
2016 Al-Sadeq International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-
MITCSA) – IRAQ (9-10) May

Abstract- Software Defined Network (SDN) provides a new

fine-grained interface enables the routing algorithm to have an a
global view of the network throughputs, connectivity and flows at
the data-path. This paper aims to provide a novel approach for
dynamic routing algorithm for Software Defined Network in
Wide Area Network (SDN-WAN); based on using a modified
shortest-widest path algorithm with a fine-grained statistical
method from the OpenFlow interface, called Shortest-Feasible
OpenFlow Path (SFOP). This algorithm is designed to
identify the optimal route from source to destination, providing
efficient utilization of the SDN-WAN resources. It achieves this
aim by considering both the flow requirements and the current
state of the network. SFOP computes the optimal path which
provides the feasible bandwidth with the lowest hop count
(delay). That will present better stability in SDN communication,
QoS, and usage of available resources. Moreover, this algorithm
will be the base for an SDN controller because it extracts the
widest available bandwidth from source to destination for a
single path. It enables the controller to decide whether it is
enough to use this simple algorithm only, or if a more
complicated algorithm that provides larger bandwidth such as
multiple-path algorithms is needed. Finally, a testbed has been
implemented using MATLAB Simulator, Pox controller, and
Mininet emulator will be discussed. The latency comparison of
SFOP algorithm with three other algorithm’s latencies shows
that this algorithm finds better latency for an optimal path.
Evidence will be shown that demonstrates that SFOP has good
stability in dynamic changes of SDN-WAN.

Keywords—SDN; WAN; Matlab; Mininet; OpenFlow; Pox.

I. INTRODUCTION
Traditional networks have very distributed control

mechanisms. Specific routing protocols and algorithms need
to be executed on every node. They find the best route from
the source to the destination and keep usage balance of
network resources [1]. The rapid growth of the Internet makes
the network managing and monitoring a difficult task.
Therefore, the Traffic Engineering (TE) is used to optimize
controlling and monitoring the flow in the network. TE helps
to satisfy a specific level of Quality of Service (QoS) and
providing efficient resources utilization of network [2].

However, TE faces two challenges: 1) it increases the
communication; and 2) the computation overhead.

Regarding the first challenge, the flow-base techniques
cause extra communication to reserve the path resources.
Moreover, the routing algorithms related to TE techniques
make a heavy measurement to learn the available resources
and their utilization. Consequently, they require a greater level
of communication to build and update their database. All of
which raise the amount of the communication in the network
[3].

The second challenge, the complicated algorithms related to
TE require appreciable computation complexity both in terms
of time and space. Therefore, this level of consumption of
computation power within network nodes makes it difficult to
provide these requirements in all nodes of the network [2].

Fortunately, a novel paradigm of networking called
Software-defined Network (SDN) has diminished both of
these challenges.

The most important achievement of SDN is that it
significantly reduces the communication overhead needed to
have a global view of network resources utilization. Also,
SDN central control reduces the number of authorities, which
requests this information [3]. SDN reduce communication
overhead through its use of a novel interface between network
nodes and a controller such as OpenFlow protocol. This
interface contains counters, which indicate the state of
network throughputs, connectivity, and flows [3][4].
Therefore, this paper suggests using OpenFlow statistics to
compute the flow path from source to destination.

A further point is that SDN increases the flexibility in the

use of routing algorithms by changing the way, the location,
and the frequency of the routing algorithms are implemented
[5]. In logically centralized control, reserving a path from the
source to the destination for each flow can be achieved
without flow-based techniques; however, the flow-based
techniques in SDN are available if required. In addition, the
routing algorithms now only run in the controller and for one
time per flow in a normal scenario. As a result, SDN can
provide a more precise path with less delay.

In this paper, we present the use of the statistics of the
OpenFlow protocol with the developed SFOP algorithm,
which is better than simple algorithms such as shortest, widest,
or shortest-widest path for the following reasons:

Routing Algorithm Optimization for Software
Defined Network WAN

Ameer Mosa Al-Sadi
University of Northampton

Department of Computing and
Immersive Technologies

Northampton, United Kingdom
Ameer.alsadi

@northampton.ac.uk

Ali Al-Sherbaz
University of Northampton

Department of Computing and
Immersive Technologies

Northampton, United Kingdom
Ali.Al-Sherbaz

@northampton.ac.uk

James Xue
University of Northampton

Department of Computing and
Immersive Technologies

Northampton, United Kingdom
James.Xue

@northampton.ac.uk

Scott Turner
University of Northampton

Department of Computing and
Immersive Technologies

Northampton, United Kingdom
Scott.Turner

@northampton.ac.uk

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 16:55:13 UTC from IEEE Xplore. Restrictions apply.

2016 Al-Sadeq International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-
MITCSA) – IRAQ (9-10) May

1. The SFOP algorithm will find the optimal path:
a) Has a lower latency by computing the shortest path

of feasible bandwidth.
b) It will not overuse the available bandwidth like

widest and shortest-widest path routing algorithms
[6]. Because it will use the feasible bandwidth as a
base to search the shortest path.

 It does those without raising the time and space of the
computation complexity to the limit, which could
produce an unacceptable delay in performance of SDN
controller.

2. This algorithm will be the basis of the controller, which
separate implementing a simple routing algorithm for
the normal path, from the implementation of a more
complicated one for an intractable path. It supplies the
controller with a maximum bandwidth of the widest
path. This data facilitate the controller to decide
whether it needs to implement more complicated
routing algorithm such multi-flow algorithm [7][8].

3. The fine-grained statistic of OpenFlow will reduce the
costs of measurement and computation needed to build
algorithm database [3].

4. The good convergence of OpenFlow statistic will guide
the routing algorithm to use real available nodes
capacity and links bandwidth, which optimize
resources utilization [3].

In this paper, we use an SDN emulator namely Mininet [9]
and a Pox controller, which is an open source development
platform for Python-based SDN control applications [10], to
emulate the paths of the dynamic routing algorithm, while, a
path is computed through MATLAB Simulator tools.
 The rest of this paper is structured as the following: section
II briefly reviews the related work; section III explains the
statistics of OpenFlow interface; the SOFP algorithm is
demonstrated in section IV; section V conducts algorithm
complexity analysis; section VI introduces the testbed; the
emulation results are discussed in VII. Finally, conclusions of
the work are shown in section VIII.

II. RELATED WORKS
History of routing algorithms for the traditional network is

evolved from simple ones such as shortest and the widest path
to the very complicated algorithms of constraint QoS [7].
Many works evaluate the performance of routing algorithm
and classified them according to their complexity and
efficiency for a specific type of traffic [6][11][12]. The work
in [6] concluded that shortest path algorithm works fine for
light traffic loads and the widest-shortest path algorithm is
convenient for heavy loads. Widest path algorithm performs
badly for both heavy and light loads. While, the routing
algorithm of shortest-widest path causes a low throughput for
best-effort-traffic.

After that, a more complicated routing algorithm was
developed to satisfy specific QoS requirements. Some authors
provided intensive review for QoS routing algorithm [12][13].
Multi-Constrained Multipath (MCMP) routing algorithm was
designed using a combination of multi-routing algorithms and
redefined matrices [11]. On team [13] developed an algorithm
to find bandwidth and delay constrained path. It can be seen

that routing algorithms have attracted a great deal of research
interest in the traditional network.

The emergence of SDN requires reinvestigation of the
routing algorithm due to the new features of a novel paradigm.

On one hand, several works implemented using a simple
algorithm such as shortest and widest routing algorithm to
optimize routing in SDN. For example, [14] used the widest
path to find a path between switch and server in the data
center. While in [15] the widest or shortest path was used after
application server notifying the controller which one is more
suitable for the current flow. Finally, one of the recent work in
this area [5], they replaced the shortest path with widest path
algorithm in a Floodlight controller. As noted, this work did
not develop many new aspects for a simple polynomial routing
algorithm to exploit new features of SDN or to satisfy its new
requirements. They mostly implement and evaluate the
traditional algorithms in SDN network. Therefore, this paper
aims to fill this gap.

On the other hand, the majority of the routing algorithm
optimization in SDN focused on complicated routing
algorithms, which are destined to serve many constrain QoS
specifications. For instance, [1][16] used very complicated
algorithms to optimize QoS for multimedia and video
streaming. Similar work in [17], a multi-constrained shortest
path to enhance video streaming was constructed.
Subsequently, [18] worked to get better QoS with minimal
controller load at the same time. After that, [8] utilized the
advanced Boolean satisfiability (SAT) techniques to compute
the constrained shortest path. Some researchers [19] have
employed Bayes’ probability theorem to find the feasible link
of satisfied QoS constraint. Eventually, K maximally disjoint
path algorithm was presented in [20]. This work also aimed to
provide a buffer, which prevents implementing these
complicated algorithms until the flow requirements enforce
the controller to implement them.

This work develops SFOP algorithm, which provides a path
of lower latency and feasible bandwidth. At the same time, it
keeps acceptable complexity according to the SDN controller
capabilities. In addition, it focuses on replacing the
informative old protocol, and the complex computation
requirements to update the resources utilization; by a fine-
grained OpenFlow interface, which is one of the main keys to
the success of SDN.

Finally, it is clear that the shortest-widest path algorithm
consuming the network bandwidth negatively, as mentioned in
the first paragraph. Therefore, it is modified to search the
shortest path of feasible bandwidth for the flow.

III. STATISTICS OF OPENFLOW INTERFACE
This work suggests using the fine-grained statistics of

OpenFlow interfaces to compute the optimal path by routing
algorithms. Especially, the information required for routing
algorithms extracted by efficient open-source software's, such
as Open Traffic matrix (Open TM) [21] and Open Network
Monitoring (OpenNetMon) using OpenFlow interface [3].

This section briefly shows OpenFlow protocol and the
related routing algorithms requirements. OpenFlow protocol is

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 16:55:13 UTC from IEEE Xplore. Restrictions apply.

2016 Al-Sadeq International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-
MITCSA) – IRAQ (9-10) May

designed to have a global view of all network connectivity and
throughput for dataflow layer. When any change in network
connectivity happen, OpenFlow switches send a port-state
message to the controller to update this change [22]. In
addition, OpenFlow switches have flow counters per-port,
per-flow, and per-queue. These counters maintain the network
state in controller database using two types of messages. The
more frequent one is the flow-removed message when the flow
time up. The second message is Read-State, which is sent by
the controller to collect switches statistics. Both messages
contain the flow-duration and its byte count at each switch,
which enables to identify network throughput for each link
[22][23].

The developed routing algorithm needs to learn the network
throughput as an incident matrix of bandwidth (IncBW)
[3][21]. In addition, this software should supply the algorithm
by the feasible bandwidth per flow type (FBW) based on a
monitoring and the QoS requirements [4][3].

The algorithm also uses the OpenFlow to identify the type
of flow based on different parameters in OpenFlow header,
which are source port (TCP/UDP-src-port), destination port
(TCP/UDP-src-port) and type of service (IP-TOS) [22].

IV. THE SFOP ALGORITHM
It is based on a combination of shortest widest path and the

restricted shortest path. The algorithm is executed as a
management application inside the SDN controller. The
algorithm has two input parameters, which are the incident
matrix of residual bandwidth (IncBW) in the current state of
the network and the feasible bandwidth (FBW) for the current
flow. Both are learned from the open source software
presented in [3][4], which use the fine-grained OpenFlow
statistic as explained in section III.

First, the algorithm starts by computing the widest path and
widest bandwidth. Second, it is modified to compare the FBW
of OpenFlow statistics with the found widest bandwidth.
Then, it uses the FBW if it is less or equal to the widest
bandwidth. Otherwise, it uses the widest bandwidth itself.
Third, it finds the shortest path of the chosen bandwidth. The
second and third parts (the modified parts) are the
contributions of this paper. Unlike the algorithm of the
shortest widest path, that finds the shortest path of widest
bandwidth. The algorithm of SFOP finds the shortest path of
feasible bandwidth.

The algorithm computes the optimal path, which provides
feasible bandwidth and the minimum hops count (minimum
delay). In the meantime, the algorithm also optimizes the
utilization of links bandwidth, because the algorithm will
always use the path, which has the feasible bandwidth in the
current state of SDN-WAN and leaves the links, which have
the widest bandwidth for best-effort-traffic.
Let's start to formulate the algorithm for a more detailed
demonstration. The SDN-WAN is represented by undirected
finite graph (ܮ ,ܰ) ࡳ, where the ࡺ is the network nodes and ࡸ
is the links between them. |ܰ| = ݊ and |ܮ| = ݈ .The path ࡼ is
the optimal path of sequence nodes ࡼ = = ࢔ࡵ) ;૚࢔ …,૛࢔ = ࢑࢔, is Ingress ࢔ࡵ where ,(ࢍࡱ

node, ࢍࡱ is Egress node, ࢑ is the length of the path and (݊݅ ;݊݅+1) ∈ ܮ ∶ ∀݅ = (1,… . , ݇ − 1). A link ࢒ with origin
node ࢔ and destination node ࢓ is denoted by (࢓,࢔).
Respectively, with each link ࢒ = ࢓,࢔,(࢓,࢔) ∈ there is an ࡺ
associated bandwidth 0 ≤ ࢒ࢃ࡮ and a delay 0 ≤ ࢒ࢾ.

The main steps of SFOP algorithm:

1. Find the less utilize links connect every neighbor of
nodes (create Adjacency matrix AdjBW from incident
matrix IncBW. See pseudocode in figure1.

2. Compute the widest path using modified Dijkstra's
algorithm. See figure 2.

 The widest path is defined as shown in equation 1: (ࡼ࢚࢙ࢋࢊ࢏࢝)ࢎ࢚ࢊ࢏࢝ࢊ࢔ࢇ࡮= …[(࢏ࡰ,࢏࢒ࢃ࡮)ܖܑܕ] (࡯ࡰ࡭≥ࡵ ࢊ࢔ࢇ ࢒ࢊ࡭∋࢏࢒ :ࡵ࢒…૜࢒,૛࢒,૚࢒)=࢏࢒࢞ࢇࡹ (૚)
 Where:

a) D = Distance matrix, which save the maximum bandwidth of
path from the ingress node until this node.

b) ݈݀ܣ = the group of links connected to adjacent nodes.
c) ܿ݀ܣ = the count of these links.

3. Check bandwidth; algorithm uses the feasible
bandwidth (ܹܤܨ) if it is less than the widest
bandwidth (ܤ)ݐݏ݁݀݅ݓ ܹܲ)). Otherwise the widest
bandwidth (ܤ)ݐݏ݁݀݅ݓ ܹܲ)) is used. See figure 3.

4. Remove all the links have bandwidth less than the
last specified bandwidth (ܤ)ݐݏ݁݀݅ݓ ܹܲ) or ܹܤܨ) .
See figure 3, step 31.

5. Compute the shortest path of last specified
bandwidth, using another modified Dijkstra's
algorithm. See figure 4.
The cost of shortest path is defined in equation 2: (ࡼ࢚࢙ࢋ࢚࢘࢕ࢎ࢙)࢚࢙࢕࡯= ෍ ࢏࢒ࢃ࡮](ࢉࢊ࡭≥ࡵ ࢊ࢔ࢇ ࢒ࢊ࡭∋࢏࢒ :ࡵ࢒…૜࢒,૛࢒,૚࢒)=࢏࢒ܖܑۻ + ࡺ [࢏ࡰ

࢑=૙ … (૛)

 Where:
a) D = Distance matrix, which saves the accumulated

bandwidth of path from the ingress node until this node.
b) ݈݀ܣ = the group of links connected to adjacent nodes
c) ܿ݀ܣ = the count of these links.

Fig. 1. Pseudo code for creating adjacency matrix of bandwidth.

Initialize 1# create Adjacency matrix of bandwidth (AdjBW) by
extracting it from Incident matrix of the graph (IncBW).
(G: GRAPH, NODE= N, Links=L, Incident matrix of bandwidth=IncBW,
Adjacency matrix of bandwidth = AdjBW)
1. Input: incident matrix of bandwidth
2. For ݈݈ܽ ݊ ∈ ܰ do . /* for all nodes in G *|
3. chose the link of higher bandwidth;
 |* to find the less utilize link if there are more than one link *|
4. Endfor

Algorithm1# compute the widest path########################.
 (Ingress node=In, Egress node=Eg, Visited nodes vector=ࢂ, Unvisited node
vector=ࢂࢁ, Distance matrix=D, Current Visit Node =CVN, path=P, Path
bottleneck bandwidth= ࢝ࢃ࡮࢚࢙ࢋࢊ࢏).
Compute distance matrix
5. Initialize: ܸ = ∅; |* initialize visited node vector to be empty*|
6. Initialize: ܷܸ = ݈݈ܽ ܰ; |* initialize Unvisited node vector to have all N*|
7. Initialize: k=0; |* initialize counter to zero*|
8. Initialize: ࡺࢂ࡯ = ૙;|* variable to hold the Current Visit Node (CVN) *|
9. While ܷܸ ≠ ∅ do|* for all nodes in UV *|
10. k=k+1; |* increment counter*|
ࡺࢂ࡯ .11 = (݊)ࢋࢉ࢔ࢇ࢚࢙࢏ࢊ࢞ࢇ࢓
 |*Select node ݊ has maximum distance D to be current visited node*|

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 16:55:13 UTC from IEEE Xplore. Restrictions apply.

2016 Al-Sadeq International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-
MITCSA) – IRAQ (9-10) May

Fig. 2. Pseudo code of algorithm 1 (computing the widest path).

Fig. 3. Pseudo code for finding and using the best available
bandwidth.

Fig. 4. Pseudo code of Algorithm 2 (compute the shortest path).

V. COMPUTATIONAL COMPLEXITY ANALYSIS
As have been shown in the previous section the SFOP
algorithm is composed of two main parts. Both parts are based
on modified Dijkstra's algorithm [24]. Algorithm 1, shown in
figure 2, is responsible for computing the widest path. The
worst-case complexity of Algorithm 1 is ࡺࢍ࢕࢒ࡺ)ࡻ + ,[25] (ࡸ
where N is network nodes, and L is network links. Similarly,
Algorithm 2’s computational complexity is ࡺࢍ࢕࢒ࡺ)ࡻ where N is the number of network nodes, and L is ,[24](ࡸ+
network links. Therefore, the worst-case computational
complexity for all algorithm is ࡺࢍ࢕࢒ࡺ)ࡻ + .(ࡸ
From a simple comparison of computational complexity,
between this algorithm and other polynomial routing
algorithms, has been presented in [26]. It has been observed
that most of the polynomial algorithms used to find the
optimal path have a similar time complexity of our algorithm.
However, SFOP algorithm still reduces time complexity
because in logically centralize control of SDN it is executed
fewer times in comparison to distributed control of the
traditional network.

VI. THE SFOP EMULATION ENVIRONMENT
This section introduces the hardware and software tools. A

computer with a corei7 of the 2.4GH processor and 16GB
memory is used to implement the emulation. The Matlab
programming language is used to write the management
routing algorithms. This program reads the incident matrix of
bandwidth (IncBW) and feasible bandwidth of current flow
(FBW). After that, it computes the optimal path (P) using the
SFOP algorithm.

Next, a Python application program is developed for the Pox
controller to read the optimal path and install the require rules
to OpenFlow switches. In addition, it updates the bandwidth
matrix of SDN-WAN. Pox controller is used due to it is easy
to program and has no faults [27].

Another, Python program is written to create the SDN-WAN
topology. Finally, Mininet emulator is used to executing the
Pox controller and emulates the network of OpenFlow virtual
switches (OVS).

VII. THE IMPLEMENTATION AND RESULTS
A virtual network is generated to emulate SDN-WAN. This

network is designed to have as similar characteristic to the real
WAN topology as much as possible, as shown figure 5.

The topology has one Pox controller and sixteen OVS
switches, which is the maximum port capacity for a Pox
controller. The bandwidth backbone links are 1 Gbit/s while
the forked links have 100 Mbit/s and 10 Mbit/s bandwidth.

A Pox controller is placed in the position of node eleven
because it locates in center of SDN-WAN and lays on its
backbone infrastructure.

Two different tests are implemented in this algorithm. The
first one is to compare the path latency of SFOP algorithm
with the path latency of shortest, widest and shortest-widest

 ܸ ࢔࢏ ܸܰܥ ࢚࢘ࢋ࢙࢔ࡵ .12
 ܸܷ ࢓࢕࢘ࢌ ܸܰܥ ࢋ࢜࢕࢓ࢋࡾ .13
14. For all neighbours [ܸܰܥ] do
ࡰ .15 = update the bottleneck *| [(૚−࢑ࡰ,࢑࢒ࢃ࡮࢐ࢊ࡭)⁡࢔࢏࢓]
 bandwidth in D for all neighbors of CVN whose yet unvisited *|
16. Endfor
17. EndWhile
Compute widest path and its bandwidth from distance matrix.
18 Initialize: P= Eg; |* initialize path vector (P) to equal Egress node*|
19. Initialize: temp-node=Eg; |* initialize variable to hold last node in path*|
20. Initialize:ܹܤݐݏ݁݀݅ݓ = ∞;
 |* initialize variable to hold the bottleneck bandwidth of widest path*|
21. W݌݉݁ݐ ܍ܔܑܐ − ݁݀݋݊ ≠ do ݊ܫ
݌݉݁ݐ .22 − ݁݀݋݊ = ܲ ݂݋ ݁݀݋݊ ݐݏ݈ܽ
൯ቁࢋࢊ࢕࢔−࢖࢓ࢋ࢚ݏݎݑ݋ℎܾ݃݅݁݊ ݈݈ܽ ݂݋ ܦ ൫ ݔܽ݉ ቀ࢔ ࢚࢘ࢋ࢙࢔ࡵ .23 ࡼ ݋ݐ
 |* Update path vector*|
ࢃ࡮࢚࢙ࢋࢊ࢏࢝ .24 = ,ܹܤݐݏ݁݀݅ݓ ࢙࢛࢕࢏࢜ࢋ࢘࢖)݊݅݉ maxܦ)
25. Endwhile

Initialize2# Find and Use Best Available Bandwidth ########.
(Feasible bandwidth of flow =FBW, Best Available bandwidth = ࢃ࡮࡭࡮).
Best Available bandwidth (ܹܤܣܤ) equal to the feasible or widest bandwidth.
26. Input: FBW; |*input the Feasible bandwidth (FFBW) for this flow *|
27. Initialize: ࢃ࡮࡭࡮ = 0;
 |*Variable hold the value of Best Available bandwidth (ܹܤܣܤ) *|
28. If ܹܤܨ ≥ = ࢃ࡮࡭࡮ ࢔ࢋࢎ࢚ ܹܤݐݏ݁݀݅ݓ ܹܤܨ
 |*if the feasible bandwidth is available then use it*|
29. Else ࢃ࡮࡭࡮ = ܹܤݐݏ݁݀݅ݓ
30. Endif
#Remove any bandwidth lower than ܹܤܣܤ from adjacency matrix of bandwidth
 .(ܹܤ݆݀ܣ)
31. For ݈݈ܽ ݊ ∈ ܰ do |* for all nodes in G *|
32. If ܹ݊ܤ < ܹ݊ܤ then ܹܤܣܤ = 0; |* set unwanted bandwidth to zero*|
33. Endfor

Algorithm 2#compute the shortest path###########################.
#prepare adjacency matrix of bandwidth (Adjࢃ࡮).
34. For ݈݈ܽ ݊ ∈ ܰ do |* for all nodes in G *|
35. If ܹ݊ܤ݆݀ܣ ≤ 0 then ܹ݊ܤ݆݀ܣ = ∞;
 |* set zero bandwidth to infinity*|
36. Endfor
updates node distance and path.
37. Initialize: ܸ = ∅;|* initialize visited node vector to be empty *|
38. Initialize: ܷܸ = ݈݈ܽ ܰ;
 |* initialize unvisited node vector to have all nodes N*|
39. Initialize: k=0 |* initialize counter to zero*|
40. Initialize: ܸܰܥ = 0
 |* it is a temporary variable to hold the Current Visit Node (CVN) *|
41. While ܷܸ ≠ ∅ do |* for all nodes in UV *|
42. k=k+1; |* increment counter*|
ࡺࢂ࡯ .43 = |* Select ݊ with minimum distance D*|;(࢔)ࢋࢉ࢔ࢇ࢚࢙࢏ࢊ࢔࢏࢓
 ;ܸ ࢔࢏ ܸܰܥ ࢚࢘ࢋ࢙࢔ࡵ .44
 ܸܷ ࢓࢕࢘ࢌ ܸܰܥ ࢋ࢜࢕࢓ࢋࡾ .45
46. For all neighbours [ܿℎ݊݁ݏ݋] do
ࡰ .47 = ࢑࢒ࢃ࡮࢐ࢊ࡭] + ૚] |* update the bottleneck bandwidth−࢑ࡰ
 in distance matrix D for all neighbors of CVN whose yet unvisited *|
ࡼ .48 = (൯ࢋࢊ࢕࢔−࢖࢓ࢋ࢚࢙࢛࢘࢕࢈ࢎࢍ࢏ࢋ࢔ ࢒࢒ࢇ ࢌ࢕ ࡰ ൫ ࢔࢏࢓)࢔
 |*Update shortest path*|
49. Endfor
50. EndWhile

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 16:55:13 UTC from IEEE Xplore. Restrictions apply.

2016 Al-Sadeq International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-
MITCSA) – IRAQ (9-10) May

algorithms to specify which algorithm has the best
performance. The second comparison is for path latency of
SFOP algorithm in multiple states of the network to evaluate
the algorithm performance with dynamic changes.

Both tests apply on three sizes of packets (1 KB, 10 KB, and
64 KB) to evaluate the performance of the routing algorithm
with different loads. Moreover, both of them use single ingress
node and Egress node.

A) Test one: it shows the different paths of the routing
algorithms as shown in figure 5.

Route one shows the shortest path. It also represents SFOP

when small packets are sent (feasible bandwidth required is
less than 10 Mbits/s). Route two displays the shortest path. In
addition, it presents SFOP when packet size is larger than 10
KB (a feasible bandwidth larger than 10 Mbits/s is specified).
Finally, route three expresses the widest path. Consequently,
the emulation generates the following results. See figure 6.

These results show that the shortest path and SFOP

algorithms have the best mean of latency for small packets.

While, for big packets the shortest path algorithm, is very bad,
and the other three have similar results. Which mean the
shortest-feasible bandwidth do better than others in all loads.
See the comparison summary in table 1.

TABLE 1. Latency performance of different routing algorithms.

B) Test two: it shows different paths of SFOP algorithm

when the network links have a different residual bandwidth
(IncBW), and the feasible bandwidth (FBW) is fixed to be
larger than 100 Mbit/s. See figure 7.

Route one shows the path in a normal state (full
bandwidths). Route two displays the path if the bandwidth of
link ܍૟ down from 100 Mbit/s to 10 Mbit/s. The third route
presents the path in case link ࢋ૛૚ goes from 100 Mbit/s to 10
Mbit/s. Finally, route four, represent the path when links ࢋૡ
and ૢࢋ have residual bandwidths 10 Mbit/s instead of 100
Mbit/s in initial state.

Fig. 6. Latencies for different routing algorithms.

No. Packet
size

Shortest
(ms)

Widest
(ms)

shortest-
widest (ms)

shortest-
feasible (ms)

1 1 KB Best
(0.108)

Good
(0.147)

Better
(0.125)

Best
(0.111)

2 10 KB Bad
(12.894)

Best
(0.145)

Best
(1.607)

Best
(1.581)

3 64 KB Bad
(03.345)

Best
(11.342)

Best
(11.517)

Best
(11.357)

Notes:
Consume
residual

Bandwidth

Not consume
residual

Bandwidth

Fig. 8. Latency of dynamic routing in different states of SDN-WAN.

Fig. 7. Several paths of SFOP algorithm in dynamic bandwidths
changes.

Fig. 5. Different routing algorithms in SDN-WAN.
Note: 10,100 and 100 represent the link bandwidth in Mbit/s.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 16:55:13 UTC from IEEE Xplore. Restrictions apply.

2016 Al-Sadeq International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-
MITCSA) – IRAQ (9-10) May

As a result, the algorithm shows similar latency for all cases
if an alternative path of similar bandwidth is available. See
figure 8. In summary, the algorithm provides good stability for
flow path in SDN-WAN.

Bearing in mind that the test is done using ping command
with different bandwidths to examine the algorithm latency,
which is the focus of this paper. Heavier tests will be
considered in future to qualify the faults and losses packets.

VIII. CONCLUSION
In this paper, we proposed a routing algorithm called SFOP

to find the optimal path and to enhance the network resources
utilization. In SDN-WAN, the algorithm emulation in
Mininent, shows that it provides better latency than other
comparable polynomial routing algorithms (shortest, widest
and shortest-widest path). It also shows it has a good stability
with dynamic changes of the network in most cases.
Moreover, OFSP provides valuable data for the controller to
build its decision to apply the further complicated algorithm as
demonstrated in section IV. To sum up, the SFOP algorithm
works better than others in term of latency and resources
utilization of SDN-WAN without increment of the
computation complexity. The computation complexity and
communication overhead are significantly reduced due to use
the fine grand statistics of OpenFlow interface, which is the
key success of SDN and this algorithm as well.

The future works aim to implement this algorithm for the
larger topology of SDN-WAN, which constructs from
multiple controllers. We also aim to test this algorithm on
other types of the controller such as Floodlight and
Opendaylight controllers [27]. At the end, we work toward
implementing the same approach of using the fine-grand static
interface of OpenFlow to develop routing algorithms to
compute multipath and backup path.

ACKNOWLEDGMENT

 This work was supported in part by Iraqi Ministry of Higher
Education and Scientific Research - scholarship no.21573 for
the first author.

REFERENCES
[1] H. E. Egilmez, B. Gorkemli, A. M. Tekalp, and S. Civanlar, “Scalable

video streaming over OpenFlow networks: An optimization framework
for QoS routing,” in 2011 18th IEEE International Conference on Image
Processing, 2011, pp. 2241–2244.

[2] P. Trimintzios, G. Pavlou, and I. Andrikopoulos, “Providing Traffic
Engineering Capabilities in IP Networks Using Logical Paths,” , Eighth
IFIP Work. Perform. Model. Eval. ATM IP Networks (IFPM ATM IP
2000), Ilk. UK July, 2000.

[3] V. Adrichem, N. L. M., C. Doerr, and F. A. Kuipers, “OpenNetMon:
Network monitoring in OpenFlow Software-Defined Networks,” in 2014
IEEE Network Operations and Management Symposium (NOMS), 2014,
pp. 1–8.

[4] H. Jin, D. Pan, J. Liu, and N. Pissinou, “OpenFlow-Based Flow-Level
Bandwidth Provisioning for CICQ Switches,” IEEE Trans. Comput., vol.
62, no. 9, pp. 1799–1812, Sep. 2013.

[5] K. G. Yalda, D. J. Hamad, and I. T. Okumus, “Design and
Implementation of an Intra-domain routing module for an SDN controller
for Traffic Engineering in SDN environment,” in 2015 International
Conference on Advances in Software, Control and Mechanical
Engineering (ICSCME-2015) Sept. 7-8, 2015 Antalya (Turkey), 2015, p.
93.

[6] Q. Ma and P. Steenkiste, “Routing Traffic with Quality-of-Service

Guarantees in Integrated Services Networks,” Proc. NOSSDAV ’98,
Cambridge, UK, Jul. 1998.

[7] G. R. Márton Zubor , Attila Kőrösi, András Gulyás, “On the
Computational Complexity of Policy Routing,” vol. 8846, Y. Kermarrec,
Ed. Cham: Springer International Publishing, 2014.

[8] F. Aloul, B. Rawi, and M. Aboelaze, “Identifying the Shortest Path in
Large Networks using Boolean Satisfiability,” in 2006 3rd International
Conference on Electrical and Electronics Engineering, 2006, pp. 1–4.

[9] Mininet Team, “Mininet: An Instant Virtual Network on your Laptop (or
other PC) - Mininet,” 2015. [Online]. Available: http://mininet.org/.
[Accessed: 31-Mar-2015].

[10] A. A. Shinoda, C. M. Schweitzer, and R. L. S. de Oliveira, “Simulation in
an SDN network scenario using the POX Controller,” in 2014 IEEE
Colombian Conference on Communications and Computing (COLCOM),
2014, pp. 1–6.

[11] P. Steenkiste and Q. Ma, “On path selection for traffic with bandwidth
guarantees,” in Proceedings 1997 International Conference on Network
Protocols, pp. 191–202.

[12] S. K. SHESHADRI, “Multi-constrained node-disjoint multipath QoS
routing algorithms for status dissemination networks,” Doctoral
dissertation,Washington State University, 2004.

[13] T. Korkmaz and M. Krunz, “Bandwidth-delay constrained path selection
under inaccurate state information,” IEEE/ACM Trans. Netw., vol. 11, no.
3, pp. 384–398, Jun. 2003.

[14] V. V. Rahul Cariappa Cheyanda, “Load Balanced Virtual Data Center
Network Using SDN Approach.” Department of Electrical Engineering,
San Jose State University, San Jose, California, 2014.

[15] V. Ingale and S. Kakade, “Optimization of Network,” Department of
Electrical Engineering, San Jose State university, San Jose, California,
2014.

[16] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, “OpenQoS:
An OpenFlow controller design for multimedia delivery with end-to-end
Quality of Service over Software-Defined Networks,” Signal &
Information Processing Association Annual Summit and Conference
(APSIPA ASC), 2012 Asia-Pacific. pp. 1–8, 2012.

[17] H. E. Egilmez, S. Civanlar, and A. M. Tekalp, “An Optimization
Framework for QoS-Enabled Adaptive Video Streaming Over OpenFlow
Networks,” IEEE Trans. Multimed., vol. 15, no. 3, pp. 710–715, Apr.
2013.

[18] G. Nakibly, R. Cohen, and L. Katzir, “On the Trade-Off between Control
Plane Load and Data Plane Efficiency in Software Defined Networks,”
Tehnical Report, Technion, Computer Science Department, 2012.

[19] A. Al-Jawad, R. Trestian, P. Shah, and O. Gemikonakli, “BaProbSDN: A
probabilistic-based QoS routing mechanism for Software Defined
Networks,” in Proceedings of the 2015 1st IEEE Conference on Network
Softwarization (NetSoft), 2015, pp. 1–5.

[20] J. O. Abe, H. A. Mantar, and A. G. Yayimli, “k -Maximally Disjoint Path
Routing Algorithms for SDN,” in 2015 International Conference on
Cyber-Enabled Distributed Computing and Knowledge Discovery, 2015,
pp. 499–508.

[21] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “OpenTM: Traffic Matrix
Estimator for OpenFlow Networks,” in 11th Int. Conf. Passive Active
Meas, 2010, pp. 201–210.

[22] Open Network Foundation, “OpenFlow Switch Specification Version
1.0.0,” 2009. [Online]. Available:
http://archive.openflow.org/documents/openflow-spec-v1.0.0.pdf.
[Accessed: 18-Feb-2015].

[23] Open Networking Foundation, “OpenFlow Switch Specification Version
1.4.0,” 2013. [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf.
[Accessed: 20-Feb-2015].

[24] M. Barbehenn, “A note on the complexity of Dijkstra’s algorithm for
graphs with weighted vertices,” IEEE Trans. Comput., vol. 47, no. 2, p.
263, 1998.

[25] V. Kaibel and M. Peinhardt, On the bottleneck shortest path problem, no.
Technical Report 06–22, Konrad-Zuse-Zentrum f. Informationstechnik.
Berlin, 2006.

[26] J. B. Orlin, “Max flows in O(nm) time, or better,” in Proceedings of the
45th annual ACM symposium on Symposium on theory of computing -
STOC ’13, 2013, p. 765.

[27] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S.
Azodolmolky, and S. Uhlig, “Software-Defined Networking: A
Comprehensive Survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan.
2015.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 16:55:13 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

