.
In this way, a tunnel, which is a path in a forwarding
fabric, would be implemented to transport packets across
large cores by controlling them only at the edges [2].

Unlike traditional routing protocols that are network-
controlled and all routes are computed within the network,
source-routed network architectures enable sources to select
the path taken by their packets. SR technique is the basis of
many proposals to improve the reliability and performance
of networks, essentially because it provides path diversity
that reduces the dependence on a single network path with
undesirable characteristics [3], [4], [5]. Therefore, SR has
been revisited as a promising approach to improve flexibility
of the network layer in future Internet architectures.

Despite the advantages, a classical problem in the source
routing (SR) approach is how fast it reacts to failures of a
link or node that belongs to a path. There are basically two
high-level approaches to address the fast failure reaction
problem. The first approach consists of sending a failure
notification to the source node. While it improves failure
reaction time, the source still must wait to receive the noti-
fication message. Until that failure notification is received,
packets that had already left the source node are dropped.
In the second approach, the failure reaction happens within
the network by using alternative paths, that is a protection
route, to each destination. Thus, a node can locally switch
to the alternative path as soon as the node detects a failure
on one of its directly connected links affecting that path.
However, this approach requires every node/switch to be
able to compute and store the backup paths, so that there
is a dependency between each switch forwarding table and
the topology of the entire network [6].

In this paper, we propose KAR (Key-for-Any-Route)
that is a new intra-domain routing system with a novel fast
failure reaction mechanism which combines the benefits of
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source-controlled routing with driven deflections as addi-
tional forwarding paths to provide network routing resiliency
through path diversity. A route in the KAR routing system
relies on the remainder of the division between a route ID
and a set of local switch IDs on the path(s) between a pair
of nodes. As for the fast failure reaction mechanism, as
soon as a KAR switch realizes a link failure, it randomly
deflects packets that would go through that link instead of
dropping them. Those packets, then, pass through a diverse
set of switches carrying driven deflections forwarding paths
embedded in a route ID at packet header (loop-free for
safety condition). The KAR coding technique is designed by
exploiting special properties from Residue Number System
(RNS) [7], [8], [9]. Thus, the KAR approach addresses
link failures keeping the network connectivity allowing in-
flight packets along the failed path to reach their destination
(liveness condition).

Three packet deflection techniques are proposed, being
packet random walk deflection used as the lower bound.
Also, we analyze the network protection provided by the
driven deflection forwarding paths considering realistic net-
work topologies. Finally, we evaluate the TCP throughput
in a emulation tool for single link failures discussing the
trade-offs between protection versus throughput.

2. KAR Resilient Routing System Design
In this section, we present the concept of Key-for-

Any-Route (KAR) discussing the design challenges. KAR
achieves the main benefits of source routing architectures
(flexibility in route selection and scalability) with a fast
failure reaction by using driven-deflection forwarding paths
further explained.

Figure 1 illustrates an overview of the concept of KAR
design with 6-node network. KAR introduces an explicit
distinction between the network edge and core. Edge nodes
inspect the incoming packet (which express where to deliver
the packet) and then attach a route identification (Route
ID) into the packet header which is used for forwarding
within the core. The core switches are built just to deliver
packets to the destination. KAR route IDs have meaning
only within the core and are completely decoupled from the
host protocol (e.g. IPv4 or IPv6) used by the host to express
its requirement to the network. There is one additional
component: the network controller, that is in charge of
Switch ID handling and routing decisions.

The edge nodes embed a route identification (Route ID)
in packet header when a packet enters the KAR network.
They remove it at egress point.

Every core node has an unique Switch ID bound to it and
the set of Switch IDs in the network must be coprimes inte-
gers. These nodes do not have a forwarding table. Instead,
their IDs together with packet Route ID are used for packet
forwarding as it will be discussed later. The ID assignment
can be done by local setup or by a network controller entity.

Finally, the router component of network controller is
in control of routing decisions. It knows the entire network
topology, including the Switch IDs of core nodes and any
information that is important to traffic engineering. When

a route is selected, it computes a Route ID, i.e. an integer
number that represents a path along the core network. This
number is generated by using an encoding based on the
Switch IDs that belong to the desired route and on those
switch output port indexes. The routing algorithm is out of
the scope of this work.

Suppose the conventional edge node S in Figure 1(a)
wishes to communicate with another conventional node D
through a KAR enabled network. The switch IDs are {4, 5,
7, 11}. Even though 4 is not a prime number, it can be used
as identifier since the KAR requirement is that switches IDs
must be coprimes, i.e. they do not share a common factor.

By using a selected routing algorithm (e.g. shortest
path), the controller selects an end-to-end path across the
KAR network. For instance, it chooses the set of switches
S = {4, 7, 11} composing the primary path and using,
respectively, their output interfaces P = {0, 2, 0}. Then,
KAR computes an unique Route ID, e.g. R = 44 (Step
I) that should be assigned to the header of the incoming
flow packets by the ingress edge node (Step II). KAR route
ID computation exploits RNS properties, and will be latter
explained (section 2.2).

The next hop in the KAR routing system is computed
by the remainder of the division (denoted as < a >b≡
a modulo b) between the route ID (R = 44) and the Switch
ID at every switch along that route (S = {4, 7, 11}). Thus,
when switch ID 4 (SW4) receives a packet with route ID
(R = 44), it forwards packet to port < 44 >4= 0 (Step
III); then, SW7 forwards it to the port < 44 >7= 2 (Step
IV); after, SW11 forwards it to port < 44 >11= 0 (Step
V), reaching the egress edge node that removes the KAR
route ID from the packet header (Step VI) and delivers it
to node D.

In the case of link failure, one traditional approach is to
notify the controller, which, in turn, recalculates the route
ID excluding the faulty link from the possible paths. The
problem with this approach is that all packets sent by the
source before the route ID modification will be lost. To
avoid packet loss (Hitless property), a typical mechanism for
fast failure reaction is packet deflection. Deflection routing
techniques are conceptually simple and allow every switch
to independently decide which packets to forward to any
available link [3]. When a switch detects a failure in one
of its links (i.e. output port is under failure) it chooses one
of its healthy ports to forward the packets. The choice of
available ports is random (e.g. uniform distribution), and
it leads the packets to unexpected routes (i.e. non-shortest
path).

Furthemore, deflection routing may form transient loops
[3]. To tackle this issue, the KAR mechanism provides a
guarantee of loop-free routing even in the event of a link
failure based on its Driven Deflections property. To this
end, it is necessary to compose protection paths that are
responsible for driving deflected packets to the destination
by adding new nodes in the computation of the route ID. To
illustrate this concept using the scenario shown in Fig. 1(b),
let us assume that, in (Step I), SW5 was proactively included
in the route ID as a protection path that delivers the deflected
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(a) (b)

Figure 1. KAR design: (a) routing system based on shortest path, (b) fast failure reaction with driven deflection forwarding paths.

packets to SW11 when a failure happens at link SW7-
SW11 (resulting in R = 660). Consider, also, that the
selected deflection technique chooses randomly between the
available ports when a link fails. Thus, when link SW7-
SW11 fails, SW7 chooses between port 0 (SW4) or port
1 (SW5) to forward packets. The steps II and III happen
similarly in Figures 1(a) and 1(b). However, all the packets
that reach SW5 < 660 >5= 0 by deflection in SW7 (Step
IV) will be forwarded to SW11. It is important to observe
that a logical tree with its root at destination SW11 has been
built to taken advantage of additional path to SW11 passing
through SW5.

2.1. Deflection Techniques

We propose the following three deflection routing tech-
niques in order to make deflected packets reach the destina-
tion by the Driven Deflections property or even by chance.
Our assumption is a uniform distribution for randomness.

Hot-Potato (HP): once a packet is deflected, it follows a
complete random path in network.

Any Valid Port (AVP): the switches always do the modulo
operation to define the output port of a packet. When the
result does not represent a valid port ID (it does not exist
or it is not available), they chooses at random an active port
and send packet to it.

Not the Input Port (NIP): the method described above
(AVP) is improved by excluding the input port from the set
of next-hop candidates even when the computation of output
port tells to send a packet back to it. Besides generating less
random paths, it avoids routing loops between two nodes.

This paper uses Hot-Potato deflection just as a reference
method in order to validate the contribution of other ones.

NIP algorithm is shown Algorithm 1. As for NIP, the
switch extracts the value of route ID from each packet and
its input port. After that, it computes the output port and
checks if this port is available and is not the input port. If so,
this packet will be forwarded. Otherwise, the NIP-enabled
switch chooses randomly one of available ports to send
packets, not including the input port. The only difference
between NIP and AVP is that the latter allows to use its
incoming port as an outgoing port in any case.

Algorithm 1 NIP Deflection Technique

1: route id← EXTRACT(packet)
2: in port← GETINCOMINGPORT(packet)
3: output← (route id mod switch id)
4: while not AVAILABLE(output) or output = in port

do
5: output← RANDOM(0, total number port)
6: end while
7: return output

There is a good reason to propose AVP or NIP: after
deflection, a packet may arrive at a node included in the
route ID. From there, it will follow the computed path
once again, ceasing its random walk. Note that in Fig. 1(a),
without any Driven Deflection Forwarding Paths, a packet
arriving at SW5 has 50% probability to go to SW11. In
contrast, the same scenario with the addition of SW5 in
the route ID and the use of NIP deflection technique cause
all the packets to be driven through this forwarding path
(SW5→SW11).

A final remark in terms of design is that an edge node
can receive a packet not addressed to it. In this case, the
edge node can choose two approaches: it directly returns
the packet to the network without any change or it sends
the packet to the controller in order to change the packet
route ID appropriately before returning it to the network. In
all our tests, we considered this second approach, where the
controller recalculates the route ID based on the best path
from the edge node to the destination.

2.2. Encoding the Forwarding Paths

The KAR switches just need to know its own switch ID
and to read the route ID in the packet header in order to
determine where they should send the packet to: the output
port is the result of the modulo operation between the route
ID and its switch ID. This is possible due to properties of
the Residue Number System (RNS).

Let S be a set S = {s1, s2, . . . , sN} of the N switch
IDs on the desired path, in which all elements are pairwise
coprimes numbers. Let P be a set of outgoing ports P =
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{p1, p2, . . . , pN}, where pi is the outgoing port index for
the packet at the switch si.

Let M be
M =

∏

i∈S
si (1)

A number R ∈ N|0 ≤ R < M can be represented by a
residue set given a basis modulo set S:

R
RNS−→ {p1, p2, . . . , pN}S (2)

, where
pi = R modulo si (3)

The network controller must find out the value of R (the
explicit route ID), given a modulo set S (the switch IDs),
and its RNS representation P (the switch output ports).

The Chinese Remainder Theorem [10] states that it is
possible to reconstruct R through its residues in a RNS as
follows:

R =<
∑

i∈S
pi ·Mi · Li >M (4)

where

< a >b ≡ a modulo b (5)

Mi =
M

si
(6)

Li = < M−1
i >si (7)

Eq. (7) means that Li is the modular multiplicative inverse
of Mi. In other words, Li is an integer number such that

< Li ·Mi >si= 1 (8)

Returning to the example of this section, the computation
of route ID from S to D is obtained as follows:

switches = {s1, s2, s3} = {4, 7, 11}
ports = {p1, p2, p3} = {0, 2, 0}
M = 4 · 7 · 11 = 308
M1 = 77,M2 = 44,M3 = 28
L1 =< M−1

1 >s1=< 77−1 >4= 1
L2 =< 44−1 >7= 4
L3 =< 28−1 >11= 2
R =< L1 ·M1 · p1 + L2 ·M2 · p2 + L3 ·M3 · p3 >M

R =< 0 + 352 + 0 >308= 44

With the Driven Deflection Forwarding Paths, the route
ID is computed as follows:

switches = {4, 7, 11, 5}
ports = {0, 2, 0, 0}
M = 4 · 7 · 11 · 5 = 1540
M1 = 385,M2 = 220,M3 = 140,M4 = 308
L1 =< 385−1 >4= 1
L2 =< 220−1 >7= 5
L3 =< 140−1 >11= 7
L4 =< 308−1 >5= 2
R =< 0 + 2200 + 0 + 0 >1540= 660

It can be noticed in Eq. (4) that the route ID does not
store or keep the information about the switch sequence

the packet would travel along. Each switch data (switch ID
and port ID) belongs to its own addend of the summation
and is does not influence the other summation addends. As
the finite summation is commutative, the switch order is
irrelevant to derive the route ID. The independence of switch
sequence is also valid in the output port computation (Eq. 3).
This property allows us to embed, in the route ID, extra
switches that are disjoint of the desired route. This is the
fundamental concept of the Driven Deflection Forwarding
Paths, and it is useful to protect a desired route when a
packet is deflected due a faulty link since it is possible to
provide guide deflected paths to the destination via path
segments.

2.3. Encoding Size
The theorem of Euclidean division states that a re-

mainder r of a division computation is an integer such
that 0 ≤ r < b, where b is the divisor. Thus, Eq. (4)
allows inferring that the route identifier value R lies in the
integer set {0, 1, 2, . . . ,M − 1}, as it is an integer division
remainder.

As the route ID R is embedded in the packet header,
its bit-length affects the packet overhead. The maximum
number of bits required by a route ID can be computed
by as follows:

bit length(R) = �log2(M − 1)� (9)

Eq. (9) states that the higher the value of M , the larger
the maximum required bit length. Remember that M is the
multiplication of the switch IDs along the desired route.
Therefore, as more switches are used to build the path, more
bits are required to represent the route ID. This restriction
should be considered for implementation purposes.

If the route and all the designed Driven Deflection For-
warding Paths do not fit the Route ID field length, the source
routed path cannot be fully protected. However, partial
protection can be used in a similar way to the loose source
routing proposed by IP [11]. Instead of setting the alternative
paths entirely, one can set part of them. These path segments
would guide a deflected packet that occasionally reaches a
switch that belongs to them.

Numerical examples of bit length requirement are pre-
sented later in Section 3.

3. Evaluation

Our investigation of KAR resilient routing considers two
different topologies: one general with a 15-node network
(Fig. 2) to represent an experimental scenario to illustrate the
main insights of KAR routing deflection approach; and other
with a 28-node network (Fig. 6) to represent an existing
research and education network scenario.

In order to evaluate the impact of the packet disordering
and jitter due to a link failure and the deflection routing, we
implemented a KAR prototype as proof-of-concept for the
proposed deflection techniques in the Mininet network emu-
lation environment. It was developed based on the following
components:

123123

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 14:32:35 UTC from IEEE Xplore.  Restrictions apply. 



Figure 2. KAR routing system for a 15-node network.

• POX v0.3.0 as the network controller;
• OpenFlow 1.3 Software Switch which is a user-space

software switch implementation;
• Mininet v2.1.0 for network emulation.

The base code of software switch was modified in order to
support the three deflection techniques (HP, AVP and NIP)
and the modulo computation for forwarding purposes.

Once the network is up and running, tools like iperf and
tcpdump are used to analyze how deflection affects the TCP
throughput. For better evaluation of deflection routing, the
controller ignores all failure notifications and, then, keeps
the same route with or without link failures in planned paths.

3.1. Emulated Network Topology with 15 nodes

Consider the Autonomous System AS1 of the network
scenario shown in Fig 2 needs to communicate to AS2. The
controller by any reason selects as primary route SW10-
SW7-SW13-SW29. It may provide link failure protection
by using driven deflection forwarding paths as shown in
Fig 3.

Figure 3. KAR driven deflections as protection mechanism for resilient
routing.

The required bit length for each case was computed by
using the equation of upper bound value Eq. (9) and it is
shown in Table 1.
Time to Failure Recovery: we start to collect the TCP
throughput (from AS1 to AS3) 30 seconds before the failure,

TABLE 1. MAXIMUM BIT LENGTH REQUIRED BY EACH PROTECTION

MECHANISM FOR THE 15-NODE NETWORK

Protection
mechanism

Bit
length

Number of switches in
route ID

Unprotected 15 4
Partial protection 28 7
Full protection 43 10
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Figure 4. Analysis of TCP throughput for failed link SW7-SW13.

that lasts for 30 seconds. We stop the data measuring another
30 seconds after link repair.

Fig. 4 presents results for TCP throughput considering a
failure in SW7-SW23 link for different techniques of packets
deflection. As it can be seen, due to deflection routing, the
traffic does not stop due to the link failure. Moreover, the
NIP deflection has kept the highest throughput compared
to all others (HP, AVP and no deflection). The effect of
packets disordering had an impact of around 25% (150Mbps
of 200Mbps) on TCP throughput, when using NIP deflection
technique.

A second bulk of results is presented in Fig. 5. Upon
every simulated failure, we run the performance test iperf for
30 times (duration of 5 seconds each) to obtain a confidence
interval of 95%. This test evaluates the tradeoffs among
route protection (unprotected, partially and fully protected)
and deflection techniques (AVP and NIP) and how they
impact on TCP throughput.
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Figure 5. Analysis of TCP throughput varying the failure location: SW10-
SW7, SW7-SW13 and SW13-SW29.

A first observation is that full protection based on driven
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deflected forwarding paths achieves the highest throughput
independently of deflection technique and where the fail-
ure occurs. Actually for the full protection, the effect of
packets disordering had basically an impact of around 30%
(140Mbps of 200Mbps) on TCP throughput.

A second observation is that partial protection path had
similar resilient routing than full protection path for failures
at links (SW7-SW13) and (SW13-SW29). This is explained
by the fact that partial protection was enough to enclose
the alternative paths to the destination. However, for failure
at link (SW10-SW7), there is still 2/3 of packets that will
be sent to switches SW17 or SW37. This explains the
difference of around 60 Mbps (basically 1/3 of packets) for
NIP with partial protection (80Mbps) against full protection
(140Mbps).

3.2. Emulated National Network Topology with 28-
nodes

The goal of this experiment is to evaluate KAR routing
resiliency under more heterogeneous and realistic condi-
tions. To this end, we selected the Brazilian National Re-
search and Educational Network (RNP) topology, which is
composed by 28 points of presence and 40 links. Fig. 6
shows the KAR representation of this topology with core
switches labelled with their local IDs. Different from the
previous network topology, we considered that the links
rates are proportional to RNP real link rates in this ex-
periment. For evaluation purposes, we selected a route that
connects the country from the north Boa Vista with ID 7 to
the international hub São Paulo with ID 73 and included the
links SW17-SW71, SW61-SW67, SW67-SW71 and SW71-
SW73 as the driven deflection forwarding paths into the
route ID as partial protection, as it can be seen in Fig. 6. The
chosen deflection technique was NIP, because it presented
the best results in the previous tests.

Fig. 7 presents the TCP throughput analysis with no
failure and with variations in failure location: SW7-SW13,
SW13-SW41 and SW41-SW73. As this figure shows, the
reduction on the TCP throughput is less pronounced for
the failure at link SW7-SW13 (decrease of less than 5%)
than at link SW13-SW41 (decrease of approximately 40%)
and at link SW41-SW73 (decrease of approximately 30%).
Indeed, this behaviour can be easily explained: when the
link SW7-SW13 fails and the packet is deflected, the only
alternative path is to SW11 and, then, to SW17. When the
packet reaches SW17, it is already covered by a protection
path that leads to SW71 and finally to SW73. Thus, no other
deflection is necessary and the failure causes the addition of
one more hop without any packet disordering. On the other
hand, when the link SW13-SW41 fails, the node SW13
is highly connected and the packet can be deflected to
SW29, SW17, SW47, SW37 or SW71 with equal probability
(1/5). When a node that is part of the selection path is
chosen as output port (SW17 or SW71), the packet will
be directly driven to the destination with less impact on
the TCP throughput. However, when the other three nodes
are selected (SW29, SW47 or SW37), the packet will be

deflected until it finds a node that is part of the main route
or one of the protection paths. The existence of different
possible paths after the failure also justifies why failure at
link SW13-SW41 causes the highest variance value (about
4%). Moreover, when the link SW41-SW73 fails, the packet
can be deflected to SW17 or SW61 with equal probability
(1/2), both part of the protection paths. If SW17 is chosen,
the packet will be directed to SW71 and, then, to SW73.
Otherwise, SW61 will send the packet to SW67 that also
reaches SW71 and, then, the destination SW73.

Consider now the path presented in Fig. 8 is selected.
This new configuration is the worst case scenario to KAR
because it is affected by an intrinsic constraint of the KAR
routing system: since each switch can only receive one ID,
there is only one output port for a pair route ID with respec-
tive switch ID, even if there is an alternative path between
the two nodes. Consequently, in the event of a failure at this
output port, origin node depends on including neighbours
into the deflection forwarding paths in order to drive the
packets to their destination. For instance, if link SW73-
SW107 fails, although there is a second path through SW109
that directly connects SW73 to the destination SW113 (see
Fig. 8), this path cannot be set as default path due to the
explained constraint of the KAR routing system. Therefore,
SW71-SW17 and SW17-SW41 have to be included in the
deflection forwarding path to force the packet to travel to the
destination. In this case, if a failure happens at link SW73-
SW107, there are two possible next hops (SW109 or SW71)
with equal probability (1/2). If SW109 is chosen, the packet
will arrive at the destination, otherwise SW71 (as part of
the protection path) return the packet to SW73 through the
path SW17-SW41-SW73, which will again decide between
SW109 or SW71. Again, SW109 will lead to packet delivery
while SW71 will return the packet to SW73. This protection
loop will continue until SW109 is probabilistic chosen and
the packet is delivered or the failure repaired. So, as a side
effect of this constraint and the necessary existence of this
protection path, the number of hops increases leading to a
reduction on TCP throughput. In the tests, it decreases to
54.8% of the nominal bandwidth.

It is important to outline that, although the proposed
schema impacts the TCP throughput, this effect was ex-
pected in case of failure and, aside the cited constraint, the
scheme shows performance gains and packet loss avoidance
that justify the use of KAR to enable network resiliency.

4. Related Work

Our goals are related to two areas of related work:
the source-controlled routing and failure reaction within
network-controlled routing.

There has been much work on failure reaction within
the network. The most closely related works include MPLS
Fast Reroute [12], SafeGuard [13], and OpenFlow 1.3 Fast
Failover [14]. The common part among these proposals is
the precomputation of alternative paths to each destination
for intra-domain routing, so a router can locally switch
to the alternative path without waiting for a control-plane
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Figure 6. The RNP backbone interconnects Federal Institutions of Educa-
tion in Brazil.
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failure location: SW7-SW13, SW13-SW41 and SW41-SW73.
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Figure 8. Analysis of a redundant path scenario.

convergence process. However, these approaches require
network states stored at the switches tables (statefull) and
lack the flexibility of source-controlled routing. In the case
of MPLS Fast Reroute [12], it still requires the support
of a signaling protocol such as Label Distribution Protocol
(LDP) for MPLS enabled switches.

Although source-controlled routing is not in mainstream
use of the Internet today, perhaps because source routes
do not fit the Internet model in which ISPs set routing
policy based on destination addresses, this approach has
inspired many innovative proposals for future Internet ar-
chitectures [2], [3], [4], [5], [6]. Among the main reasons
to revisit this approach are [15]: i) the data plane becomes
simpler. Core nodes (e.g., switches and routers) perform
very simple forwarding operations. ii) Traffic engineering is
more flexible, allowing application-optimized path selection
at the source. iii) Routing stability is improved (e.g., no
transient loops) since the path computation is centralized at
the source.

Table 2 shows the main features of the aforementioned
works.

TABLE 2. SUMMARY OF THE MAJOR DIFFERENCES BETWEEN OUR

PROPOSAL FOR SOURCE ROUTING AND LINK FAILURES FOR INTERNET

OF FUTURE.

Work Support
multiple link

failures

Source
routing

State core
network

MPLS Fast
Reroute [12]

Yes Yes Stateless

SafeGuard [13] Yes No Statefull
OpenFlow Fast
Failover [14]

Yes No Statefull

Routing
Deflections [3]

Yes Yes Statefull

Path
Splicing [4]

Yes No Statefull

Slick
Packets [6]

No Yes Stateless

KeyFlow [2]
and

SlickFlow [5]

No Yes Stateless

KAR Yes Yes Stateless

In particular, two of the previous approaches, Slick
Packets [6] and SlickFlow [5] were proposed to achieve
fast data plane failure reaction by embedding alternative
routes within the packet headers at the source. The idea is
to represent the paths as a sequence of segments that will be
used by each switch (or router) to perform the forwarding
operation. Also, both [3] and [4] use path label bits set by
the source to pseudo-randomly select a next hop at each
router or AS. In [3], pseudo-random forwarding can lead
to forwarding loops. In [4] routers follow certain rules that
ensure loop-free, but reduce path diversity. In contrast to
previous works, KAR network core is stateless ( [5], [6]
and [4] need local states at the routers) and does not depend
on the network topology. The second important difference
is related to the driven deflection forwarding paths as the
resilient routing mechanism for network protection. Rather
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than define the complete protection path, only small parts
of a path can be included or even a unique node can be
added to the route ID. This gives more flexibility, keeps the
network core fast and simple and does not increase the route
ID size.

Finally, although KeyFlow [2] has used RNS approach,
KAR routing system has focused on resilient routing that is
not taken into account in KeyFlow proposal [2]. In contrast
to [2], KAR advances the state of art by dealing with failed
links based on driven routing deflections that enables to keep
the communication alive even without the controller reaction
to a failure.

5. Conclusion and Future Work

This paper proposed KAR (Key-for-Any-Route) that is
a novel fast failure reaction scheme to avoid packet loss and
improve resiliency and performance for intra-domain routing
systems. Our proposal combines a source routing technique
based on the Residue Number System (RNS) with Driven
Deflections property in order to enable efficient loop-free
routing even in the event of a link failure.

Two different network topologies were emulated for
three deflection techniques (HP, AVP, NIP) and for three
protection mechanisms (Unprotected, Partial Protection, Full
Protection). Results show that KAR efficiently allows de-
flected packets to automatically reach their destination and
that NIP and AVP techniques presented substantial perfor-
mance improvements when compared with a lower bound
classical HP technique. Besides, the emulation analysis has
verified that, in addition to avoiding packet loss, KAR using
NIP deflection controls the impact of packet disordering on
TCP throughput (around 25% in executed tests).

In summary, KAR poses as a fast failure reaction scheme
with the following benefits: (i) stateless, which enable high
forwarding performance with the use of simple, low-cost
switches; and (ii) resilience, as the protection paths enable
the packet delivery after a failure through loop-free alterna-
tive paths without any reconfiguration on the network nodes.

As future work, we plan to explore the use of multiple
paths and improve performance indicators in the case of
redundant links and to investigate the application of KAR
in the service chaining of virtualized network functions.
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