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A DAG-Based Forwarding Paradigm for Large
Scale Software Defined Networks

Stefano Avallone and Usman Ashraf

Abstract—The Software Defined Network (SDN) paradigm
represents a major breakthrough in the networking field, due
to its unprecedented capabilities in terms of flexibility and pro-
grammability. SDNs have been successfully deployed in data
centers and small to medium enterprises. However, adopting the
SDN paradigm in the context of wide area networks is more
challenging, due to a number of factors including the higher prob-
ability that node and link failures occur and the unavailability
of a dedicated control channel. In this paper, we present a DAG
(Directed Acyclic Graph) based forwarding paradigm address-
ing the challenges that arise when the SDN concept is applied to
large scale networks. Specifically, the proposed paradigm aims
to limit the number of entries required on the SDN switches,
to provide a fast local restoration of single node/link failures
without the intervention of the SDN controller and to prevent
the possibility of having inconsistent forwarding tables during
updates. The proposed paradigm does not require any exten-
sion to the OpenFlow protocol and we show how it can be
implemented by only using standard features. The DAG-based
forwarding paradigm requires to compute a DAG between every
pair of ingress-egress switches and to design an index-based hash-
ing scheme to balance the load across the paths in the DAG
while avoiding TCP reordering issues. In this paper, we present
heuristic algorithms providing a solution to such problems and
report the results of a simulation study conducted to assess the
performance of the proposed forwarding paradigm.

Index Terms—Software defined networks, traffic engineering,
fast local restoration.

I. INTRODUCTION

SOFTWARE defined networking has revolutionized the
networking paradigm and paved the way for central-

ized decision making in networks. In sharp contrast to the
decades old mechanisms of distributed routing, the software
defined networking paradigm assumes a centralized approach
in which the central controller assumes all the responsibili-
ties of routing, synchronization, failure detection and recovery,
resilience and even security. The nodes become merely for-
warding devices with all the intelligence residing at the central
controller. The separation of the control and data planes
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has opened up new possibilities of leveraging the power
of computer networking but at the same time introduced
new challenges. SDN networks offer complete control of the
network and unprecedented traffic engineering possibilities.
OpenFlow [1], which is the de facto standard for software
defined networking, offers abstraction which hides the network
complexity and allows operators to model the network as a
single big switch without worrying about low-level details,
resulting in simpler network management.

SDNs are typically employed in medium to large scale
networks and in terms of scalability, perhaps the most appli-
cable instance of SDNs manifests itself in the form of
Software Defined Wide Area Networks (SD-WANs). While
SDNs have evolved significantly during the recent years,
Wide-Area Networks (WANs) pose bigger challenges to the
design of software defined networks as compared to Data
Center Networks (DCNs) which are the traditional deployment
destination for software defined networking. The primary dif-
ference is that in DCNs, faults such as link and device failures
are less frequent, are localized and easier to handle due to the
underlying structure of DCNs. In DCNs, control networks are
often deployed in parallel with the communication networks
with dedicated links ensuring a significantly lesser probabil-
ity of the data/control plane disconnect. Moreover, faults are
localized and recovery is easier since DCNs are typically
managed by a single entity. In contrast, faults in wide area
SDNs are more frequent and often result in a disconnect
between the control and data planes. The problem is exac-
erbated due to the fact that faults may span across several
organization entities, making the detection and coordinated
recovery more complicated. The coordination within a DCN is
easier because of smaller communication delays, but becomes
difficult in WANs with variable delays and packet losses
resulting in difficulties in converging to a consistent network
configuration. With the imminent exponential increase in the
number of users and applications, ensuring scalability of SDN
solutions is the cornerstone of research in this domain and
there are several issues that must be addressed in order to
ensure seamless scalability of Software Defined Wide Area
Networks.

The first major research problem is scalability in terms
of the required number of rule entries in the network. In
order to support a broad range of applications, SDNs typ-
ically employ rules which are based on flows. The cen-
tralized controller applies sophisticated mathematical models
based on its omni-knowledge about the network, and installs
appropriate rules (which are significantly different from the
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traditional destination-based rules) at corresponding switches.
In SD-WANs, thousands or even millions of these rules may
need to be installed at different switches. In order to ensure
fast lookup and efficient forwarding performance, these com-
plicated rules are typically stored in the Ternary Content
Addressable Memory (TCAM), which permits parallel reading
of rules. The TCAM memory is expensive and power hun-
gry, and therefore, there is limited space [2] in the rule tables
of switches. Thus, in order to ensure scalability of the SDN
paradigm to large scale WANs, efficient use of the TCAM
switch table space is a major concern. Second, millions of
flows entering and leaving the system and with dynamically
varying traffic load can lead to uneven traffic distribution,
congestion and suboptimal performance. Fine grained load
balancing (as opposed to coarse grained) can provide sub-
stantial benefits by distributing the load evenly across the
network. Third, network failures involving devices and com-
munication links are quite common in large scale networks,
and designing a resilient solution which is robust against
link or switch failure without requiring intervention of the
controller and without modifying flow rules is an important
design consideration. Fourth, updates to rule tables of a single
switch for load balancing (traffic engineering) or enforcing
the optimization model should not result in a cascading of
flow updates across the network, i.e., the consistency of the
flow tables of the other switches should not be affected and
loops should not be introduced due to changes to the flow
table of a switch. Finally, due to the structure of the SDN
paradigm, the centralized controller can become a bottleneck
resulting in significant latency as every incoming flow must
be sent to the controller which then computes the optimal path
and enforces the configuration across the network. Therefore,
mechanisms must be put in place to alleviate the flow latency
problem.

With the above goals in mind, this paper presents a holis-
tic solution which addresses several fundamental research
challenges to scalability in Wide Area Software Defined
Networks. The proposed solution contributes to the state-
of-the-art by proposing a novel forwarding paradigm for
software defined networks which leverages the concepts of
‘resilient’ directed acyclic graphs, index-based hashing, and
MPLS (Multi-Protocol Label Switching) labeling to ensure
a scalable solution which offers efficient utilization of flow
tables by enforcing a fixed number of flow entries indepen-
dent of the number of flows in the network, provides fine
grained load balancing by dynamically spreading out traffic
between ingress-egress pairs over multiple concurrent paths
(over DAG), provides instant routes for incoming flows with-
out having to wait for path computation by the controller,
and is robust against node and link failures. Efficient, poly-
nomial time algorithms are proposed to compute the DAG,
discover paths and to compute flow allocation tables. The
proposed approach is validated by carrying out simulation
based performance evaluation over real topologies with a
related solution.

The remainder of this paper is organized as follows. An
overview of the related work is given in Section II. The main
concepts of the proposed DAG-based forwarding paradigm are

illustrated in Section III, along with a description of how
it can be implemented by means of the OpenFlow proto-
col. Section IV presents the proposed solution algorithms. We
present a performance evaluation of our forwarding paradigm
in Section V and conclude the paper in Section VI.

II. RELATED WORK

In this section, we will review the state-of-the-art in scalable
software defined networks, identifying the major directions
of research and will also highlight limitations of the exist-
ing solutions. Research addressing scalability issues in SDNs
extends to several areas [3] including optimal placement
of multiple controllers, minimizing the number of forward-
ing rules through flow aggregation, consistent SDN switch
updates, traffic engineering and efficient failure recovery
among others. Below we review the state-of-the-art in each of
these areas and discuss their individual impact on the problem
at hand, i.e., scalability of SDNs.

The basic structure of the SDN paradigm implies that the
centralized controller is a bottleneck and is therefore one of
the biggest limitations in the scalability of the network. In
order to address these issues, a number of distributed con-
trollers [4], [5] have recently been proposed with the main
objective of distributing the controller instances across the
network in order to achieve load balancing and fault toler-
ance. Both the controllers ONOS [4] and ONIX [5] attempt
to provide a uniform global view and abstract the details of
the different instances of controllers in the network. Load dis-
tribution through instance replication is a classic solution to
scalability problems and while these distributed controllers do
provide substantial performance improvement, they can only
be considered as the first step towards a truly scalable solu-
tion as several new research challenges came to light. The
next big problem was how to optimally place the controllers
in the network. It is evident that placing multiple controllers
in the network reduces latency and improves load distribution
and fault tolerance, but selecting the optimal positions is non-
trivial. The problem of optimal controller placement problem
was subsequently explored in software defined networks and
several solutions were proposed [6]–[8], which typically mini-
mize the delay between the switches and the controllers. In [9],
source routing is exploited as an alternative approach to reduce
the latency in the communication process, given that the con-
troller has to communicate with the ingress switch only. In
this paper, we adopt a different approach to address the above
issues. The forwarding paradigm we propose is such that
configuration updates requiring a communication between the
controller and the switches are rather infrequent. As an exam-
ple, recovering from a link/switch failure is performed locally
without involving the controller.

The next research challenge in scalability was to limit the
number of rules installed at individual switches in order to
optimize the rule table space at different switches in the
network so that fewer rules need to be updated/installed by
the controllers. The Ternary Content Addressable Memory
(TCAM), which allows reading rules in parallel, is both
expensive and power hungry, and therefore rules need to be
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minimized across the network as typical SDN switches sup-
port a maximum of up to 1M rule entries [2]. Research in
this direction involved compression of rules using wildcard
rules [10]–[12], compression of access rules [13] and com-
pressing forwarding rules [14], [15] including approaches that
focused on clever routing to aggregate forwarding rules [16].
Some solutions split the rules and distribute rules over the
network with the objectives of minimizing the number of
rule installations [17], or minimize energy consumption [18].
Some approaches split the table across multiple locations
using specialized data structures [19], maximizing the usage
of default route segments [20] and handling mice and ele-
phant flows separately [12]. Other solutions in the area [21]
advocate minimizing the rule installations through mathe-
matical optimization by reducing the flow reconfigurations.
Another solution called JumpFlow [22] aims to reduce flow
table usage by exploiting the available VLAN identifier
(VID) in the packet header to carry routing information.
Our forwarding paradigm, instead, can scale to support
any number of flows because the number of required flow
rules is independent of the number of flows traversing the
switch.

In the context of software defined networks, traffic engi-
neering is considered to be a key application and has been
investigated in a number of papers [23]. In [24], authors
address the maximization of network utilization when SDN is
incrementally introduced into an existing network. However,
the proposed approach relies on the usage of OSPF-TE to dis-
seminate the knowledge of the available bandwidth on all the
network links. The maximization of network utilization while
taking the limited size of forwarding tables into account is
addressed in [25]. An algorithm to compute multiple paths
per ingress-egress pair is presented, though the problem how to
split flows across the computed multiple paths is not addressed.
Segment routing has been recently introduced [26], [27] as
another technique enabling traffic engineering that can bene-
fit from the centralized architecture of SDN. In [28], authors
describe an experimental implementation of the segment rout-
ing paradigm with an enhanced version of an OpenFlow
controller. Both offline and online traffic engineering algo-
rithms based on the segment routing paradigm are proposed
in [29]. While these approaches provide interesting bene-
fits, one of their limitations is that the forwarding path must
be encapsulated in a stack of MPLS labels and this cre-
ates network overhead by consuming bandwidth. Research to
address this problem was subsequently carried out and in [30],
authors proposed computation of routes that ensure minimum
label stack depth. However, their solution is limited to node
labels.

Some approaches focus on improving the traffic splitting
mechanisms [31]–[33] employed by the traffic engineering
approaches in SDNs to address the poor scalability problem
of existing SDN-based traffic-splitting solutions as they gen-
erate excessive rules for rule-tables on switches. The basic
problem is that existing multipath solutions for OpenFlow
networks [34], [35] assume hash-based approaches like Equal-
Cost Multi-Path (ECMP), which may lead to sub-optimal
results. In [31], authors exploit bit-masking operations to

partition a traffic demand between the available paths accord-
ing to precomputed splitting ratios. However, their solution
requires extensions to the current protocol, i.e., the ability to
express matching field in a more flexible and generic way
and to select matching operations. Similarly, in [32] authors
attempt to achieve accurate traffic splitting by leveraging wild-
card rules to split the traffic within the constrained rule-table
size, and use incremental updates to minimize traffic overhead
for each update. In [33] authors propose that for non-uniform
flow size distribution, a dynamic load distribution scheme
based on the collected load sharing statistics can find the most
accurate traffic splits with minimal route changes. Differently
from our work, these proposals focus on how to split the
incoming traffic in predefined proportions locally at a single
switch. Thus, they do not address the problems of balancing
the load across the entire network and providing mechanisms
for fast local restoration.

Failure recovery is another major thread of research which
is crucial to the scalability of SDNs and there are several
solutions in this area [36], [37], [38]. In fact, in view of
the importance of error recovery in SDNs, recent versions
of OpenFlow support for the FastFailover mechanism which
are basically conditional rules in which alternate multihop
paths can be used in the case of link failures. However, the
controller program must anticipate every possible failure and
proactively compute all alternate paths. Moreover, it does not
allow programmers to fine-tune the optimization mechanism
of switches. In [36], authors proposed SPIDER, which offers
a periodic link-probing based detection mechanism, and fast
re-routing of traffic even for far off failures, irrespective of
controller availability. In [37], authors leverage the well known
technique of local detouring by using flow grouping and aggre-
gation methods for rapid and lightweight failure handling in
OpenFlow networks. In [38], authors devise a mechanism
to find alternate paths to handle high priority packets with
minimal delay when a link failure occurs in the network.
They also propose a technique to evenly distribute the traf-
fic over all the paths, by finding a set of shortest paths to the
destination.

Summarizing, due to the enormous size and exponen-
tial number of dynamic network flows, there are several
important issues that must be addressed in order to realize
truly scalable wide area software-defined networks. As dis-
cussed above, several solutions address various aspects of the
scalability problem, but our proposed approach contributes
to state-of-the-art by proposing a comprehensive approach
which encompasses all of these diverse issues and challenges
together, in order to achieve a complete solution which is
practical and easily applicable to large scale SDNs.

III. DAG-BASED FORWARDING PARADIGM: CONCEPTS

The proposed DAG-based forwarding paradigm is illustrated
in this section. The two main concepts it builds on are the
usage of a Directed Acyclic Graph (DAG) for each ingress-
egress pair, which determines how the flows between that
ingress-egress pair are routed, and the usage of a resilient
index-based hashing scheme to drive the forwarding of every
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Fig. 1. Example illustrating a DAG between two nodes (a and i, links in
bold) and the flow allocation tables used to forward packets of flows between
those nodes.

single flow. The following subsections present such two con-
cepts, provide details about a possible implementation by
means of the OpenFlow protocol and discuss the benefits of
the proposed paradigm.

A. Requirements for Feasible DAGs

The main idea of the proposed DAG-based forwarding
paradigm is to compute a DAG for every ingress-egress pair
in the network. The purpose of such a DAG is to identify
all and only links that can be used to forward packets of the
flows between the given ingress-egress pair. This concept is
illustrated in Fig. 1, where the links belonging to the DAG
associated with the ingress-egress pair (a, i) are shown in bold.
The proposed DAG-based forwarding paradigm is such that the
packets of a given flow are forwarded along some path in the
DAG between the ingress and egress nodes. By definition, all
the paths in a DAG are cycle-free. However, given that every
path in the DAG can be potentially taken by the packets of
some flow, it is important to set additional requirements for
feasible DAGs. We consider a DAG to be feasible if:
• The length of every path between the ingress and egress

nodes in the DAG does not exceed the length of the short-
est path between the ingress and egress nodes in the DAG
multiplied by a given factor α (>1). The rationale is to
avoid that packets take extremely long paths that consume
resources and increase latency.

• Every node in the DAG has at least two neighbors, so that
to guarantee protection against single node/link failures.
Indeed, if a node/link becomes unavailable, the upstream
node can redirect packets to another neighbor to have
them delivered to the egress node.

Clearly, if longer paths are allowed, more resources are
consumed, but more paths are available, which increases the
chances of distributing the load across the DAG. Given that
the computation of the DAGs is independent of the traffic load
and does not need to be performed again in case of link/node
failures, a proper value for α can be determined offline, as
shown in Section V. The approach we propose in this paper

Fig. 2. Example illustrating the index-based hashing scheme (M = 5): the
XOR folding of the selected header fields hashes to 1; then, the flow allocation
table indicates that the packet must be forwarded to neighbor node d. If the
link to neighbor node d is down, the packet must be forwarded to neighbor
node e.

to compute a DAG for every ingress-egress pair is presented
in Section IV-A.

B. Resilient Index-Based Hashing Scheme

The availability of multiple paths in a DAG between a given
ingress-egress pair can be exploited for traffic engineering pur-
poses. Indeed, nodes can route flows on distinct paths in the
DAG in order to best balance the traffic load on the network
links. However, a proper forwarding strategy needs to be
defined to fully exploit such possibility. Firstly, it is necessary
to ensure that all the packets of a given flow follow the same
path, in order not to incur TCP reordering issues. Secondly,
the forwarding strategy should allow to easily tune the load
distribution. Thirdly, in case of link/switch failures, packets
must be rapidly redirected onto a good alternative path. To
meet such requirements, we propose a resilient variant of the
index-based hashing scheme, which is extremely flexible and
exhibits a good performance in terms of load balancing [39].
The proposed scheme is illustrated in Fig. 2. Each node splits
the incoming traffic into M bins by using a hash function with
XOR folding of selected fields of the packet headers. As an
example, this hash function may be expressed as:

H (·) = (D1 ⊕ D2 ⊕ D3 ⊕ D4 ⊕ S1 ⊕ S2 ⊕ S3 ⊕ S4) mod M

(1)

where Si and Di are the i-th octets of the source and des-
tination IP addresses, respectively. The value obtained by
calculating the selected hash function on a packet is used as
an index in a flow allocation table. Each entry in the table
provides both the active and the backup outgoing link for
the packet. The active outgoing link is used when it is alive;
when the active outgoing link is down, the backup link is
used.

We highlight that each node keeps a distinct flow alloca-
tion table for each ingress-egress pair whose associated DAG
includes the node. Also, we observe that the requirements
mentioned above are met. Indeed, the XOR folding of (prop-
erly selected) packet headers’ fields for all the packets of a
flow hashes to the same value; hence, all the packets of a flow
follow the same path and TCP reordering issues are avoided.
Also, the assignment of bins to outgoing links in the flow allo-
cation tables can be computed so as to enforce a given load
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Fig. 3. Example of flow table and group table configuration.

distribution across the network. Finally, fast recovery from
node/link failures is ensured by the availability of a backup
outgoing link in the entries of the flow allocation tables; the
requirements imposed on feasible DAGs ensure that packets
will still be able to reach the egress node by traversing a path
that is cycle-free and limited in length.

The approach we propose in this paper to compute the flow
allocation tables for all the nodes is presented in Section IV-B.

C. Implementation With OpenFlow

To show that the DAG-based forwarding paradigm is practi-
cally feasible and to evaluate how it scales, we describe how it
can be implemented by means of the OpenFlow protocol (start-
ing from version 1.3). An OpenFlow switch consists of one
or more flow tables and a group table. A flow entry in a flow
table consists of match fields, counters and a set of instructions.
Match fields specify values against which the various packet
header fields or the packet ingress port are matched. Counters
track the amount of packets and bytes that matched a given
flow entry. A number of instructions are defined to redirect
a packet to another flow table, add metadata to the packet or
perform a set of actions such as set a specified packet header
field, redirect the packet to a group entry in the group table or
set the output port for the packet. A group entry in the group
table is associated with a group identifier and contains a group
type, counters and action buckets. A group entry may consists
of zero or more action buckets, each of which specifies a set of
actions to be executed on the packets. Supported group types
are indirect (the actions of the unique bucket are executed),
all (the actions of all the buckets are executed), select (only
the actions of the bucket chosen by a selection algorithm are
executed) and fast failover (the actions of the first bucket that
is associated with a live port are executed).

In current Autonomous Systems (ASes), border routers have
to determine the egress node for each packet they receive. In
IP-based networks, this is normally performed by using inter-
domain rules provided by BGP (Border Gateway Protocol). To
correctly take forwarding decisions, internal nodes, too, need
to be aware of the egress node selected for each received
packet. Multiple techniques can be used to this purpose,
including redistributing BGP routes into the IGP (Interior
Gateway Protocol) or configuring an MPLS (Multi-Protocol

Label Switching) tunnel between the ingress and egress nodes.
Similarly, in an SD-WAN, border switches need to deter-
mine the egress switch for each packet they forward and the
information about the selected egress switch needs to be con-
veyed to internal switches in order for them to appropriately
forward packets. Indeed, our proposed DAG-based forward-
ing paradigm requires every internal node receiving a packet
to determine which ingress-egress pair it belongs to, in order
to consult the corresponding flow allocation table and find
the outgoing link for the packet. To this purpose, we pro-
pose that the ingress node for a packet determines the egress
node (as discussed hereinafter) and adds an MPLS label to
the packet identifying the ingress-egress pair it belongs to.
Every intermediate node can therefore infer the ingress-egress
pair each packet belongs to from the MPLS label carried by
the packet. In this regard, we note that our paradigm does
not require that intermediate nodes perform the usual label
swapping mechanism, because the label value identifies the
ingress-egress pair and hence it must be kept unchanged until
the packet reaches the egress node. Concerning the ability of
the ingress node to determine the egress node for a packet,
various alternative schemes are possible. A solution involving
SDN nodes only consists of having the ingress node send the
first packet of a new flow to the controller, which (by using
inter-domain rules provided by BGP) determines the flow entry
that can be used by the ingress node to match the packets of
the flow and add the label identifying the selected ingress-
egress pair to them. Another solution, involving legacy border
routers and therefore potentially leading to an easier transition
to SDN, consists of configuring legacy border routers to add an
MPLS label to the packets they forward to SDN nodes, which
thus derive the ingress-egress pair the packet belongs to from
the MPLS label carried by the packet. Finally, another alterna-
tive is provided by OpenFlow-hybrid switches, i.e., switches
that support both traditional and OpenFlow operations. For
instance, the popular Broadcom chipset [40] has a table that
can match on destination IP prefix and set a metadata tag that
can be matched in the subsequent TCAM. Thus, the former
table can be used to store BGP routes and incoming packets
can be tagged based on the matching BGP route.

Figure 3 illustrates how the DAG-based forwarding
paradigm can be implemented by using the network and the
DAG of Fig. 1 as an example. The case of an intermediate node
is considered in the figure. The configuration of an ingress
node (not shown) only differs in the flow entries of the flow
table, which depend on the implemented solution (as discussed
above). Intermediate nodes receive packets carrying an MPLS
label that identifies the ingress-egress pair the packet belongs
to. In the example of Fig. 3, node e of the network shown
in Fig. 1 is considered. A single flow entry per ingress-egress
pair is needed in the flow table. Indeed, all the packets belong-
ing to the same ingress-egress pair have to be processed in
the same manner. The ingress-egress pair a received packet
belongs to can be derived from the MPLS label carried by
the packet. Hence, each flow entry matches MPLS packets
(eth_type=0x8847) with a specified label and redirects them
to the group entry that refers to the ingress-egress pair corre-
sponding to the label (in the example, the group entry identifier
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is Y). Such group entry contains as many buckets as the num-
ber of bins in the flow allocation table corresponding to the
ingress-egress pair the group entry refers to. This group entry
is of type select and the selection algorithm used to determine
the bucket whose actions are to be executed simply calculates
the selected hash function (e.g., the one defined by eq. (1)).

The i-th bucket contains a single action to redirect the packet
to another group entry that contains two buckets, one for the
active outgoing link and one for the backup outgoing link
specified in the i-th entry of the flow allocation table. In such
a way, packets are forwarded according to the bin they are
assigned to by the hash function. The latter group entry is of
type fast failover to achieve fast restoration in case of fail-
ures: if the outgoing link specified in the first bucket is down,
the one specified in the second bucket is used. This technique
is based on the liveness monitoring feature of the OpenFlow
switches, i.e., the ability to monitor the status (live or not) of
any of their ports. Then, a bucket in a group entry is consid-
ered live if the port watched is live. In the example, bucket
0 redirects packets to group entry X6, which sends them to
neighbor f (if the link to f is live) or neighbor d (if the link
to f is down), as specified in the first row of node e’s flow
allocation table (Fig. 1).

As shown by Fig. 3, let N be the number of neighbors of an
intermediate node and D the number of ingress-egress pairs
whose associated DAG includes that node, all the flow alloca-
tion tables of the node can be configured by means of Θ(D)
flow entries in the flow table and Θ(N 2 + D) group entries
in the group table. Therefore, the number of flow entries and
group entries is independent of the number of flows crossing
a switch. Finally, we note that the configuration of the egress
node (not shown) is rather simple: a flow entry per ingress-
egress pair is installed on the flow table to strip the MPLS
header and deliver the packet to the intended destination.

D. Features of the DAG-Based Forwarding Paradigm

The DAG-based forwarding paradigm has been designed
with the aim of achieving a number of properties. In this sec-
tion, we list such properties and discuss how the proposed
forwarding paradigm achieves them.

Scalability in terms of number of required entries: The flow
table of every SDN switch only contains one flow entry for
each ingress-egress pair whose associated DAG includes the
switch. Thus, the number of flow entries, which impacts the
time required to find a matching rule, is upper bounded by
the number of ingress-egress pairs in the network and is inde-
pendent of the number of flows within the network. In terms
of memory occupation, we have to account for an additional
group entry per ingress-egress pair, plus one group entry per
neighbor node pair. Still, the amount of memory required to
store all the required entries is independent of the number of
flows within the network. Also, group entries do not need to
be stored on a TCAM module because they are not matched
against packet headers.

Fine-grained tuning of load distribution: The proposed for-
warding paradigm allows to distribute the flows between an

ingress node and an egress node across any of the paths avail-
able in the associated DAG. Such a possibility can be exploited
to traffic engineer the distribution of the load by properly com-
puting the paths taken by the flows. To this end, the assignment
of bins to outgoing links in the flow allocation tables can be
adjusted to achieve the desired goal. Clearly, the larger the
number of bins in the flow allocation tables, the higher the
granularity of adjustment.

No delay due to online path computation: The OpenFlow
protocol provides that switches can forward packets that did
not match any rule to the controller, which can then provide
a rule for forwarding these packets. Such a feature may be
exploited to perform an online computation of an ad hoc path
every time a new incoming flow arrives. However, forwarding
the first packet of a flow is significantly delayed due to the
time the controller takes to compute a path and enforce the
corresponding configuration. With our forwarding paradigm,
all paths are already pre-computed, so this source of delay is
eliminated.

Fast local restoration of single node/link failures: An impor-
tant property of a forwarding paradigm for large scale SDNs
is the ability to recover from single node/link failures without
requiring the intervention of the controller. This property is
important because the communication between switches and
controller, which usually does not exploit dedicated out-of-
band channels in the context of software defined WANs, may
be interrupted due to the node/link failure. In such cases,
if switches depended upon the controller to recover from
the failure, no action would be taken to restore the network
connectivity. In any case, having a node/link failure handled
locally by switches eliminates the time required for the con-
troller to compute an alternative configuration and enforce
it. Our DAG-based forwarding paradigm possesses this prop-
erty. Indeed, as described earlier, as soon as a switch port is
detected to be not alive, the pre-configured backup outgoing
link is used thanks to the fast failover mechanism. The require-
ments for feasible DAGs ensure that the new path followed by
the packets is limited in length. Thus, the intervention of the
controller is not required to recover from a single node/link
failure.

Consistency of forwarding tables during configuration
updates: The traffic load is time-varying and adjustments to
the load distribution may be needed to keep the network
operating efficiently. However, if adjusting the load distribu-
tion involves modifying the configuration on multiple nodes,
the risk of having inconsistent configurations which tem-
porarily lead to routing loops may arise. Our forwarding
paradigm is exempt from this problem. Indeed, changes in
flow allocation tables, that can be done, e.g., to adjust the
load distribution across the network, may only alter which
of the paths available in the DAG are taken by the flows
routed along that DAG. However, DAGs are cycle free by
definition and, due to the requirements we impose for fea-
sible DAGs, do not contain paths that are longer than the
shortest path more than a configurable percentage. Therefore,
it is guaranteed that packets are forwarded along loop-free
and adequately short paths even while the configuration of
the flow allocation tables is updated. As discussed in the next
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Fig. 4. Example illustrating the need of checking the subgraph after the
inclusion of a new path.

section, changes in the DAG structure are extremely infre-
quent, thus the disruption that such operation may cause can be
neglected.

Support for traffic differentiation: The proposed forwarding
paradigm enables to easily differentiate traffic flows by prop-
erly modifying the assignment of flows to bins. To this end,
the available bins can be partitioned into different sets, each
associated with a distinct traffic class. Distinct hash functions,
one per traffic class, can then be defined. The algorithm used
to select a bucket inside a group entry can be extended in such
a way to compute the hash function corresponding to the traf-
fic class a packet belongs to (the traffic class can be derived,
e.g., from the Type of Service fields of the IP header). Thus,
packets belonging to different traffic classes are mapped onto
distinct sets of bins and each set of bins can guarantee a dif-
ferent treatment (e.g., by forwarding packets along shorter and
less loaded paths or by enqueuing packets into priority queues
on the outgoing port).

IV. DAG-BASED FORWARDING PARADIGM: SOLUTIONS

We present our approach to find a DAG for every ingress-
egress pair and compute the flow allocation tables for all the
nodes. The idea is that flow allocation tables can be adjusted
to adapt to variations in the traffic load, while DAGs should
not need to be modified. In the following, we assume that
the Software Defined Network is modeled as a directed graph
G = (V, E), where V is a set of vertices each representing an
SDN switch and E is a set of edges each representing a link
between two SDN switches. Given two nodes u, v ∈ V , the
capacity of link u → v ∈ E is denoted by c(u → v).

A. Computing Feasible DAGs

As mentioned earlier, DAGs do not need to be computed
often, because a change in the traffic load should be addressed
by adjusting the flow allocation tables. Consequently, the
approach we propose here to compute feasible DAGs does
not take into account any traffic load, but it only depends on
the topological properties of the network. We first present an
overview of the proposed approach and then discuss the details
of the proposed algorithm, named RDAG (Resilient Directed
Acyclic Graph), by illustrating its pseudo-code.

RDAG is an iterative algorithm that keeps a directed sub-
graph of G and eventually returns it as the sought feasible

DAG for a given ingress-egress pair (s, d). The loop invariant
is that the directed subgraph is loop free and the length of no
path between s and d exceeds the length of the shortest path
between s and d multiplied by a given factor α(> 1). The
directed subgraph is initialized to the shortest path between
s and d in G. In every iteration, a node of the subgraph is
explored to ensure that it has at least two neighbors in the
directed graph. If such a condition is not met, the directed
subgraph is augmented by adding an alternative path from the
node to the egress node d that does not include the current
next hop of the node. The algorithm ends when all the nodes
of the directed subgraph have been explored.

We observe that adding a loop-less path to the directed sub-
graph does not ensure that all the possible paths in the directed
subgraph are loop-less (Fig. 4a). Likewise, adding a path of
length less than the maximum allowed one does not ensure that
all the possible paths in the subgraph have a length less than
the maximum allowed one (Fig. 4b). Therefore, when aug-
menting the directed subgraph with a new path, it is necessary
to check that the inclusion of the new path does not introduce
loops or paths of length exceeding the maximum allowed one.
Fortunately, this check can be performed by means of a Depth-
First-Search (DFS) visit. Indeed, a directed graph is acyclic if
and only if the DFS visit returns no back edges [41]. Also, a
DFS visit allows to sort the nodes of a DAG in a topological
ordering, which is such that if a link u → v exists in the DAG,
then u precedes v in the ordering. Thus, the ingress (egress)
node is the first (last) node in this ordering. The topological
ordering allows to easily determine the maximum distance in
the DAG between every node and the egress node. Indeed,
the maximum distance of a node is one plus the maximum
among the neighbors’ maximum distance to the egress node.
Therefore, the maximum distance to the egress node can be
computed for all the nodes by iterating over all of them, start-
ing from the penultimate node in the topological ordering.
Thus, a DFS visit on a directed subgraph D checks whether
D is a DAG and, in that case, returns a sorted list of nodes
in a topological ordering and the length of the longest path
between each node in D and the last node in the topological
ordering (the egress node).

We now describe the RDAG algorithm in more details
(Algorithm 1). The directed subgraph D is initialized to the
shortest path in G between the ingress and egress nodes. A
DFS visit on D is performed to determine the initial ordering
of the nodes. For all the nodes, the attribute done is initialized
to false. This attribute is set to true once the node has been
explored and is used to ensure that every node is explored
just once. Then, nodes in D are explored one by one in a
reverse topological order, starting from the penultimate node
(in the pseudo-code, we use the PREVIOUS(x, l) function to
retrieve the predecessor of element x in the list l). In every
iteration, if the explored node has been already marked as
done or it has already more than one next hop in D, it is
marked as done and its predecessor in the topological ordering
is explored next (lines 31–32). Otherwise, the explored node
u has a single neighbor (v) in D (line 10) and we attempt
to find an alternative path to the egress node. For this pur-
pose, we consider a copy (Gpruned ) of the input graph G and
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Algorithm 1 Pseudo-Code of the RDAG Algorithm

RDAG (G = (V ,E), s, d , α)

1 D = ∅
2 SP = SHORTEST_PATH (G, s, d)
3 PATH_ADD (SP ,D)
4 DFS (D , s)
5 for each u ∈ V
6 u. done = FALSE
7 u = PREVIOUS (D . sorted . last ,D . sorted)
8 while u <> NIL
9 if u. done == FALSE AND |Adj (D , u)| = 1

10 v = Adj (D , u).first
11 GPruned = G
12 if v == d
13 REMOVE_EDGE (GPruned , u → d)
14 else REMOVE_VERTEX (GPruned , v)
15 found = FALSE
16 Lsu = MAX_DIST_FROM_SOURCE (D , u)

17 Lud = 0

18 while ! found AND Lsu + Lud � α · length [SP ]
AND KSP_HAS_NEXT(GPruned , u, d)

19 P = KSP_NEXT (GPruned , u, d)
20 DAugm = D
21 PATH_ADD (P ,DAugm )
22 DFS (DAugm , s)
23 if IS_ACYCLIC(DAugm ) AND

MAX_DIST_TO_DEST(DAugm , s)
� α · length [SP ]

24 found = TRUE
25 Lud = P . length
26 if found
27 D = DAugm
28 u. done = TRUE
29 u = PREVIOUS (D . sorted . last ,D . sorted)
30 continue
31 u. done = TRUE
32 u = PREVIOUS (u,D . sorted)

prune the link u → v, in case v is the egress node, or the ver-
tex v otherwise. Then, we look for a path between u and the
egress node d in the pruned graph. A k-shortest loop-less path
algorithm [42] provides, one-by-one and in increasing order
of length, the shortest paths between u and d in the pruned
graph. The path P returned by the k-shortest path algorithm
is tentatively added to a copy (DAugm ) of the subgraph D. A
DFS visit on DAugm determines whether DAugm is acyclic,
finds the length of the longest path between s and d and topo-
logically sorts the nodes. If DAugm is acyclic and the length of
the longest path is less than the maximum allowed path length,
the path P is actually added to D, node u is marked as done
and the exploration of the nodes restarts from the penultimate
node in the new topological ordering (lines 26–30). Otherwise,
a new path returned by the k-shortest path algorithm is
considered.

To avoid that a number of shortest paths between u and d
in the pruned graph are uselessly considered, we compute the
length Lsu of the longest path between the ingress node s
and u in D (line 16). Given that we already have a topologi-
cal ordering of the nodes in D, computing such a value only
requires to relax all the edges of D (whose weights must be
set to −1) [41]. Thus, as soon as the k-shortest path algorithm
returns a path with a length Lud such that Lsu +Lud exceeds
the maximum allowed path length, we can stop processing the

Algorithm 2 MINMAXUTIL Program
variables

f sdl ∈ [0,F sd ] ∀l ∈ DAGsd , ∀(s, d) ∈ P

U ∈ R
+

minimize U
subject to

1) U �
∑

(s,d) | l∈DAGsd

f sdl

c(l)

∀l ∈ E

2)
∑

v∈N sd (u)

f sdu→v −
∑

v∈N sd (u)

f sdv→u =

⎧
⎪⎨

⎪⎩

F sd if u = s

−F sd if u = d

0 else

∀u ∈ V , ∀(s, d) ∈ P

shortest paths between u and d. Indeed, since shortest paths
are returned in increasing order of length, none of the fol-
lowing shortest paths can be added to the subgraph without
violating the constraint on the maximum path length. In such
a case, node u is marked as done (despite it only has one
neighbor) and the predecessor of u in the topological ordering
is explored. The algorithm ends when the ingress node s is
marked as done and the directed subgraph D is returned.

The complexity of RDAG is dominated by the inner while
loop (lines 18–25). In the worst case (since the nodes in D are
a subset of those in G), a DFS visit on D requires O(|V | +
|E |), while obtaining the next path from the k-shortest path
algorithm requires O(|V |(|E |+|V | log |V |)). The outer while
loop is repeated at most |V | times (once for each node in D),
hence the complexity of RDAG is O(|V |2(|E |+|V | log |V |)).

B. Computing the Flow Allocation Tables

Our approach to compute the flow allocation tables for every
node consists of two steps. First, the estimated traffic matrix
is optimally routed across the computed DAGs. Then, flow
allocation tables are determined to route flows accordingly.

1) Solving the Optimal Routing Problem: An estimate of
the traffic matrix, i.e., the set of demands between all the
ingress-egress pairs, can be easily obtained. Indeed, by exploit-
ing the counters associated with the group entry related to an
ingress-egress pair (Fig. 3), it is possible for the controller to
contact the ingress node for a given ingress-egress pair and
retrieve the rate of the traffic demand between the ingress and
egress nodes. Given the traffic matrix, the Linear Programs
(LPs) illustrated in Algorithms 2 and 3 optimally solve the
problem of routing the traffic demands across the given DAGs.
Periodically, the controller can retrieve an updated traffic
matrix and decide whether to compute a new solution for the
routing problem. In the following, we denote by P the set of
ingress-egress pairs, by DAGsd the set of links included in the
DAG computed for the ingress-egress pair (s, d), by f sd

l the
amount of flow belonging to the demand (s, d) that is routed
on link l, and by N sd (u) = {v ∈ V | u → v ∈ DAGsd} the
set of neighbors of node u in DAGsd .

The MINMAXUTIL Linear Program (Algorithm 2) routes
the traffic demands of all ingress-egress pairs (each across the
associated DAG) in such a way to minimize the maximum
utilization among all the network links. To this purpose, we
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Algorithm 3 MAXMINUTIL Program
variables

f sdl ∈ [0,F sd ] ∀l ∈ DAGsd , ∀(s, d) ∈ P

U sd ∈ R
+ ∀(s, d) ∈ P

maximize
∑

(s,d)∈P
U sd

subject to

1)
f sdl

c(l)
� U sd

∀l ∈ DAGsd , ∀(s, d) ∈ P

2)
∑

(s,d) | l∈DAGsd

f sdl

c(l)
� μ

∀l ∈ E

3)
∑

v∈N sd (u)

f sdu→v −
∑

v∈N sd (u)

f sdv→u =

⎧
⎪⎨

⎪⎩

F sd if u = s

−F sd if u = d

0 else

∀u ∈ V , ∀(s, d) ∈ P

Algorithm 4 Pseudo-Code of the Algorithm to Compute Flow
Allocation Tables

COMPUTEFAT (N sd (u), L, T , R, replace)

1 for each n ∈ N sd (u)
2 load [n]← 0
3 for i ← 1 to R.size
4 if R[i ] == replace

5 for each n ∈ N sd (u)
6 load [n] += L[i ]
7 dist [n]← ‖T − load ‖2
8 load [n] -= L[i ]
9 R[i ]← arg min

n
dist [n]

10 load [R[i ]] += L[i ]

introduce variable U, which is constrained to be greater than
the utilization of every network link (constraint 1). The goal
of minimizing the maximum link utilization is thus achieved
by minimizing U. Constraint 2 represents the usual flow con-
servation constraint, which is enforced separately for each
ingress-egress pair. The optimal value μ of the objective func-
tion, i.e., the minimum value of the maximum utilization
among all the links, is passed as input to the MAXMINUTIL

Linear Program (Algorithm 3). The goal of this LP is to bal-
ance the load of each traffic demand across the corresponding
DAG. This is done by introducing a variable U sd for each
ingress-egress pair (s, d), which is constrained to be less than
the amount of flow belonging to the demand (s, d) that is
routed on each link of the corresponding DAG (constraint 1),
and by maximizing the sum over all the variables U sd .
Constraint 2 ensures that the maximum link utilization does
not exceed the minimum value computed by MINMAXUTIL,
while constraint 3 represents the flow conservation constraint.
Solving MAXMINUTIL returns the amount of flow belonging
to each traffic demand that needs to be routed on each link
in order to achieve an optimal distribution of the traffic load.
Next, we show how such traffic distribution can be enforced
by properly computing the flow allocation tables.

2) Deriving the Flow Allocation Tables: Given the solution
returned by MAXMINUTIL, it is possible to determine the
proportions in which a node u included in the DAG associated

Fig. 5. Example illustrating how to compute flow allocation tables starting
from the solution of the LPs. This example refers to a single ingress-egress
pair.

with the ingress-egress pair (s, d) has to share the incoming
flow belonging to the demand (s, d) among its neighbors:

λsd
u→v =

f sd
u→v∑

w∈V |w→u∈DAGsd f sd
w→u

An example is shown in Fig. 5, where the proportions in
which node u must share the incoming traffic of a given
demand among its neighbors are shown in square brackets next
to the neighbors. Such proportions are computed by dividing
the flow routed on the links to the neighbors by the incom-
ing traffic (56), as per the solution returned by MAXMINUTIL.
The flow allocation table on a node (related to a given ingress-
egress pair) must be determined such that the incoming traffic
is split according to the proportions defined above. To this
end, we leverage the availability of counters maintained for
each group bucket, besides those maintained for each group
entry, to determine the actual load share for each bin of a
flow allocation table. The load share of a bin is the ratio of
the amount of traffic hashed to the bin to the total amount of
incoming traffic that belongs to the ingress-egress pair associ-
ated with the given flow allocation table. Then, neighbors must
be assigned to bins in such a way that, for every neighbor, the
sum of the load shares over all the bins assigned to the neigh-
bor approximates the proportion computed for the neighbor as
shown above. As an example, in the flow allocation table of
node u (Fig. 5), the sum of the load shares over all the bins
assigned to nodes x, y and z must be, respectively, 0.32, 0.57
and 0.11. The algorithm proposed to select outgoing links in
such a way to ensure a given set of proportions is shown in
Algorithm 4. Given the set N sd (u) of neighbors in the DAG
associated with the ingress-egress pair (s, d), the vector L of
the load shares of all the bins in the flow allocation table of
node u related to the ingress-egress pair (s, d) and the vector
T of the target proportions, the algorithm fills in the elements
of the vector R one at a time, starting from the first one. The
i-th element of R is set to the neighbor that minimizes the
Euclidean distance between the vector T of the target propor-
tions and the vector including, for every neighbor, the sum of
the load shares of the bins assigned so far to that neighbor.
When the algorithm ends, vector R provides the set of active
outgoing links for the flow allocation table.
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The algorithm shown in Algorithm 4 is also used to compute
the backup outgoing links for a flow allocation table. To this
purpose, the algorithm only sets the elements of the vector R
that equal the input parameter replace. When the algorithm
is run to compute the active outgoing links, all the elements
of vector R are initialized with an invalid value and replace
equals such invalid value, so that all the elements of R are
set. The algorithm is then run as many times as the number
of neighbors, in order to determine the set of backup links
to use in case each neighbor becomes unreachable. When the
algorithm is run to compute the backup links in case the link
to x fails (Fig. 5), vector R is initialized to the set of active
outgoing links, replace is set to x and the vector T of target
proportions is adjusted to consider that the flow routed on the
link to x must be shared among the remaining neighbors. The
algorithm will therefore only modify the elements of vector R
equal to x in such a way to ensure the given target proportions.
The set of backup outgoing links is then obtained by taking
the neighbors that replace the unreachable neighbor, for every
unreachable neighbor, as shown in Fig. 5.

C. Discussion on the Operations of the DAG-Based
Forwarding Paradigm

In this section, we review the different components of the
proposed DAG-based forwarding paradigm and discuss aspects
like how frequently they need to be executed and how their
execution can be distributed among multiple controllers.

Computation of DAGs: For each ingress-egress pair, the
RDAG algorithm can be executed to determine the associ-
ated DAG. The complexity of a single execution of RDAG
is polynomial in the number of vertices and edges of the
network graph. Given the need of information about the whole
topology, the controller is best positioned to execute RDAG.
Configuring switches to enforce a new DAG for a given
ingress-egress pair can be done without disrupting network
connectivity by updating switches in the reverse topological
ordering. In this way, it cannot happen that a switch forwards
a packet belonging to an ingress-egress pair to a switch that
has not been configured yet to forward packets belonging to
that ingress-egress pair. Fortunately, however, enforcing a new
set of DAGs is not expected to be done on a daily or even
weekly basis. Indeed, DAGs are computed based only on topo-
logical properties of the network, hence neither changes in the
traffic matrix nor link/node failures require to compute a new
set of DAGs. Finally, we observe that the load of comput-
ing DAGs and performing the corresponding configurations
for all the ingress-egress pairs can be shared among a set of
distributed controllers, each of which taking care of a distinct
sets of ingress-egress pairs and hence operating independently
from the others.

Computation of an optimal solution to the routing problem:
Given an estimate of the traffic matrix, the MINMAXUTIL

and MAXMINUTIL Linear Programs need to be solved to
determine how to optimally route the traffic matrix across the
network. Given that it is required the knowledge of the DAGs
computed for all the ingress-egress pairs and an estimate of the

traffic matrix, this task is suited to being performed by a cen-
tralized controller. The controller needs to periodically check
(by retrieving the counters on the ingress switches) whether the
traffic matrix used the last time the routing problem was solved
is still a reasonable estimate of the current traffic matrix. If
not, the controller may need to compute another solution of the
two LPs, to avoid a decrease in network performance. Thus,
the frequency of this task depends on how variable the incom-
ing traffic is. Computing a solution to the routing problem can
also be distributed among a set of controllers in different ways.
One possibility is that the controller detecting the need to com-
pute a new solution to the routing problem informs the other
controllers by sharing the new traffic matrix it estimated. All
the controllers use the same input to the LPs and hence obtain
the same solution. Afterwards, each controller computes the
flow allocation tables (as described next) for a subset of the
switches or for a subset of the ingress-egress pairs.

Computation of the flow allocation tables: The solution to
the LPs provides, along with the current load shares of the
bins, the input to the COMPUTEFAT algorithm that computes
the flow allocation table on a given node for a given ingress-
egress pair. Given the target proportions in which a node has to
split the incoming traffic of an ingress-egress pair (as returned
by the LPs), it is necessary to recompute the flow allocation
table whenever the actual proportions in which the incoming
traffic is split (as determined by the hash function and the
assignment of bins to neighbors) substantially diverge from
the target proportions. Computing flow allocation tables and
configuring the corresponding group entries can be done by the
unique controller or by the controller that is in charge of con-
figuring the specific node or the specific ingress-egress pair.
For this purpose, the controller has to periodically retrieve the
counters associated to the buckets of the group entry corre-
sponding to the specific ingress-egress pair in order to obtain
the bin load shares and determine whether it is necessary to
execute the COMPUTEFAT algorithm again and update the
group entry accordingly.

V. PERFORMANCE EVALUATION

We present the results of a simulation study conducted with
the ns-3 network simulator to evaluate the performance of the
proposed DAG-based forwarding paradigm. We used ns-3.29
patched1 to add support for both full-duplex CSMA (Carrier
Sense Multiple Access) links [43] and OpenFlow 1.3 compli-
ant devices [44]. We implemented a controller2 in ns-3 that
learns the network topology by elaborating the information
received by the switches, computes a DAG for every ingress-
egress pair, solves the Linear Programs described earlier and
configures flow tables and group tables on all the switches
as illustrated in the previous sections. Flow allocation tables
are initialized by assuming a uniform distribution of the flows
among the bins (i.e., the load share of every bin is 1/M, where
M is the number of bins) and recomputed after 5s by consider-
ing the actual load shares of the bins, as obtained by retrieving
the counters associated with the buckets of the group entries.

1code available at https://github.com/stavallo/ns-3-dev-git/tree/ofswitch13.
2code available at https://github.com/stavallo/ofswitch13/tree/dag-fp.
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Fig. 6. Median of the maximum link utilization returned by the Linear Programs for every topology and every considered traffic matrix, along with the
corresponding average throughput normalized to the sum of the traffic demands, obtained as α varies from 1.1 to 2.1.

Three topologies from the SNDlib library [45] have been used
in the simulations: germany50 (50 nodes and 88 links), ta2 (65
nodes and 108 links) and zib54 (54 nodes and 81 links). For
each topology, 30 distinct traffic matrices were selected among
those available in the library. Each traffic matrix involves from
100 to 250 ingress-egress pairs with different traffic demands.
We assume that the controller has the complete knowledge of
the traffic matrix and computes the routes for all the ingress-
egress pairs accordingly. The actual amount of traffic between
each ingress-egress pair is generated by means of a variable
number of TCP flows whose average bit rates range from a
tenth to a hundredth of the actual amount of traffic to gener-
ate. The traffic generator for every single TCP flow follows an
on/off pattern, as implemented by the OnOffApplication ns-3
model. Each simulation run lasts for a simulated time of 45
seconds.

A. Tuning the DAG-Based Forwarding Paradigm Parameters

We first present an analysis aimed at evaluating the impact
of various parameters on the performance of the proposed
DAG-based forwarding paradigm. We first consider α, the
parameter of the RDAG algorithm that limits the length of the
paths included in each DAG. For each of the three considered
topologies, we ran the RDAG algorithm to determine the set
of DAGs with α ranging from 1.1 to 2.1. Then, for each topol-
ogy and each value of α, we solved the MINMAXUTIL and
MAXMINUTIL Linear Programs to determine the maximum
link utilization corresponding to each of the 30 traffic matri-
ces considered for each topology. The solid curves in Fig. 6
show the median of such maximum link utilization values (on
the left y-axis), for each value of α. The solid horizontal lines
indicate instead a value which is 5% higher than the mini-
mum among such median values. As it can be expected, small
α values lead to DAGs including few paths other than the
shortest paths, thus causing a reduced ability of balancing the
load across the network, which manifests itself through a high
maximum link utilization. Increasing α leads to more paths
being included in the DAGs, with a consequent improvement
in the load balancing and decrease of the maximum link uti-
lization. Starting from a certain α value, however, subsequent
increases in the α value do not correspond to a better balanc-
ing of the load and the median of the maximum link utilization

values seems to oscillate around a steady state value. Given
that high α values might lead to long paths being selected
for forwarding traffic, we suggest to set α to the minimum
value among those corresponding to a median maximum link
utilization that is no more than 5% higher than the minimum
median value. Based on this approach, we set α = 1.4 for
the germany50 and zib54 topologies and α = 1.7 for the ta2
topology.

To validate the approach proposed to set α, we ran ns-3
simulations to evaluate the throughput achieved with different
values of α. For this set of simulations, we set the number
of bins to 10 and the number of TCP flows per ingress-
egress pair to 20. The dashed curves in Fig. 6 show the
overall throughput (on the right y-axis) achieved for each α
value, normalized to the total amount of traffic to be generated
according to the traffic matrix and averaged over the 30 con-
sidered traffic matrices. The dashed horizontal lines indicate
instead a value that is 5% smaller than the maximum achieved
throughput. It can be observed that the curves representing the
median maximum link utilization and the normalized through-
put have a rather specular behavior, which implies that it is
likely to achieve a high throughput by selecting α with the
proposed approach. In fact, the throughput achieved with the
selected value of α is the maximum or very close to the max-
imum (it is above the horizontal dashed line) for all the
topologies.

Having determined the value for the α parameter for each
topology, we now focus on the impact of the number of bins.
Based on the content of its header fields, each packet incoming
to a node is hashed to one of the bins available in the flow allo-
cation table associated with the ingress-egress pair the packet
belongs to and is forwarded to the neighbor associated with the
selected bin. For each topology and each number of bins con-
sidered (1, 5, 10, 15, 20, 25 and 30), we ran ns-3 simulations to
measure the normalized throughput achieved with each of the
30 traffic matrices and with 5 distinct assignments of port num-
bers to TCP flows (so as to change the way flows are hashed
to bins). Each data point in Fig. 7 represents the normalized
throughput averaged over 150 simulations (30 distinct traffic
matrices times 5 distinct assignments of port numbers) and
is associated with the corresponding 95% confidence interval.
Figure 7 shows 3 curves each corresponding to a different
number of TCP flows per ingress-egress pair: 10, 20 and 30.
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Fig. 7. Average and 95% confidence interval of the normalized throughput over the considered 30 traffic matrices and 5 distinct assignments of port numbers
to TCP flows, for different number of bins.

It can be observed from Fig. 7 that results are similar for the
three topologies. The optimal number of bins turns out to be 5
and the throughput decreases as the number of bins increases
beyond this optimal value. Considering that nodes have 2 or
3 neighbors in a DAG, 5 bins is likely the best compromise
between the need of having at least as many bins as the num-
ber of neighbors (otherwise, no packet could be forwarded
to some neighbors) and the need of limiting the number of
bins (compared to the number of flows) in order to guarantee
some level of flow aggregation that smooths the on/off pattern
of the individual flows and produces aggregate flows with a
more regular bit rate. Another observation is that the through-
put slightly decreases as the number of flows per ingress-egress
pair increases. This result can be likely explained because most
of the network links are saturated and packets arriving when
the transmission queues are full are dropped. Packet drops
trigger the TCP congestion control slow start mechanism. The
higher the number of flows entering the slow start phase simul-
taneously, the stronger its effect, i.e., the alternation of periods
when TCP senders slow down (causing a throughput decrease)
and periods with large bursts of traffic that induce a new con-
gestion. In fact, we observed that the total number of packets
dropped with 30 flows per ingress-egress pair is generally
twice the total number of packets dropped with 10 flows per
ingress-egress pair. Finally, we mention that the normalized
throughput only slightly fluctuates as the assignment of flows
to bins changes. In fact, for each traffic matrix and for each
number of bins, the standard deviation (not shown) of the 5
values of normalized throughput achieved with distinct assign-
ments of port numbers is less than 0.09. This result proves the
effectiveness of running the COMPUTEFAT algorithm 5s after
the beginning of a simulation to recompute the assignment of
bins to neighbors based on the actual load shares of the bins.

B. Comparative Evaluation of the DAG-Based Forwarding
Paradigm

The proposed DAG-based forwarding paradigm is compared
to the approach presented in [25] (Algorithm 3), which shares
with our proposed solution the goal of maximizing the amount
of flow that can be routed across the network while limiting the
forwarding table size and whose performance has been ana-
lyzed in-depth by the authors. For each ingress-egress pair, 10

Fig. 8. Number of flow entries required by the algorithms under test.

distinct paths are computed by using the k-shortest path algo-
rithm. Each path is assigned an amount of flow by solving a
bicriteria approximation of the bounded path-degree max flow
problem ([25, Algorithm 1]). In our simulations, we assign
each of the flows between a given ingress-egress pair to one
of the paths so as to meet the computed flow values for the
paths. Another controller has been consequently implemented
to configure the SDN switches according to the approach we
compare our DAG-based forwarding paradigm to.

We first compare our forwarding paradigm (DAG-FP) to
the bounded path-degree max flow algorithm (BPDMF) in
terms of the number of required flow entries. For each of
the considered topologies, Fig. 8 summarizes the number of
flow entries installed on each node in all the simulations we
conducted (which are described next). On each box, the cen-
tral mark indicates the median, and the bottom and top edges
of the box indicate the 25th and 75th percentiles, respec-
tively; the whiskers extend to the most extreme data points
not considered outliers. It turns out that BPDMF requires many
more flow entries than DAG-FP (the median for BPDMF is
2 to 6 times higher than the median for DAG-FP). Basically,
the reason of such difference is that, for every ingress-egress
pair, BPDMF configures a number of single paths, each of
which requiring its own flow entry, while DAG-FP configures
a DAG which allows flows to take any of the paths included in
the DAG.

The first set of simulations aim to evaluate the performance
of the algorithms under test when no link failure occurs. We
set α as described in the previous subsection, the number of
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Fig. 9. Average and 95% confidence interval of the normalized throughput achieved for different traffic matrices.

Fig. 10. Average and 95% confidence interval of the normalized throughput achieved after the link failure for different traffic matrices.

bins to 5 and the number of flows per ingress-egress pair to
20. For each topology and for each of the 30 traffic matrices
considered, we ran 10 ns-3 simulations by using distinct seeds
for the random variables involved in the generation of traffic
(each TCP flow is associated with two random variables which
determine the duration of the “on” and “off” periods). Figure 9
shows the average and the 95% confidence interval of the nor-
malized throughput achieved by the two algorithms under test
in the 10 runs, for each traffic matrix. It can be observed that
the DAG-based forwarding paradigm achieves a significantly
higher throughput than BPDMF for all the topologies and for
all the traffic matrices.

In the second set of simulations, we simulate a link fail-
ure after 15 seconds from the beginning of the simulation,
in order to evaluate the ability of the proposed paradigm
to react to link failures. We stress that BPDMF does not
provide any restoration mechanism. However, in order to
present a fair comparison to our paradigm, when BPDMF
is used, we simulate that the controller is instantaneously
informed of the link failure, so that it can instantaneously
instruct the involved ingress switches to redirect the flows
routed on the paths affected by the link failure to other paths.
Therefore, results in Fig. 10 are obtained by disregarding the
time that is required for the node that detects the failure to
notify the controller and for the controller to communicate
the new configuration to the involved ingress nodes. When
our forwarding paradigm is used, instead, nodes detecting a
failure can autonomously take appropriate actions to react
to the failure, without the need to communicate with the
controller.

For every topology and traffic matrix, we conducted 10 dif-
ferent simulations where the failing link is selected randomly.
For each simulation, we measured the average throughput
over the interval following the failure. Fig. 10 shows the
average and the 95% confidence interval of the normal-
ized throughput achieved after the link failure in the 10
runs, for each traffic matrix. As indicated by the wider
confidence intervals, distinct link failures have a differ-
ent impact on the throughput achieved after the failures.
Nonetheless, it can be observed that our DAG-based forward-
ing paradigm still outperforms BPDMF in all the considered
cases.

VI. CONCLUSION

In this paper, we presented a forwarding paradigm for
large scale Software Defined Networks based on the def-
inition of a DAG for each ingress-egress pair and on the
use of an index-based hashing scheme to balance the load
across the paths in the DAG. The proposed paradigm addresses
the main challenges currently faced by software defined area
networks. Indeed, our proposed paradigm enables fast local
restoration of link/node failures, prevents the risk of having
inconsistent forwarding tables during configuration updates
and eliminates the delay associated with online path compu-
tation. Furthermore, we proved through extensive simulation
studies that the DAG-based forwarding paradigm achieves sig-
nificantly higher throughput than an alternative solution while
requiring much less flow entries, which is another extremely
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desirable feature in the context of software defined wide area
networks.
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