
An Efficient MPLS-Based Source Routing Scheme
in Software-Defined Wide Area

Networks(SD-WAN)

El Kamel Ali
Prince Lab, ISITCOM

University of Sousse

Sousse,Tunisia

Email : ali.el.kamel@hotmail.com

Majdoub Manel
Prince Lab, ISITCOM

University of Sousse

Sousse,Tunisia

Email : Manel.Majdoub@issatso.rnu.tn

Youssef Habib
Prince Lab, ISITCOM

University of Sousse

Sousse,Tunisia

Email : habib.youssef@fsm.rnu.tn

Résumé—Software Defined Networks (SDN) is a promising
network paradigm that offers flexibility, efficiency and fine-
grained control over forwarding Elements (FE) by decoupling
control and data planes. The forwarding decision is often made
by the controller by managing flow table entries in the switches.
Certainly, flow table management raises a lot of concerns and
various schemes have been proposed such as the traditional Hop-
by-Hop Forwarding scheme. Studies have proved that this scheme
may lead to performance degradation due to a huge control traffic
and a massive flow table consumption. To reduce performance
degradation, source routing was proposed. Unfortunately, this
may also lead to significant bandwidth overhead, particularly in
large-scale networks.
This paper deals with the concept of source routing using MPLS
labels. Basically, our scheme ensures flexibility and is suitable for
application both in SD-LAN and SD-WAN by supporting various
n-port switches (n ≥ 4). Using a MaxHop clustering algorithm,
the network is divided into several sections. In each section, a
trade-off between control traffic overhead, bandwidth overhead
and flow table usage is achieved using a linear weighted scalari-
zation of the Multi-Objective optimization problem. Finally, we
present the θ-MOBO algorithm to be run by the controller.
Simulation results show that the proposed scheme outperforms
parallel solutions such as MPLS label-based forwarding [1]
[2] and Hop-by-Hop forwarding [3] schemes in terms of the
bandwidth overhead and flow rejection rate.

I. INTRODUCTION

Today, Software Defined Networks raises a lot of concerns

due to its ability to offer resources sharing flexibility, adap-

tability, fine-grained control and network virtualization by

decoupling the data plane and the control plane. Based on the

OpenFlow protocol [17], a controller has a global overview

on the network and can order updates to any switch directly

as soon as required. When the first packet of a flow reaches

an ingress switch, a request is forwarded to the controller,

which establishes a path toward the destination and updates

flow tables in switches belonging to that path with matching

fields as well as associated actions. This is called the standard

Hop-by-Hop Forwarding [3].

With the emergence of large-scale networks (such as Wide

Area Networks, WAN), the traditional Hop-by-Hop forwarding

scheme seems to be unsuitable for use since it may lead to

performance degradation caused by a huge amount of control

traffic and massive flow table entries. Therefore, Source rou-

ting [18] was proposed. It consists of defining the routing path

information once at ingress switch. The routing information

is embedded in a MPLS Label or VID tag and attached to

the packet as a header. The header is inspected at each node

along the path to keep the packet forwarding. Source routing

is largely used in Software-defined WANs (SD-WAN).

In this paper, we suggest a source routing scheme that uses

MPLS labels to carry routing information. Our scheme can be

deployed both in SD-LAN or SD-WAN. Our scheme is able

to support any n-port switch, where n ≥ 4, by expressing a
per-hop routing information as a pair of binary values : the

class clj of the switch Sj and the forwarding port number pj
used in Sj . Based on the class of the switch, we can compute

the total bit number required to encode all ports belonging to

that switch.

For scalability purposes, we divide the network into several

sections using a MaxHop clustering algorithm. In each section,

a trade-off between the control traffic overhead, the bandwidth

overhead and the flow table consumption is achieved. Thereby,

we formulate the multi-objective optimization problem and we

resolve it using a linear weighted scalarization. Finally, we

describe the θ-MOBO algorithm to be run by the controller.

This paper suggests the following contributions : Firstly, we

introduce the standard hop-by-hop forwarding scheme, MPLS-

based forwarding scheme, JumpFlow [4] and AJSR [5], and

analyze their benefits and drawbacks. Secondly, we model and

analyze the control traffic overhead problem, the bandwidth

overhead problem and the flow entry placement problem, res-

pectively. Therefore, We formulate a Multi-objective optimiza-

tion problem by combining the above problems. The resulting

problem is resolved using a multi-objective programming

based on a linear scalarization that depends on a set of weights.

Finally, we simulate and evaluate the proposed scheme against

the standard MPLS-based forwarding scheme and Hop-by-

hop forwarding schemes. Experimental results show that our

scheme can effectively outperform parallel solutions in SD-

WANs.

2017 IEEE/ACS 14th International Conference on Computer Systems and Applications

2161-5330/17 $31.00 © 2017 IEEE

DOI 10.1109/AICCSA.2017.165

1205

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 16:18:54 UTC from IEEE Xplore. Restrictions apply.

The rest of the paper is organized as follows. Section II

discusses some related work. Section III introduces the pro-

blem background and discusses the motivation for this paper.

Section IV models the problem and describes the proposed

solution. Section V analyzes simulation results. Section VI

concludes the paper.

II. PREVIOUS WORK

For no later, more concern is given to the deployment of

SDN in large-scale networks. The first example was develo-

ped by Google which integrates SDN into the private WAN

connecting their private datacenters all around the world(the

solution was known under the name B4) [6]. Therefore, it was

proved that deploying SD-WAN is feasible, but it seems to be

so hard and requires more work, compared to SD-LAN, before

it can be widely deployed.

Indeed, many limitations postpone the emergency of SD-

WAN. The most important one is the limited space of flow

tables. Like Cohen et al. in [7], some researches present flow

entry placement schemes as an optimization problem that may

solve the flow table space limitation. based on an argument

that the load of flow table is unbalance among the switches

in the network, they suggest to efficiently use the TCAM

resource on each switch by decomposing a large flow table into

small pieces and distributing these small flow tables across the

network, while preserving the overall SDN policy semantics

[8]. As a result, the total number of flow entries was reduced

since some table flows were shared with other connections.

However, these schemes led to an unwanted packet traveling

inevitably, which may raise security problems. Moreover,

decomposing the flow table is a hard problem [9].

As a remedy, source routing has gained attention since it can

reduce the redundancy of flow table. Source Routing consists

of encapsulating forwarding path in labels, such as MPLS and

VLAN tag. However, more attention should be given to these

labels since they may cause bandwidth overhead.

The problem of reducing or eliminating this overhead be-

comes a very interesting challenge. In [10], a system denoted

SwitchReduce aims to reduce switch states and controller

involvement in OpenFlow networks. Authors in [11] proposes

a hierarchical Segment routing (H-SR) which is an imple-

mentation of segment routing for Carrier Ethernet networks

to improve scalability of segment routed networks based on

a hierarchical segment routing framework [12]. Indeed, the

network is divided into clusters and specific swap nodes are

selected within every cluster. The swap node works as an

intermediate node, which breaks the complete route into sub-

routes and limits the number of labels. However, swap nodes

selection depends largely on the network topology. Moreover,

JumpFlow [4] is proposed as a forwarding scheme that uses

the VLAN identifier (VID) field in the packet header to carry

routing information. Despite that JumpFlow eliminates the

bandwidth overhead, it has many drawbacks and is unsuitable

to be deployed in SD-WAN Moreover, it assumes that the net-

work consists of single kind of switches, having 8 or 16 ports

and all switches are treated similarly. in [5], authors propose

FIGURE 1. Flow entry placement scheme FP = {1}

FIGURE 2. Flow entry placement scheme FP = {1, 3}

an efficient MPLS-based forwarding scheme called Arbitrary

Jump Source Routing (AJSR) which uses the source routing

feature. it aims to achieve a trade-off between the control

traffic overhead and the bandwidth overhead by dividing the

complete routing path of a particular flow into arbitrary length

sections and distributing these sections at different switches

along the flow’s routing path. Although AJSR can be deployed

in SD-WAN, it looks to be not efficient since it can induce a

significant bandwidth overhead, since each per-hop forwarding

information is carried using one MPLS Label.

III. PROPOSED MECHANISM

In this section, we will describe our scheme in detail. Firstly,

we show an overview of the solution. Then, we formulate an

analytic model using the multi-objective optimization problem.

Finally, an heuristic based on the multi-objective programming

is proposed to achieve a triple-axis trade-off.

A. Overview

Inspired both from AJSR and Jumpflow, the proposed

scheme is based on network clustering and aims to achieve a

trade-off between switch-to-switch communication overhead,

controller-to-switch communication overhead and table flow

consumption.

However, our scheme differs from AJSR and JumpFlow in the

following aspects : (i) Jumpflow assumes that all switches in a

routing path have the same number of ports which can be equal

to 8 or 16, and, therefore, they are treated similarly. However,

FIGURE 3. Flow entry placement scheme FP = {1, 3, 4}

1206

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 16:18:54 UTC from IEEE Xplore. Restrictions apply.

switches in large-scale networks may be heterogenous and the

number of ports can reach over 128 ports [5]. Our scheme

uses a pair of binary values (Switch class, Port number) which

helps to express any n-port switch (n ≥ 4) in the path. (ii)

Jumpflow uses a limited 12-bits VID field. This allows to carry

at maximum [12/ log(n)] hops per packet [4], where n denotes
the number of switches. As n goes large like in large-scale

networks, JumpFlow seems to be unsuitable for application

in SD-WAN. Our scheme uses MPLS labels to keep packet

forwarding. This allows to carry over (n*8) hops per packet,

where n denotes the used number of MPLS labels. (iii) AJSR

uses one MPLS label to carry forwarding information of one

hop from the routing path which may lead to bandwidth

overhead as the number of hops goes on.

Carrying routing path in MPLS labels brings a lot of benefits.

Indeed, MPLS labels are enough to encode any port of any

switch. Each Switch should only perform pop, push and read

operation on each packet without requirement to modify it.

This will help to support heterogeneous switches with different

number of ports. However, carrying routing path in MPLS

labels may lead to bandwidth overhead introduced by appen-

ding multiple MPLS labels to the packets. Nevertheless, the

bandwidth overhead can be significantly reduced by properly

encoding forwarding ports with exactly the required number of

bits. As an example, if the packet crosses the ports 2,10 and

31 during forwarding, the routing information requires only

2+4+5=11 bits to be forwarded, however, 3*32=96 bits are

used if we consider the MPLS-based forwarding scheme.

B. Analytic model : general background

Generally, a network is defined as a directed graph G(S,L),

where S and L denote the set of switches and the set of links,

respectively. A routing path is a vector P = (s1, s2, ..., sN) ⊆
SN between the source and the destination, where sj (1≤j≤
N) is the jth switch of the routing path and N is the length of

the path. The current flow table usage relative to path P can be

expressed as a vector UP = (u1, u2, ..., uN) where uj denotes

the flow table usage of the switch sj . Let CP = (c1, c2, ..., cN)
be the set of flow table capacities of the switches belonging

to path P, where cj represents the capacity of the flow table

relative to switch sj .
the flow entry placement scheme can be modeled as a ordered

subset FP = (f1, f2, ..., fr) where 1 ≤ r ≤ N and Fp ⊆ P .
The vector FP is denoted the set of contact switches. A contact

switch is a switch which loads a section of routing path for

a flow. Usually, the ingress switch must be a contact switch,

thus, for every flow entry placement scheme, we have f1 ={1}.

Since the flow table usage uj of the switch sj should not

exceed the capacity constraint cj , we can formulate the flow
table usage problem as follows (Eq 1) :

∀fj ∈ FP : ufj + 1 ≤ cfj (1)

C. Routing information modeling

To model the routing information of a flow that crosses a

specific path P, we first define a vector KP = (k1, k2, ..., kN),
where kj ∈ N represents the class of the switch sj . The

FIGURE 5. Optimizing Routing Information for FP = {1}

switch’s classification depends on the number of relative

physical ports. Therefore, the class 0 denotes a 4-port switch,

the class 1 denotes a 8-port switch, the class m denotes a

2m+2-port switch, and so on. If nj is the number of ports on

the switch sj , the class kj can be obtained as follows[2] :

kj = �log2(nj)� − 2 (2)

The class of the switch helps to compute the required number

of bits which is enough to encode all ports. Indeed, if kj is
the class of the switch sj , the required number of bits which
is enough to encode all ports is kj + 2.
For a packet on path P, a forwarding information ij is

required on each switch sj to keep the packet forwarding.

This forwarding information is defined using a pair of binary

values ij = (kj , prj), where kj and prj are the class of the
switch sj and the local forwarding port, respectively.
To allow extraction of separate routing information by each

switch, we should use the same number of bits to represent

different classes. This number is defined by the switch having

the greatest number of ports. Therefore, each class kj in a

routing information should be defined using a number of bits

equal to N̂p, which is shown in Equation (Eq.3).

N̂p = 	log2(K̂p)
+ 1 (3)

Where K̂p denotes the class of the switch having the greatest

number of ports and is computed using Equation (Eq.4) :

∀sj ∈ P : K̂p = �log2(max
sj

(nj))� − 2 (4)

D. Optimizing Routing information

Take figure Fig5 as an example. The initial routing infor-

mation is IP ={(1,6)(3,6)(3,2)(1,2)}. The total number of bits
required to represent the routing information is 5+7+7+5=24

bits. The outgoing port pr3 in the switch S3 is number 2

which requires only 2 bits to be encoded. However, 5 bits

are allocated since it is a 24-port switch(�log2(24)�=5). The
forwarding information can be reduced if we assume that the

port pr3 belongs to a 4-port switch. Therefore, the optimized
routing information is I ′P={(1,6)(1,6)(0,2)(0,2)} which gives

a total bit number of 5+5+4+4=18 bits.

Let |IP | be the size of the routing information. Hence, |IP |
should not exceed an MPLS label size (32 bits). Otherwise,

another contact switch should be defined. As the controller

has a global overview of the network, it can create a MaxHop

1207

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 16:18:54 UTC from IEEE Xplore. Restrictions apply.

FIGURE 4. Optimal Flow Entry Placement based on the Bandwidth Overhead

Algorithm 1 MaxHopClustering

Require: IP = (i1, · · · , iN) {initial routing information.

Every item ij is a pair of values (clj , prj) which defines

the class of sj and the local port used to forward packets,
respectively.}

Ensure: Sec = (S1, · · · , SK)

{∀i, Si are subsets from IP .
K⋃
i=1

Si = IP and
K⋂
i=1

Si = ∅}
Sec ← ∅
while IP
= ∅ do

Sk ← ∅
for all ij ∈ IP do

x ← 2clj+2

while prj ≤ x/2 do
x ← x/2

end while
clj ← �log2(x)� − 2
ij ← (clj , prj)
if |Sk |+|ij | ≤ 32 then

Sk ← Sk ∪ ij
else
Exit

end if
end for
Sec ← Sec+ {Sk}
IP ← IP \{Sk}

end while
return Sec

routing information by adding, incrementally, switches belon-

ging to the path P until the destination is reached or the size

of routing information is close to 32 bits.

The size of routing information |IP | is declared to be close
to 32 bits if, by adding other forwarding information to IP ,
|IP | exceeds 32 bits. We present the algorithm MaxHopCluste-
ring(Algorithm 1) to be used by the controller to split the path

P into several sections. Each section should use one MPLS

label to keep packet forwarding.

In each section Sk, the controller should select a set of contact

switches FP � Sk basing on three criteria :i)Minimizing the

overall bandwidth overhead,ii)Minimizing the control traffic

overhead and iii)Minimizing the standard deviation of the

flow table usage compared to an up-to-date pre-computed

average flow table usage to make sure that packets will be

routed efficiently to the next section or, to the corresponding

destination.

E. Bandwidth overhead

The Bandwidth overhead (Bo) refers to the total number of

bits introduced along the path P. As an Example, using flow

entry placement scheme FP = {1, 3} reduces the bandwidth
overhead form 5+5+6+4=20 bits (Fig1) to 4+5+5=14 bits

(Fig2). Moreover, considering flow entry placement scheme

FP = {1, 3, 4} (Fig3), the bandwidth overhead achieves

4+5=9 bits.

Generally, The flow entry placement scheme is initialized

as Fp = {1}. For any flow placement scheme FP =
{f1, · · · , fr}, the bandwidth overhead Bo(FP) is expressed
as follows(Equation 5) :

Bo(FP) =
∑

i∈[f1,fr[

Bo(fi, fi+1) (5)

1208

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 16:18:54 UTC from IEEE Xplore. Restrictions apply.

Bo(fi, fj) is defined as the total number of bits introdu-

ced between contact switches fi and fj . Conventionally, we
assume that Bo(fi, fj) = 0 if fi and fj are contiguous

switches. Otherwise, the bandwidth overhead is computed

using Equation (Eq6) :

Bo(fi, fj) = (fj − fi − 1)�K̂fi,fj�+
∑

p∈]fi,fj [

�log2(np)� (6)

Where

K̂fi,fj = log2(max
p∈]fi,fj [

(np)) (7)

Let F be the set of all possible flow entry placements in

a subset of nodes of a specific path P. Our objective is to

find a flow entry placement FP ∈ F that minimizes the

bandwidth overhead. Thereby, we formulate the bandwidth

overhead minimization problem as follows(Equation 8) :⎧⎪⎪⎨
⎪⎪⎩

min
FP∈F

Bo(FP)

subject to
Bo(FP) ≤ 32

(8)

F. Control traffic overhead
The control traffic overhead refers to the total bit number of

control traffic resulting from defining a flow entry placement

FP = (f1, · · · , fr). Let d(si) be the link cost between the

controller and the switch si and let M be the mean size

of control messages. Thereby, we define the control traffic

overhead as follows(Equation 9) :

CTo(FP) =

∑
fi∈FP

d(fi)M

r
(9)

Thereby, Our objective is to find a flow entry placement

scheme FP = (f1, · · · , fr) ∈ F that minimizes the control

traffic overhead (Equation 10).

min
FP∈F

CTo(FP) (10)

G. Flow table usage balancing
Unfortunately, some flow tables of core switches may

be overflowed while underflowed in other switches, which

may lead to unbalanced resource usage and performance

degradation [13]. Therefore, selecting efficiently a flow table

placement FP = (f1, · · · , fr) where 1 ≤ r ≤ N that can

balance the flow table consumption is a relevant problem.

Let wi = ui/ci be the weight of flow table usage in the switch

si. Let Ŵ be the average of flow table weights wi; ∀i.
Given a set F of flow entry placements, the goal is to achieve a

balanced flow table usage by properly minimizing the standard

deviation of the current average of switch’s weights compared

to the resulting average after placing relative flow entries.

Thereby, for a flow entry placement FP = (f1, · · · , fr)
with current average of flow table weights Ŵ , we define the

standard deviation Δ(FP , Ŵ) as follows(Equation 11) :

Δ(FP , Ŵ) =

√√√√ ∑
fi∈FP

(wfi − Ŵ)2

r
(11)

Thereby, Our objective is to find a flow entry placement

scheme FP = (f1, · · · , fr) ∈ F that minimizes the standard

deviation. ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
FP∈F

(Δ(FP , Ŵ))

subject to
wfi ≤ 1 ∀fi ∈ FP

(12)

H. Multi-objective programming solution

Our objective consists of finding a set of contact switches

that achieves a trade-off between the bandwidth overhead, the

control traffic overhead and the flow table consumption by op-

timizing simultaneously the three objective functions defined

in Equation 8, Equation10 and Equation12, respectively.

Given a set F of feasible solutions, we formulate a multi-

objective optimization problem as follows(Equation 13) :⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
FP∈F

(Bo(FP), CTo(FP),Δ(FP , Ŵ))

subject to
FP ⊆ P

(13)

In mathematical terms [14], it has been proved that it does

not typically exist a solution that minimizes different objective

functions simultaneously. Therefore, we define a set of Pareto

Optimal solutions. A solution is called a Pareto Optimal, if
there does not exist another solution that dominates it.

Let Ob = (ob1, ob2, ob3) = (Bo,CTo,Δ) be the set of

objective functions. Therefore, Given two feasible solutions

F 1
P and F 2

P in F , F 1
P dominates F 2

P if (Equation 14) :{
1. obi(F

1
P) ≤ obi(F

2
P) ; ∀i = 1 · · · 3

2. ∃ at least one index j ; obj(F 1
P) < obj(F

2
P)

(14)

To be resolved, the linear scalarization [15] [16] of the

multi-objective optimization problem is adopted. indeed, each

objective is associated with a weight θi; ; ∀i = 1..3. The-
reby, the multi-objective optimization problem is formulated

as a single-objective optimization problem that depends on

θ = (θ1, θ2, θ3), as follows(Equation 15) :⎧⎪⎪⎨
⎪⎪⎩

min
FP∈F

g(Ob(FP), θ)

subject to
FP ⊆ P

(15)

Where

g(Ob(FP), θ) = Ob.θT =
∑
i

θiobi(FP) (16)

For the rest of this paper, we denote F ∗
P a Pareto solution

and F∗ the set of all Pareto solutions. F∗ is said to be a

θ-Optimization of the multi-objective optimization problem (

we called this the θ-MOBO). Finally, we suggest the algorithm
shown in Algorithm2.

1209

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 16:18:54 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 θ-MOBO

Require: F , θ = (θ1, θ2, θ3)
Ensure: F∗

M ← ∞
F∗ ← ∅
for all FP ∈ F do
X ← Bo(FP)
Y ← CTo(FP)

Z ← Δ(FP , Ŵ)
if θ1X + θ2Y + θ3Z < M then

M ← θ1X + θ2Y + θ3Z
end if

end for
for all FP ∈ F do
X ← Bo(FP)
Y ← CTo(FP)

Z ← Δ(FP , Ŵ)
if θ1X + θ2Y + θ3Z = M then

F∗ = F∗ ⋃{FP }
end if

end for
return F∗

IV. EXPERIMENTAL SETTINGS

In this section, we evaluate the performance of MPLS-based

forwarding scheme, Hop-by-hop forwarding scheme and our

scheme, respectively.

In our simulations, we use the beacon controller (Beacon1.0.4)

which communicates with switches through OpenFlow 1.0.3.

The topology, shown in Figure 6, is created using the Mininet

simulator (Mininet2.2.0). For simplicity, we assume that all

switches have the same number of ports (64 ports). Port

numbers in each switch are chosen randomly into the set

[0,63]. Initially, the flow table capacity at each switch is fixed

at 500 flow entries. A path is defined using the maximum

number of crossed switches to simulate large scale-networks

(the path is colored red in the network topology). The si-

mulation consists of 6 steps. In each step, the source will

generate multiple 1Mbps-CBR flows to be sent toward the

same destination. At each step, a flow arrival rate is picked

from the set [10,100,200,500,700,1000]. The link cost between

the controller and a contact switch is configured according to

the distance which separates the contact switch to the ingress

switch, incremented by 1. We run our simulation 30 times.

V. RESULTS ANALYSIS

Table 7 shows resulting Pareto Optimal sets F∗ for dif-

ferent vectors θa,θb and θc. Figure 8 shows the result of

the MaxHopClustering algorithm on our topology. Obviously,

the θ-MOBO algorithm gives the Pareto optimal solution that

satisfies simultaneously the three objective functions in the

best way.

Figure 9 shows the total bandwidth overhead of MPLS-based

forwarding scheme and our scheme as the flow arrival rate

FIGURE 6. Network topology

FIGURE 7. Pareto optimal sets for different vectors θ

changes. Firstly, we consider our scheme when the MaxHop-

Clustering algorithm is not activated. After that, we launch

the MaxHopClustering algorithm. In this figure, the bandwidth

overhead of traditional MPLS-based forwarding scheme in-

creases exponentially as the flow arrival rate increases from

10 to 1000 flows/step. However, it increases linearly for our

scheme.

Obviously, Our scheme is able to reduce effectively the

bandwidth overhead over 79% when MaxHopClustering is

inactivated and reaches over 90% if the algorithm is activated.

Indeed, the network is split into sections. In each section,

routing information is carried using only one MPLS label. The

total number of used MPLS labels falls from 17 in MPLS-

based forwarding to only 4 labels in our scheme per each

flow (more than 75%). Traditional MPLS-based forwarding

scheme introduces a huge amount of bandwidth overhead

because it requires the complete forwarding information to

be encapsulated in the ingress switches. However, our scheme

performs best since the network is divided into sections based

on the routing information. In each section, a set of contact

switches is picked and the complete routing information is

divided into small parts and distributed to different contact

FIGURE 8. MaxHopClustering : Dividing topology into sections

1210

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 16:18:54 UTC from IEEE Xplore. Restrictions apply.

FIGURE 9. Bandwidth overhead as a function of flow arrival rate

FIGURE 10. Flow rejection rate as a function of flow arrival rate

switches along the flow’s routing path.

Figure 10 shows the flow rejection rate for the hop-by-hop for-

warding scheme, the MPLS-based forwarding scheme and our

scheme. The MPLS-based forwarding scheme outperforms the

standard openflow scheme since flow rejection depends only

on current flow table usage of the ingress switch. However, the

flow rejection on hop-by-hop forwarding scheme depends on

the switch having the greatest flow table usage. Our scheme

is able to achieve performances of MPLS-based forwarding

if the ingress switch has the greatest flow table consumption.

Elsewhere, the flow rejection occurs faster than MPLS-based

forwarding, but, it is significantly postponed (most than 3

times) compared to hop-by-hop forwarding scheme.

VI. CONCLUSION

This paper proposes an efficient scheme which achieves a

trade-off between switch-to-switch communication overhead,

controller-to-switch communication overhead and flow table

consumption by combining those objectives into a multi-

objective optimization problem.

In this paper, both SD-LAN and SD-WAN are considered. In

our scheme, the network is divided into several sections. Only

one MPLS label is required in each section. We use a pair of

binary values to express per-hop forwarding information.

As shown in the results, our scheme performs best compared to

the MPLS-based forwarding in terms of bandwidth overhead.

It seems also that it can ensure a flow rejection rate close

to that offered by the MPLS-based forwarding scheme. More

simulations will be done in future work. Our scheme will be

compared with parallel schemes to prove its efficiency.

RÉFÉRENCES

[1] Soliman M, Nandy B, Lambadaris I, et al. , Exploring source routed
forwarding in SDN-based WANs , IEEE International Conference on
Communications. IEEE, 2014 :3070-3075.

[2] P. Ashwood-Smith,M. Soliman,W. Tao, Sdn state reduction , (IEFT draft).
[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.

Rexford, S. Shenker, J. Turner,‘Openflow : enabling innovation in campus
networks, ACM SIGCOMM CCR 38, 2008 :69–74

[4] Guo, Zehua, et al. JumpFlow : Reducing flow table usage in softwarede-
fined networks, Computer Networks 92 2015 : 300-315.

[5] X. Dong, Z.Guo, et al., AJSR : an Efficient Multiple Jumps Forwarding
Scheme in Software-Defined WAN,IEEE Access V5, 2017 :3139-3148

[6] Jain, Sushant, et al. B4 : Experience with a globally-deployed software
defined WAN. ACM SIGCOMM Computer Communication Review43.4
2013 : 3-14.

[7] Cohen R, Lewin-Eytan L, Naor J S, et al. On the effect of forwarding table
size on SDN network utilization, INFOCOM IEEE, 2014 :1734-1742.

[8] Kanizo Y, Hay D, Keslassy I. Palette : Distributing Tables in Software-
Defined Networks, Proceedings - IEEE INFOCOM, 2013 :545-549.

[9] Kang, Nanxi, Liu, Zhenming, Rexford, Jennifer, et al.Optimizing the one
big switch abstraction in software-defined networks, ACM Conference on
Emerging NETWORKING Experiments and Technologies. 2013 :13-24.

[10] Iyer, S. Aakash, Vijay Mann and Naga Rohit Samineni. Switchreduce :
Reducing switch state and controller involvement in openflow networks
IFIP Networking Conference, 2013.

[11] Bidkar S, Gumaste A, Somani A. A scalable framework for segment rou-
ting in service provider networks : The Omnipresent Ethernet approach,
High Performance Switching and Routing (HPSR), 2014 :76-83.

[12] Bidkar, Sarvesh, et al.Field trial of a software defined network (SDN)
using carrier ethernet and segment routing in a tier-1 provider,Global
Communications Conference (GLOBECOM), 2014.

[13] Kreutz D, Ramos F M V, Esteves Verissimo P, et al. Software-Defined
Networking : A Comprehensive Survey. Proceedings of the IEEE 2014-
103 :10-13.

[14] Ching-Lai Hwang, Abu Syed Md Masud (1979), Multiple objective
decision making, methods and applications : a state-of-the-art survey.
Springer-Verlag. ISBN 978-0-387-09111-2. Retrieved 29 May 2012.

[15] Matthias Ehrgott (1 June 2005), Multicriteria Optimization. Birkhäuser.
ISBN 978-3-540-21398-7. Retrieved 29 May 2012

[16] Carlos A. Coello Coello, Gary B. Lamont, David A. Van Veldhuisen
(2007). Evolutionary Algorithms for Solving Multi-Objective Problems.
Springer. ISBN 978-0-387-36797-2. Retrieved 1 November 2012

[17] Nick McKeown, et al., OpenFlow : enabling innovation in campus
networks, ACM SIGCOMM CCR, v.38 n.2, April 2008.

[18] Mourad Soliman, et al., Source Routed Forwarding with Software
Defined Control, Considerations and Implications, ACM CoNEXT Stu-
dent’12, December 10, 2012 :43-44.

1211

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 16:18:54 UTC from IEEE Xplore. Restrictions apply.

