
Fault Tolerant Traffic Engineering
in Software-defined WAN*

Keyur Golani1, Kunal Goswami2, Kalgi Bhatt3, Younghee Park4
Computer Engineering Department

San Jose State University
Email: {keyur.golani, kunal.goswami, kalgi.bhatt, and youghee.park}@sjsu.edu

Abstract— Software-defined networking in a wide area

network (SD-WAN) allows intelligent control and management of
networking, and efficient utilization of network resources through
traffic engineering in real time for higher performance WANs.
This paper proposes a fault-tolerant reactive routing system,
called a smart routing system, for SD-WAN by investigating a
variety of network features to be needed for monitoring in WAN
in real time. The system keeps track of various network status data
in real time to provide less packet loss and low network latency
along with high availability and reliability in Software-defined
WAN. We evaluate our system in real network provided by
OpenLab at Juniper. Experimental results show that our
approach successfully demonstrate resilience and efficiency by
applying the programmability of SDN for WAN.

Keywords—software-defined WAN; traffic engineering,
OpenLab, network monitoring, reactive routing

I.� INTRODUCTION (HEADING 1)
Software-defined networking in a wide area network (SD-

WAN) functions to make a WAN more intelligible by
decoupling the network hardware from the control plane and
abstracting lower-level functionality. Enterprise-grade networks
are moving toward higher performance WANs using low cost
internet access. Gartner anticipates that 30% of enterprises will
deploy SDN-WAN technology within a decade [17]. Its
successful deployment and high quality of service (QoS)
requires dynamic resource sharing through load balancing and
resilient communication through multiple connection types
using MPLS.

SDN provides many features that focus on improving the
limitations of traditional networks. Using concepts associated
with SDN such as programmability, single point of control, and
seperation of control and data plane, the limitations of QoS in
traditional networks can be improved. [12][13] present an
approach extending SDN to WAN (Wide Area Network) using
a dynamic routing algorithm. They have carried over a shortest
path algorithm approach to SDN-WAN, calculating the optimal
path from source to destination for a given current network
status and flow rules. This leads to a reliable bandwidth and
stabilizes QoS. Using this bandwidth and link failure, various
performance analyses have been presented to support QoS in
SDN-WAN.

This paper addresses a fault-tolerant reactive routing system
called smart routing in SD-WAN. The system keeps monitoring
network status through a local server (i.e. Redis) connected to
network devices as well as real-time network information based
on SDN. We design a cost function for smart routing based on
network parameters and reliability parameters. The network

parameters include network latency, the number of hops and the
physical distance between two nodes while the reliabiltiy
parameters are related to reliability of network links by
considering various historical data. Since network links often
fail, packets get lost while being sent from one endpoint to
another endpoint in the network. It is very important to handle
these failures in real time for high QoS. We modify a shortest
path algorithm with the network and the reliability parameters in
order to provide smart routing in the SD-WAN. The smart
routing algorithm suggests the best path to carry out a
communication for a given latency and reliability. Therefore,
this algorithm incorporates the frequency of link failures and
latency factors into the weight calculation and selects the path
with the most negative weight as the best path for routing.

Two major contributions of this paper are providing a smart
routing algorithm for SD-WANs and providing a prototype
implementation. The smart routing algorithm is a unique
approach which takes into account various network specific
parameters and implements them in context with a modified
shortest path algorithm. In addition, in spite of limitations of
testing a new algorithm in a SD-WAN, we evaluate our
proposed method by using OpenLab by Juniper Networks.

The rest of the paper is organized as follows: section II
discusses the proposed method, followed by performance
evaluation of the algorithm in section III. Discussion and related
work is presented in section IV and lastly, section V discusses
the conclusion.

II.� THE PROPOSED METHOD

A.� Overview
With SD-WAN, the same logical control can be

obtained over a set of networks connecting different
branches or offices or sub-networks together. With the rise
in cloud infrastructure, enterprises delegate the task of
deploying a scalable and flexible network to the cloud rather
than setting it up using proprietary hardware. However,
such wide scaled networks have wide scaled problems as
well. The first and foremost one is of reliable
communication, in this context, reliability does not only
refer to a secure communication channel but it also refers to
selecting a path which does not need retransmission of the
packets. This section discusses our proposed framework for
reliable and fault-tolerant data transmission in a WAN.

B.� System Architecture
This section discusses the component details of the proposed

framework: the network monitoring module, the event handler

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 01205

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 16:01:20 UTC from IEEE Xplore. Restrictions apply.

module, and the decision-making module in Figure 1. The
modified routing algorithm needs a set of input parameters and
an output identifying the best possible path. The inputs for this
algorithm are formed with the help of the network monitoring
module, and the event handler module. The network monitoring
module collects statistics for the network and topology
information, and the event handler module monitors the network
for link failures. The network parameters and the reliability
parameters computes the intermediate results for the algorithm
by considering various sets of network feature sets in SD-WAN.
We modify a shortest path algorithm with the weights per link
depending on the various network statistics. With these inputs,
the decision-making module then selects the best possible path
for routing under various circustances in real time.

Fig. 1. Proposed System Architecture

1.� Network Typology Information: The network
monitoring module collects topology information and
network information from the SDN controller to create
a graph of the entire network. Since the algorithm
determines the best path, it is necessary to represent the
network with the help of a graph data structure to
identify geographical physical distances. The default
weight associated with each link is zero, as there is no
network information available on setup.

2.� Event Handler: The event handler module monitors the
network for various link failures and recovery events
happening across the network. The number of times a
link fails in unit time can be considered as the failure
frequency. With the help of failure frequency, a
reliability factor can be associated with the particular
link to determine whether or not it can be used for
communication in the future. The reliability factor can
be interpreted as an additional value associated with the
link. Given a set of paths with the same overall weight,
the path with the highest reliability should be selected
for communication. The event handler module is
connected to the Redis channel, which keeps track of all
such events and acts as an event listener. The listener
then calls respective APIs to accommodate the link
failure and recovery events into the network graph
generated by the network information module.

3.� Network Parameters: Industry standards are used to set
the various network features for choosing the best path.
We define a set of network parameters related to
network features. The network parameters include link
latency, link physical distance, and the number of hops
(i.e. hop count). Link latency gives an instantaneous
performance prediction for the system. It is critical to
consider latency when designing the system, as low
latency is the key parameter in network QoS. Link
physical distance is usually in direct proportion to link
latency and so can usually be ignored, but we include it
in order to handle real-world networks better. The belief
here is that links at larger distances will have a higher
probability of failing simply because they have more
area where something could go wrong. The hop count
simply represents the overhead that is able to be
introduced at each hop. Here, the packets need to be
routed by each device which could introduce some
latency of its own. These three together constitute the set
of network parameters that directly affect the delivery of
the traffic.

4.� Reliability Parameters: Reliability parameters, on the
other hand, focus more on factors that will find a reliable
link rather than the best immediate result. These
parameters include link failure, link failure frequency,
link failure duration, past reliability record of the links,
router input-output packets (i.e. incoming and outgoing
packets at a router), and router input-output byte rate.
Link failures refers to the number of total failures a link
has experienced since the beginning of the aggregation,
i.e., the beginning of each day. For the same duration of
time, link failure frequency will indicate the extent to
which link performance fluctuates, which is an
important factor in determining the reliability of a given
link. Link down time from the beginning of the
aggregation will inform how much time the link needs
on average to recover from the failure, also contributing
to the reliability factor of the link. And finally, a failsafe
is needed since all of the parameters could overwhelm
certain paths / links that have been performing well and
reliably. To put a failsafe in place, a comparison of
statistics for router input and output packets can give
good insight into the system that is saturating a
particular path and could be helpful in selecting another
route for part of the traffic in such cases.

5.� Decision-making: The decision-making module
implements the smart routing algorithm proposed in
this paper. The previous modules serve as the basis for
computing the output for this algorithm. Network and
reliability parameters form the foundation of the
proposed algorithm. The decision is then made as to the
best path for communication across the network,
according to network latency and link distance as well
as on the reliability of the link. It is essentially a
modification of Dijkstra's shortest path algorithm,
wherein we consider an additional set of weights for
each link and update these weights periodically to
make the correct decision at any given point of time.

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 01206

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 16:01:20 UTC from IEEE Xplore. Restrictions apply.

The collective weight of link latency, physical distance, and
hop count is drawn from the basis on which the link weights are
updated. One important difference from the shortest path
algorithm is that the weights are calculated multiple times to
determine the optimal path at any given point in time. The
algorithm is inspired by reinforcement learning with the help of
interaction and feedback with a corresponding environment
[18]. Initially, the links are each given equal weight, for
example, if there are n links, each link is given a weight of one
unit, as there is no information with which one can determine
the parameters for an individual link. As time passes and the
network functions normally, the weights are updated with the
help of the following equation:

� � � � ���� 	�
�

where, λλ is the vector of the latency for each path, d is the
vector of physical distances of the paths and h is the number of
hops per path. Hence, �
� �� � is the function that calculates
the value by which the weights need to be updated. This function
determines the mean and standard deviation of each one of these
vectors and estimates how far each one of the entries within the
vector varies from the mean. The more negative or positive the
value obtained, the better the algorithm can estimate efficiency.
The function � �� �� � is calculated using the following formula:

� �� 	�
 �
� ������

����
�

	 ������

����
�

 ������

����

where, � � represents the mean of the vector λ, � � represents
the mean of the vector d, � � represents the mean of the vector
h, � � represents the standard deviation of the vector λ,
� � represents the standard deviation of the vector d and � �
represents the standard deviation of vector h. This procedure
does not take into account link failures. It is certainly possible
that with the help of the above equation, the algorithm would
figure out the path with optimal or minimal latency. However,
such an optimal path is not of much use if it fails too often. It is
possible to build a pattern from the number of times the link has
failed in the past and the duration of the failures. Both these
values indicate the reliability of the link. If the link has failed
too many times in the past, it is considered an unreliable link.
Also, if the link has failed at repeated intervals, it will have a
high link failure frequency indicating an unreliable link. The
computer network selects the best path to communicate or
transfer the information from source to destination. It is
unacceptable for the link to fail during this transmission, no
matter how minimal the latency.

The intelligence factor is therefore formed with the help of
the reliability parameters of link failure frequency, duration of
the failure, and the past reliability record if there is one. Each
link is assigned a reliability attribute. Initially, all links are
considered equally reliable, but the reliability factor is updated
every time a link fails. This reliability update indicates how well
the link performs over some unit of time, and if the link is
performing well, the factor is updated accordingly. The update
is a simple increment/decrement for link failure and recovery
events. It is possible to include multiple variables for calculating
the link reliability factor. Control passes over to the basic
shortest path algorithm to determine the set of optimal paths for
communication. The first choice would be the most negative

weighted path from all the ones listed. Another factor considered
is link usage: it is possible that a certain link with a very high
reliability could end up carrying all network communication,
leading it to become highly congested, which in turn would
impact overall QoS in the SD-WAN. To avoid such a scenario,
the network information module considers packets and bytes for
each link, so that the second or third best path would be selected
based on usage.

III.� EVALUATION
In this section, we evaluate our proposed system in SD-

WAN provided by Juniper Networks’ OpenLab to test the
prototype in a real-world environment at Juniper Network Inc.
[6]. Under the different real-world networks and scenarios, we
evaluate our system in various angles, such as network latency,
packet loss, and link failure rates. OpenLab [6] is an open
network structure provided to educational institutions and other
organizations for testing, competitions, and educational
purposes. We used this network to evaluate our prototype in a
real-world network environment to ensure the reliability and
relevance of the approach.

A.� Setup
The testing setup consisted of the network topology provided

by the Juniper OpenLab [16] team along with the Northstar
controller [14] and REST API [15] interface used to obtain
network information as well as to configure the network. Juniper
OpenLab is an environment provided to academic bodies and
corporations for testing and debugging network-related systems
with a real world network scenario. Northstar is the WAN SDN
solution provided by Juniper Networks, designed to provide
visibility and flexibility to large enterprise networks to control
IP/MPLS flows. Northstar is the first traffic optimization WAN
SDN controller in the industry. It automates traffic engineering
paths across the network and provides flexible and
programmable networks giving a customized network
experience. The Northstar controller that we used was
customized to not interfere with our experiments. The
customizations mostly included stripping off the controller of all
routing decision-making algorithms and making sure that the
router would only accept the static path input from the REST
API in order to decide the path for traffic to be routed. A GUI
for the Northstar controller was also available to visually debug
the network state for faster debugging and easier monitoring.
However, this controller would not accept any manual
configuration changes from the GUI.

Fig. 2. Test Environment Network Topology

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 01207

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 16:01:20 UTC from IEEE Xplore. Restrictions apply.

For network statistics and monitoring purposes, a Redis
server was available which was useful in tracking network
statistics, such as router ingress and outgress packets, and bytes.
The Redis server also offered subscription to a notification
channel using a publisher and subscriber model to track live link
failure and recovery events. The statestics provided by the Redis
server included network statistics including router incoming
packets, outgoing packets, incoming bytes, outgoing bytes, link
latencies over a 24 hours span, and physical distance between
two router nodes.

The testing environment we used included a total of eight
routers distributed around different states in the U.S. Routers at
each node were connected to each other for failover connectivity
simulating a real WAN network scenario. Two IXIA routers
were connected at the vertical edges of the network to provide
high volume vertical traffic adding to the testing traffic to
simulate real world traffic flow in a network. For testing
purposes, we are given access to both endpoints of the network,
at NY edge and at SF edge router. This included multiple virtual
machine accesses at the San Francisco end of the network
attached to the SF router, and multiple virtual machine accesses
at the New York end of the network attached to the NY router.
The virtual machines contained raw Ubuntu 14.04 distribution
that provided us a raw platform on which to set up our testing
environment. The network situation we simulated over the
provided infrastructure was one where one linked failed every 3
minutes, on average, and one link recovered from failure every
2 minutes, on average. Here, we configured our testbed for the
first 10 lowest latency links to fail more than the other links. To
generate various types of traffic simulating different cases
including remote access, online gaming, and streaming, we used
our own traffic generation scripts as well as Scapy and Ostinato
tools as network traffic generators.

B.� Experimental Results
The proposed system focuses on improving the choice of

path over time by learning from past link failures and predicting
better performing links. Hence, we expected the system to lower
the number of packets lost, compared to a network without our
proposed solution. We also expected the system to decrease
packet loss even more over time by making trade-offs between
low latency paths and reliabile paths. For this, we performed
three experiments.

Fig. 3. Latency vs Packet Loss vs Link Failures

In Figure 3, we evaluated the overall effect of the proposed
system related to network parameters first. We monitored
the latency of the path chosen by the algorithm, the number
of packets lost, and the number of link failures for a chosen
route. Here, we expected the algorithm to initially choose
low latency paths because reliability matrices were not yet
built. We expected the algorithm to later gradually build
reliability matrices and make trade-offs between reliability
and latency. Then, the algorithm could choose routes with a
little higher latencies that would still be able to avoid failed
links, ultimately minimizing the number of packets lost.

As shown in Figure 3 initially when the algorithm was
deployed, as expected, the paths chosen had the lowest
latencies but the number of failures the chosen path
experienced was high and hence the packet loss was also
higher. Over time, reliability matrices were formed and the
algorithm started choosing paths with slightly more latencies
in order to avoid frequent link failures to save packet loss.
Soon enough, the number of link failures for a chosen route
approached zero for many consecutive intervals and hence
the number of packets lost was also minimized to nearly
zero.

Fig. 4. Link Failure Comparison Results

In Figure 4, we measured the number of links failing on a
chosen route as compared to the amount of links failing
overall over the network. Here, we expected that the link
failures over a chosen route would increase as reliability
matrices were formed and then would become relatively
constant. Figure 4 shows that the number of link failures in
the chosen route increased over time. However, it started to
get relatively constant very quickly, which suggests that
there were minimal new failures over the chosen path. This
result indicates long-term reliability and efficiency of the
network.

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 01208

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 16:01:20 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Packet Loss - Default vs Smart

Fig. 6. Packet Loss - Naive vs Smart

 In the experiments for Figure 5 and 6, we compared the
overall number of packets lost in the network with and
without our solution deployed. We devided the experiments
into three scenarios: a default solution, a naïve solution, and
a smart routing. The default solution in a network is the
original network in OpenLab that Juniper Network Inc. had
set up without our entire smart routing solution. The naïve
solution only consider the network parameters without the
reliability parameters. The smart routing solution is our
poposed entire system. Therefore, Figure 5 and Figure 6
showed the results of the combination of the three scanarios.

 Here, we expected that compared to the default
network, the number of packets lost would be drastically
minimized because of the presence of rerouting and failure
handling mechanisms in the network. Compared to any
naïve solution deployment, we expected our algorithm to
perform better over time. Figure 5 shows that with default
network, the number of packets lost was reduced to the scale
of 0.01, which met our expectations. Figure 6 shows that
when deployed against a naïve solution, our solution starts
with almost the same number of packets lost. However, our
proposed smart routing algorithm learns from link failure
history and avoids failed links over time, resulting in fewer
overall packet losses.

IV.�DISCUSSION AND RELATED WORK

A.� Discussion
Software Defined Networking is a rapidly emerging

paradigm in local networks and is also gaining much popularity
in large corporate networks. The concept of SDN separates the
data plane and the control plane on networks, which increases
network control in programming and and design flexibility.
However, SDN supplementing WANs is a relatively new
concept. Because a WAN testing environment is more difficult
to set up and maintain, this concept remains relatively
unexplored. WAN networks are large, convoluted networks that
usually suffer much from delays, jitters, and other QoS
degradents. However, they also accommodate several
alternative routes, connecting each pair of nodes that could be
utilized to advantage. SDN can provide a WAN network with
programming flexibility and configurability of widely divergent
network configurations, which could never be achieved
manually. In this proposal, we use this advantage of SD-WAN
(Software Defined Wide Area Network) to configure the routes
in WAN automatically in such a way that the low performing
corners of the network can be avoided altogether and by doing
so, the effects of link failures on QoS can be minimized.

Two major contributions from our side are the smart
algorithm inspired from reinforcement learning to determine the
best path to choose for routing and testing in a real world test
environment provided by Juniper’s OpenLab [16]. The smart
algorithm takes into consideration latency, hop count, and
distance as well as device and link reliability parameters
including link failures, failure frequency, and link down time.
The real world test environment is a WAN implementation
across the United States with a live Northstar WAN SDN
controller [14].

Our proposed system predicts the best routes to take and
makes sure that reliable routes are chosen from all available
routes. However, more work could be done in making the
algorithm even smarter to ensure that no route in effect ever
fails. In the future, we intend to extend this approach and
integrate algorithms to monitor the health of network devices,
their behavior, and more importantly, their behavior patterns
along with predictive analysis to get pre-notified of any failure
or roadblock in the network. This could help in making changes
to chosen paths before a link fails and avoid even a small amount
of packet loss in brief time between link failure and new route
choice. We also intend to propose an actual reinforcement
learning agent developed from the proposed algorithm in this
paper. Integrated with a predictive analysis algorithm, this could
result in more intuitive and effective decisions in terms of
avoiding unreliable areas of the network.

B.� Related Work
Traffic engineering and management are an important

concept to consider in SDN [7, 8, 9, 10, 11]. S. Agarwal and et.
al. reduced packet loss and delay by utilizing a centralized SDN
controller and by managing network traffic under changing
conditions [11]. Slavica and Neeli mainly focused on collecting
network information, making smart management decisions
based on that information, and providing a centralized system,
all of which helps in minimizing the degradation of network
traffic [10]. Frederic and et. al focused on implementing energy-

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 01209

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 16:01:20 UTC from IEEE Xplore. Restrictions apply.

aware routing using an SDN controller using link capacity and
flow rules. This energy-aware routing saves energy by putting
links that are not currently being used into sleep mode. They
used SDN to collect network statistics to calculate the routing
using QoS to save on energy [8]. Andreas and et. al. have
proposed an algorithm to handle low-level details in a complex
network [7]. It is an algorithmic policy that handles SDN
controller and simplifies it by providing a centralized algorithm
that can decide the behavior of the network.

Addressing availability issues of SDN and developing a
highly available application using SDN is very important.
Aditya and Arvind [5] stated that improving the scalability and
performance of SDN will yield high availability even though
there are many failures in the network. They designed a fault-
tolerant SDN fabric application that increases the availability of
SDN by recalculating the SDN architecture and avoiding
network failures.

SDN provides programmability, availability, and
performance to networks, but at the same time there are several
challenges to be overcome. G. Nencioni and et. al. discusses an
approach to compare the features provided by SDN to traditional
networks [1]. Following this, Park first identified issues related
to high availability in SDN and then proposes algorithms such
as the Cluster Virtualization algorithm, Cluster Information
Consistency Algorithm, Detection Algorithm (running on the
controller) and Detection Algorithm (running on OpenFlow
switch). Wenbo and et al. [4] proposed a new architecture of
BGP called OFBGP, which is an application for a SDN
controller extending the availability and scalability properties of
the SDN controller [4]. They also implemented a prototype of
their architecture and the results obtained by experimenting on
this prototype provide a highly scalable and available
architecture for BGP by extending the high availability and
scalability of the SDN controller.

Seyhan and Murat discuss an approach showing how inter-
domain routing takes place using SDN, keeping availability of
resources of SDN in mind [3]. In the paper, the authors proposed
an autonomous decision-making system that can make decisions
and choose the path for the flow among multiple domains using
SDN. In a similar way, Subhasis and Kalapriya focused on
managing the flow table efficiently in SDN switches, extending
the availability of SDN [6].

SDN provides many features that focus on improving the
limitations of traditional networks. Using SDN concepts such as
programmability, single point of control, and separation of
control and data plane, limitations of QoS in traditional
networks can be improved. Recent research presented an
approach extending SDN in WAN (Wide Area Network) using
a dynamic routing algorithm [12, 13]. They have used a similar
approach to using the shortest path algorithm in SDN-WAN
calculating the optimal path from a source to destination
considering the current network status and flow rules. This will
lead to a reliable bandwidth, stability, and QoS. Using this
bandwidth and link failure, various performance analyses have
been presented for supporting QoS in SDN-WAN.

REFERENCES

[1]� G. Nencioni, B. E. Helvik, A. J. Gonzalez, P. E. Heegaard and A.
Kamisinski, "Availability Modelling of Software-Defined Backbone
Networks," 2016 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshop (DSN-W), Toulouse, 2016,
pp. 105-112.

[2]� H. Park, S. Song, B. Y. Choi and T. Choi, "Toward control path high
availability for software-defined networks," 2015 11th International
Conference on the Design of Reliable Communication Networks (DRCN),
Kansas City, MO, 2015, pp. 165-172.

[3]� S. Civanlar, E. Lokman, B. Kaytaz, A. Ulaş and A. M. Tekalp,
"Distributed flow management for SDN domains," 2015 23nd Signal
Processing and Communications Applications Conference (SIU),
Malatya, 2015, pp. 2609-2612.

[4]� Aditya W. Duan et al., "OFBGP: A Scalable, Highly Available BGP
Architecture for SDN," 2014 IEEE 11th International Conference on
Mobile Ad Hoc and Sensor Systems, Philadelphia, PA, 2014, pp. 557-562.

[5]� Aditya Akella and Arvind Krishnamurthy, “A Highly Available Software
Defined Fabric,” 2014 Proceedings of the 13th ACM Workshop on Hot
Topics in Networks (HotNets-XIII), ACM, New York, NY, 2014, pp. 7-
21.

[6]� S. Banerjee and K. Kannan, "Tag-In-Tag: Efficient flow table
management in SDN switches," 10th International Conference on
Network and Service Management (CNSM) and Workshop, Rio de
Janeiro, 2014, pp. 109-117.

[7]� Andreas Voellmy, Junchang Wang, Y Richard Yang, Bryan Ford, and
Paul Hudak, “Maple: simplifying SDN programming using algorithmic
policies,” 2013 Proceedings of the ACM SIGCOMM 2013 conference on
SIGCOMM (SIGCOMM '13), ACM, New York, NY, 2013, pp. 87-98.

[8]� F. Giroire, J. Moulierac and T. K. Phan, "Optimizing rule placement in
software-defined networks for energy-aware routing," 2014 IEEE Global
Communications Conference, Austin, TX, 2014, pp. 2523-2529.

[9]� R. Wang, Z. Jiang, S. Gao, W. Yang, Y. Xia and M. Zhu, "Energy-aware
routing algorithms in Software-Defined Networks," Proceeding of IEEE
International Symposium on a World of Wireless, Mobile and Multimedia
Networks 2014, Sydney, NSW, 2014, pp. 1-6.

[10]� S. Tomovic, N. Prasad and I. Radusinovic, "SDN control framework for
QoS provisioning," 2014 22nd Telecommunications Forum Telfor
(TELFOR), Belgrade, 2014, pp. 111-114.

[11]� S. Agarwal, M. Kodialam and T. V. Lakshman, "Traffic engineering in
software defined networks," 2013 Proceedings IEEE INFOCOM, Turin,
2013, pp. 2211-2219.

[12]� A. M. Al-Sadi, A. Al-Sherbaz, J. Xue and S. Turner, "Routing algorithm
optimization for software defined network WAN," 2016 Al-Sadeq
International Conference on Multidisciplinary in IT and Communication
Science and Applications (AIC-MITCSA), Baghdad, 2016, pp. 1-6.

[13]� S. Tomovic, I. Radusinovic and N. Prasad, "Performance comparison of
QoS routing algorithms applicable to large-scale SDN networks," IEEE
EUROCON 2015 - International Conference on Computer as a Tool
(EUROCON), Salamanca, 2015, pp. 1-6.

[14]� “NorthStar WAN SDN Network Controller - Juniper Networks,”
NorthStar WAN SDN Network Controller - Juniper Networks. [Online].
Available: https://www.juniper.net/us/en/products-
services/sdn/northstar-network-controller/. [Accessed: 14-Apr-2017].

[15]� “Juniper Northstar API Documentation,” Juniper. [Online]. Available:
http://www.juniper.net/techpubs/en_US/northstar2.1.0/information-
products/api-ref/api-ref.html. [Accessed: 14-Apr-2017].

[16]� "OpenLab: Junos Center for Network Innovation - Juniper Networks",
Juniper.net, 2017. [Online]. Available:
https://www.juniper.net/us/en/company/openlab/. [Accessed: 15- Apr-
2017.

[17]� Gartner, “Predicting SD-WAN Adoption”, December 15, 2015.
[18]� R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
Cambridge, MA: MIT press, 1998, vol. 1, no. 1.

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 01210

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 16:01:20 UTC from IEEE Xplore. Restrictions apply.

