
696 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 2, JUNE 2020

Improving End-Users Utility in Software-Defined
Wide Area Network Systems

Kshira Sagar Sahoo , Student Member, IEEE, Pritish Mishra , Mayank Tiwary , Somula Ramasubbareddy,

Balamurugan Balusamy, and Amir H. Gandomi , Senior Member, IEEE

Abstract—Software Defined Networks (SDNs) has brought a
new form of network architecture that simplifies network man-
agement through innovations and programmability. But, the
distributed control plane of SD-Wide Area Network is challenged
by load imbalance problem due to the dynamic change of the
traffic pattern. The packet_in messages are one of the major con-
tributors of the control’s load. When such packet rate exceeds
a certain threshold limit, the response time for control request
increases non-linearly. In order to achieve better end-user experi-
ence, most of the previous works considered the optimal switch to
controller association with an objective to minimize the response
time on LAN environment but ignores the consequence of large
scale network. In this regard, the proposed work realizes the
necessity of layer-2 and layer-3 controller in LAN and WAN envi-
ronment separately. A load prediction based alertness approach
has been introduced to reduce the burden of the controllers. This
approach may create an additional delay for the initial packets
of the flow entry that lead to more prediction error. However,
the proposed method reduces the error by selecting an optimal
timeout value of the flow. Further, minimization of the response
time between router to the controller has been taken care of. An
extensive simulation shows the efficacy of the proposed scheme.

Index Terms—Software defined networks, load balancing,
OpenFLow device (OFD), load prediction, flow timeout.

I. INTRODUCTION

SOFTWARE Defined Network paradigm has been flour-
ishing in industries in recent years and has become the

most useful network architecture for various working environ-
ments [1], [4], [5]. SDN can control and manage the underly-
ing network via physically distributed, but logically centralized
set of controllers to meet the Service Level Agreements (SLA)
required by cloud service providers [3], [6]. With the increas-
ing use of SDN, there is an essentiality to manage the load

Manuscript received May 5, 2019; revised September 10, 2019; accepted
November 4, 2019. Date of publication November 18, 2019; date of current
version June 10, 2020. The associate editor coordinating the review of this
article and approving it for publication was Q. Ling. (Corresponding author:
Kshira Sagar Sahoo.)

K. S. Sahoo and S. Ramasubbareddy are with the Department of
Information Technology, VNR VJIET, Hyderabad 500090, India (e-mail:
kshirasagar12@gmail.com; svramasubbareddy1219@gmail.com).

P. Mishra and M. Tiwary are with Core Cloud Platform, SAP
Labs Bangalore, Bengaluru 560066, India (e-mail: pritish.mishra@sap.com;
mayank.tiwary@sap.com).

B. Balusamy is with the School of Computer Science and
Engineering, Galgotias University, Greater Noida 203201, India (e-mail:
kadavulai@gmail.com).

A. H. Gandomi is with the Faculty of Engineering and Information
Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
(e-mail: gandomi@uts.edu.au).

Digital Object Identifier 10.1109/TNSM.2019.2953621

among controllers [2], [7], [8]. In this work, packet_in requests
to the controllers have considered as load because the process-
ing of packet_in is a computationally intensive task which
increases the overall CPU utilization of the controllers [9]. To
reduce the burden of the controller, some authors have sug-
gested device migration technique, which transfers the excess
loads from the current controller domain to another con-
troller domain. If efficient algorithms are not implemented,
the migration process may hamper the application and ser-
vice performance [10]. To address the above issue, this work
proposed a mechanism that depends on (i) used Network topol-
ogy and (ii) controller placements in both LAN and WAN
environment. The controller which is placed in a local area
network is termed as the layer-2 (L2) controller, whereas the
controller placed in Wide Area Location is termed as layer-3
(L3) controller. For better readability, in the rest of the paper,
the term L3 and L2 controller have been used for the same.

In last few years, a sizable works focus on SDN load balanc-
ing especially for LAN environment [2], [6], [9]. Few authors
have adopted device migration strategy for load balancing in
distributed controller environment [28], [29], [31]. But to man-
age WAN traffic, the controller placement in layer-3 should
not be ignored as the WAN delay acts as a bottleneck for
the device migration. Whenever the controller is placed in a
large network like WAN, the packet_ins generated from layer-
2 OpenFlow Devices (OFD) suffer network delay. In another
way, if the controllers are placed at every point of the WAN
topology, it becomes difficult to meet the challenges of a cen-
tralized controller. Therefore, in this approach, we propose a
controller placement strategy where the controllers are placed
at each LAN point and to manage these L2 controllers, a few
L3 controllers are located in the topology graph. In this regard,
the L2 controllers are responsible for managing the packet_ins
from the L2 devices. And the L3 controllers are responsible
for handling the packet_ins from L3 devices.

An absolute timeout value is associated with each flow
present in the flow table. If there are no matching for cer-
tain duration, the flow is removed from the flow table. The
proposed work focuses on evaluating the flow entry timeout
value such that if a flow miss occurs, the L2 controller can
perform analytic on the generated packet_in and inform to the
L3 controller (in case the traffic flow causes the router to gen-
erate a packet_in for the L3 controller). The timeout evaluation
is versatile in nature and can even handle traffic flows, which
show high dynamism against the number of packets. Further,
the timeout evaluation scheme helps to minimize the error in

1932-4537 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 15:19:05 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6435-5738
https://orcid.org/0000-0002-3658-0276
https://orcid.org/0000-0002-2336-921X
https://orcid.org/0000-0002-2798-0104

SAHOO et al.: IMPROVING END-USERS UTILITY IN SDWAN SYSTEMS 697

load prediction, which has discussed in Section IV. The L2
controller alerts the L3 controller either through asynchronous
or synchronous mode which we have described more precisely
later. Lastly, it has observed that the load prediction helps
the L3 controller to take effective migration decisions before
the controller is actually loaded. Once the device migration is
initiated, the new controller to router association is made by
solving a response time minimization problem, which depends
upon the controllers WAN link bandwidth and CPU utilization.

A. Motivation

Authors in [6] monitored the real-time traffic of China
Education Network and observed that the maximum num-
ber of flows which traverses across the network is 3 million
per second. It implies that if the flow table of the devices is
empty, then it can generate 3 million packet_ins to the controller
layer. Further, in [9], authors observed, when the packet_in per
second exceeds a certain threshold, the response time of the
control event rises exponentially. In order to virtualize the LAN
and WAN resources, the cloud service providers will deploy
the SDN application on the ISPs’ OpenFlow controllers. With
the increase in number of cloud service providers, there is
an increasing difficulty of application state maintenance for
the deployed SDN applications. Each of the SDN application
needs to perform computations based on the requirements of the
SLAs. Further, each cloud service provider has strict network
SLAs against ISP. The problem of load balancing (which leads
to maximization of end-users’ utility) in SDN also depends
on the selection of an appropriate device for migration so that
the load on the controller can be reduced. But the optimal
selection of the OFD based on the existing functionality of
the OpenFlow 1.3 seems to be a difficult task [11]. To solve
this problem, a load prediction strategy has been proposed,
which can help in the selection of the devices to migrate with
consideration of end-users utility, preferences, and priorities.

B. Contributions

To solve the above issues in real-time traffic, in this work
a load prediction has been proposed. The proposed control
architecture realizes the requirements of both L3 and L2 con-
trollers separately. With the prior knowledge of traffic and with
computational details about the processing of the respective
packet_ins, the L2 controller can predict the load for WAN
controllers. L3 controllers, in turn, utilizes this information
and initiates the device migrations before the controller gets
loaded.

The major contributions of this work can be summarized as
follows:
• Propose a flow entry timeout evaluation method, which

can handle the high dynamism of traffic flows in terms
of number of packets. The proposed timeout strategy
effectively minimizes the error in load prediction. This
also includes a single-objective optimization problem for
solving the problem of error while predicting the load.

• Selection of routers and target controllers is carried out
solely based on the traffic priorities and response time,
which aims at maximization of end-users’ utility.

• Further, the evaluation of response time depends upon the
current CPU utilization of controller, the computational
complexity of the deployed applications, and WAN link
bandwidth.

The organization of the paper is described as follows.
Section II describes the literature survey relevant to above
issues. Section III contains the proposed system model for
Wide Area Software Defined Networks, placement of the
controllers and load prediction. Further, the same section con-
tains the details of load prediction followed by the proposed
prediction algorithms. Section IV contains an overview of the
proposed scenario. Section V gives the experimental setup
details containing performance matrices and results discus-
sion. Finally Section VI summarizes the proposed work with
suggestions for future directions.

II. RELATED WORK

With the separated control plane and data plane, the
Software Defined Network paradigm enables ample freedom
to manage and program the network. But, it is a challenging
task to manage the properties of controllers like responsive-
ness, reliability and scalability [10], [12]–[14]. For efficient
load management, two properties need to be considered:
(i) load balancing in control plane and (ii) controller placement
(CP) in a WAN environment. For better network manage-
ment and resiliency, multiple controllers architecture came into
existence, which was physically distributed but logically cen-
tralized in nature [5]. In [15], the author uses the spectral
clustering algorithm which divides large network into smaller
domains of networks. Though there are improvements in terms
of throughput and latency, the paper ignores the minimization
of WAN propagation delay when layer-2 traffic has to traverse
through layer-3. He et al. model the CP problem as an offline
optimization problem for minimizing the total cost produced
by the flow setup performance and the controller adaptation.
Further, this offline problem was solved in an online fashion
with the help of simulated annealing technique [22]. DALB [2]
has given a distributed load distribution decision making archi-
tecture instead of central decision maker for LAN environment
where load collection, adjustment of threshold in load col-
lection, decision making in the migration of switches were
the functions of the controller. Works in Elasticon [9] is well
suited for elastic control architecture for LAN environment,
but there is no consideration of state distribution overhead
which will be produced when controllers are placed in the
network. For load balancing in control plane, both Onix [5]
and Hyperflow [4] architectures consider a static association
between switches and controllers. Onix used the standard dis-
tributed system to design the architecture with fixed binding
of controllers and devices. On the other hand, in Hyperflow
the local controller serves local request without contacting
any remote controller. This helped in minimizing the flow
setup time, but frequent changes in flow variations are the
constraints to these architectures. Adaptive resource manage-
ment was implemented in [19], which supports both static and
dynamic resource and control management. For handling high
traffic dynamism, new control plane model was introduced

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 15:19:05 UTC from IEEE Xplore. Restrictions apply.

698 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 2, JUNE 2020

Fig. 1. Proposed Control Plane Architecture.

in DCPP [20]. In this article, the authors proposed an archi-
tecture where in response to changing traffic conditions, the
number and position of controllers are dynamically changes to
reduce flow setup time and communication overhead. In [9],
the proposed scheme is an elastic distributed controller archi-
tecture in which the controller pool dynamically grows and
shrinks based on a maximum and minimum threshold set for
CPU utilization level. For better management of the load, the
switch which generates maximum load on the controller gets
migrated to the other SDN controller domain. But the response
time of controller increases non-linearly after a certain thresh-
old value. All these works focus on mapping of devices to the
controller when the load parameters surpass a threshold. Also,
all these works focus more on LAN scenario. Although sev-
eral methods were proposed to solve CPP [16], [17], authors
in [18], argued that no single rule could be applied to find
the optimal number of controllers and their respective posi-
tions in WAN. To the best of our knowledge, no work has
been introduced for WAN device to WAN controller map-
ping. In this respect, the WAN propagation delay for layer-2
traffic remained un-addressed. Our proposed work uses the
alertness scheme for effective migration decision and improv-
ing end-users QoS in Software-Defined Wide Area Network
(SDWAN).

III. SYSTEM MODEL

In this section, an adaptive load balancing method has props
for wide area software defined controllers which takes the
migration decision before the controller actually gets loaded.
Let us assume a WAN topology is represented by G(V, E, W)
as shown in Fig. 1, V = (V1,V2,V3, . . . ,Vi) represents
the set of layer-3 OFD, E = (E1,E2,E3, . . . ,Ej) denotes
the edges connecting these nodes in full duplex mode and
W = (W1,W2,W3, . . . ,Wj) represents the bandwidth for

respective edges. Let, C = (C1,C2,C3, . . . ,Cx) be the
set of L3 controllers, where C ⊂ V , i.e., controllers have
been deployed at some routing points in WAN environment.
Each Vi in graph G(V, E, W) represents a LAN environ-
ment, which can be denoted by the graph G ′ = (V ′,E ′)
where V ′ = (V ′1,V ′2,V ′3, . . . ,V ′m) denotes layer-2 OpenFlow
Devices and E ′ = (E ′1,E ′2,E ′3, . . . ,E ′k) indicates the edges
connecting these OFD in full duplex mode. Further, a set of
controllers C ′ = (C ′1,C ′2,C ′3, . . . ,C ′i) are deployed at each
vertices Vi of G(V, E, W). Set of controllers C is responsible
for managing the L3 traffic whereas a set of controllers C ′
directs L2 traffic. Both C and C ′ are synchronized with each
other so as to maintain network integrity and SDN application
synchronization. A typical LAN network model is a collec-
tion of computing device such as workstations and servers
connected to the switch, similarly a series of LANs linked by
bridge or router forms a WAN model. If the controllers are
placed at selected WAN points, the layer-2 (LAN) packet_ins
will suffer WAN delay, on the other hand if the controllers are
placed at every WAN point then it becomes difficult to main-
tain the application state synchronization of the controllers
present in the network. With this motivation, the proposed
model has been built which is illustrated in Fig. 1. In Fig. 1
the routers are attached with the L3 controller and not with
L2 controller. Sometimes the L2 controller needs to access
the flow table of the router. The L2 controller cannot directly
access the routers flow table for which the L2 controller makes
a request to L3 controller, in turn after reads the flow table it
replies to L2 controller. The following assumptions have been
held for this work.

Assumption 1: The Cloud Service Providers deploy the SDN
applications over both L3 controllers (ISP controllers) and L2
controllers (user site controllers).

Assumption 2: This deployment architecture bears analogy
with the current Internet Service Provider (ISP) WAN archi-
tecture, where ISP will have its own set of network controllers
and these controllers will synchronize in a timely manner with
the local user site controllers.

Assumption 3: The L3 controllers synchronize with the
L2 controllers for maintaining constant SDN application state
network-wide.

Assumption 4: The characteristics of the L3 controller is
to manage WAN traffic whereas LAN traffic requirements are
managed by L2 controllers.

Assumption 5: L2 controllers are deployed at every LAN
point whereas L3 controllers are deployed at selected places
in the network topology.

Assumption 6: At a particular time instance ΔT , the entire
control plane cannot be overloaded.

Assumption 7: The router is connected with both L2 as well
as L3 controller.

Assumption 8: L3 controller acts as both MASTER and
SLAVE role for the router and it can access and modify it’s
flow table.

Assumption 9: L3 controller informs L2 controller about the
flow entry of the routers based on an event-based propagation
system. It informs only when there is a change in flow entries
in the flow table of the router.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 15:19:05 UTC from IEEE Xplore. Restrictions apply.

SAHOO et al.: IMPROVING END-USERS UTILITY IN SDWAN SYSTEMS 699

The management utility generally includes the state
synchronizations of the SDN applications. If there are
more than one WAN controllers, the WAN device has
one WAN controller as MASTER and others act as in
EQUAL mode.

A. OFDevice (OFD) Migration

Whenever a controller gets overloaded, the connected OFD
suffer from the delay in response for processing of packet_ins.
To avoid this, generally the OFDs are migrated to another
connected controller during overload conditions. For the safe
migration, the standard migration properties such as liveness,
seriallizability, and safety ought to follow [9]. To meet the
above criteria, and to follow the same migration strategy,
OpenFlow 1.3 and higher versions provide barrier_request
and barrier_reply features. Once an OFD receives a bar-
rier_request, it starts clearing the buffer of already received
control requests, and once it is removed, it replies back with
barrier_reply. It means the response time for barrier_reply
is directly proportional to application layer logic complex-
ity. This delay causes service disruption and decreases the
end-users QoS. The Algorithm 3 aims at selecting such
OFDs for migrations such that least end-users traffic will
be affected.

The Assumption-6, implicates that in a distributed con-
trol plane framework (with appropriate state synchronization
mechanism), not all controllers are busy at any given instance
of time. This idea arises from the fact that, if all controllers are
busy at any given point of time, it implicates that the network
manager would deploy a new controller in the network. The
busyness of a controller can be the measure in terms of close-
ness of the current average response time to the target response
time set by the network manager. In other words, if other con-
trollers can share the load, it does not make sense to install
a new controller in the network for that time period. So we
need a mechanism to transfer a part of the load from a heavily
loaded controller to a lightly loaded controller so that all the
controllers work within their threshold load.

In SDWAN, the cloud service providers deploy their
own SDN application over WAN controllers, where a sin-
gle received packet_in has to be processed by one or a
set of SDN applications deployed by multiple cloud service
providers. This can even cause more computational com-
plexity. Therefore, to model the computational complexity
a calibrated number between 0 to 10 is assigned to every
packet_in based on the variation of CPU utilization, memory
utilization and the number of SDWAN applications, which
process the packet_in. The calibrated number is termed as
τi where i is the packet_in identifier. The calibrated number
assignment is accomplished by executing the packet_in in ideal
conditions. The current CPU utilization level approaches to
0% specify the ideal condition for the controller. Each device
always has a specific set of packet_in to be sent to the con-
troller. This set is represented by G = {τ1, τ2, τ3, . . . , τn},
where for every OFD i, there exists τi such that
τmin ≤ τi ≤ τmax .

B. Response Time Minimization

In this work, CPU utilization for controllers C, is repre-
sented by PC (·) and it depends on the value of τmax for
r ∈ G . PC is mathematically represented as follows:

PC (·) = μ−
A(t)∑

i=1

F(τi)φi (1)

where, F(τi) is defined as:

F(τi) =
τi∑S

x=1 τx
(2)

Equation (2) represents the percentage of load caused by
a specific τi from a router with respect to all τ in the set
G for a specific OFDs. In Equation (1), A(t) represents the
total number of active devices at time slot t connected to the
WAN controllers C. The μ denotes the average processing rate
of the controller C and τmax represents the maximum value
of packet_in which can be sent by the router, φi is the job
arrival rate. The average processing rate μ depends on con-
troller’s machine configuration and tasks which are currently
being executed. Hence, the value of μ is always taken from
the last time slot, i.e., t − 1. To obtain the value of φi in real
time scenario for a time slot t, for a specific number of days
the packets sending by a router have been averaged and then
use these values for estimating the same.

For load balancing, the aim of the router r is to select such
a controller; so that the response time would be minimal even
after sending τmax to the controller. To calculate the response
time, the router needs to have

∑A(t)
i=1 F(τr)φi value.

Definition 1: The load status of the controller is defined by
LF (·).

LF (·) =
A(t)∑

i=1

F(τr)φi (3)

To calculate the response time, each router needs to have
the current load status of the other controllers. Each con-
troller announces its LF (·) at the start of the time slot t.
Using this load factor, each router evaluates its response time
for a given controller set and selects the optimal controller.
The problem of load distribution can be described as an
optimization problem which can minimize the response time.
This optimization problem can be formulated as follows:

Minimize: Response(F(τmax)) =
F(τmax)

PC (·) (4)

Subject to constraints: PC (S , μ) > 0 (5)∑
F(τi) = 1 (6)

∑
F(τr)φi > μ (7)

The constraints represent in Equation (5) and Equation (6)
denote positivity and conservation, respectively. Similarly,
Equation (7) represents stability. In the above optimization
problem, each router evaluates the response time
Response(F(τmax)) of its τmax and selects the controller
which processes the τmax in minimum time.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 15:19:05 UTC from IEEE Xplore. Restrictions apply.

700 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 2, JUNE 2020

IV. LOAD PREDICTION FOR WAN CONTROLLERS

In this section, a load prediction approach has been devised
where layer-2 controller predicts the load for layer-3 con-
trollers and further, this load information is used for initiating
the migration modules.

A. Overview of Proposed Scenario

We have discussed earlier that, whenever there is a flow miss
by an L2 device, the device sends a packet_in to the L2 con-
troller for control decision of the respective traffic flow. The L2
controllers then analyze the traffic flow against the packet_in
and checks whether the traffic flow will cross through the L3
WAN gateway devices. Then the L2 controller checks the pres-
ence of flow entry into the router (WAN device) against the
same traffic flow. When there is no flow entry in router for
respective flow generated from L2, it signifies that the same
traffic flow will cause generation of packet_in from the router.
If no rule is found, L2 controller checks the current load of
L3 controller. In case, the L3 controllers’ current resource uti-
lization exceeds a threshold value, before sending a packetin ,
L2 controller notifies it to L3 controller.

B. Estimating Increase in CPU Utilization of the Controller

The L3 controller informs L2 controller about its CPU uti-
lization using an event based propagation system. L3 controller
informs about its CPU Utilization level only when there is a
marginal change in it. For simplicity, the CPU utilization of
the controller is divided into L levels where L ∈ {0, 100}.

For prediction, the L2 controller requires the current CPU
utilization level of the L3 controller and the flow table entries
of the L3 gateway device. Whenever, there is change in the
CPU utilization level of the L3 controller, the L3 controller
broadcasts the change to L2 controllers. The L2 controllers
cannot directly access the flow table entries of the L3 gate-
way device because L3 controller acts as MASTER for the
gateway device. The L2 controller accesses the flow entries
of the gateway device through L3 controller. This mirroring
process is based on a specific event for example, whenever a
change in the flow table occurs then only L3 controller notify
to L2 controller as shown in Fig. 2. L2 controller informs L3
controller only when the following equation is satisfied:

CPUutil + 10τt ≥ Li ∗
100

L
(8)

where, CPUutil represents the last informed CPU utilization
of L3 controller to L2 controller.

C. Load Detection

In the previous works ([6], [23] and [9]), the load is checked
in time slots t ∈ T , where T is the set of time slots in a
day. The work in Elasticon [9] focuses on judging the CPU
Utilization on the controller because the controller’s response
depends on processing packet_in requests rate and current
CPU utilization level of the controller.

Let, the controller has CPU Cores from Ci = 1 to c where
each core is responsible for processing of packet_in requests.

Fig. 2. Mirroring of CPU utilization and flow table in proposed control
plane.

Load can be measured by the following equations:

Lm (t) = KL +

c∑

core=1

(
τj ∗ Pj

)
(9)

In Equation (9), KL is the initial load on the controller due
to current processes going on the controller. Pj represents the
number of packets received individually in the buffer of same
type j. The available amount of CPU resource left Rym , is
given as:

Rym(·) = Lth − Lm (·) (10)

In Equation (10), Lth represents the threshold CPU load
after which response time for packet_in (reply of packet_out)
increases exponentially. The condition for load imbalance is
stated as:

Lm (t) ≥ Lth . (11)

D. Overall Flow Management

Whenever the CPU utilization of the L3 controller crosses a
specific threshold, the response time and device migration time
increases non-linearly. In this work, we consider two threshold
values, i.e., first level Li and then final level Lth . The Lth is
the final threshold, after which the response time and time of
devices increase non-linearly. The first level Li is the initial
level after which the L2 controllers enter the load monitoring
state. In load monitoring state, for every incoming packet_in
the L2 controller checks whether this is going to create a load
on the L3 controller. This monitoring is done by effective time-
out mechanism as discussed in proposed Algorithm-1. The
L2 controller’s associates a timeout value for the flow entries
which may cause a generation of packet_in, once the traf-
fic flow arrives at L3 device. Once the L2 controller detects
that specific traffic flow is going to create a load on the
L3 device, it communicates this information to L3 controller
(using proposed Algorithm-2).

Once the L3 controllers make migration decisions, it broad-
casts this information to all other L3 controllers. In turn, other
L3 controllers reply back by the Load Factor LF (·). This helps
the source controller to evaluates the response time. In the
process of minimization of response time, the link bandwidth

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 15:19:05 UTC from IEEE Xplore. Restrictions apply.

SAHOO et al.: IMPROVING END-USERS UTILITY IN SDWAN SYSTEMS 701

from router to controller is another important factor. The load
factor (LF (·)) is announced, if the link bandwidth from the
current controller to router is more than the bandwidth from
the newly selected controller. Otherwise, the new controller
announces the following load factor to the router.

LFnew (·) = LF (·) ∗
{
tan−1(e

λ
10)− γ

}
(12)

Here, γ is a predefined constant and λ can be expressed as
follows:

λ =
Wnew −Wcurrent

Wcurrent
∗ 100 (13)

In Equation (13), Wnew denotes the bandwidth (or channel
limit) from a new controller to the router and Wcurrent denotes
the current link bandwidth. The load factor increases when
the bandwidth from the controller to the router is more and
vice versa. We observed that tan−1(e

λ
10 − γ) returns a value

between 0.7 to 1.5, which further linearly depends upon the
value of λ. This function helps the load factor to be dependent
on the link bandwidth, which further impacts the decision pro-
cess. Finally, the L3 controller decides L3 devices to migrate
to target L3 controllers using Algorithm 3.

E. Limitations of Load Predictions Module

Whenever a flow entry expires, and a new packet_in request
for the same traffic-flow arrives at L2 controller, the controller
analyzes packet_in request against creating a load for the L3
controller; then the L2 controller informs L3 controller syn-
chronously or asynchronously. But, the waiting time results,
delay in response for initial packets of the flow. Authors in [27]
point out that while OFD latencies are in microseconds, a
single round trip to controller causes additional latency of
around 10-20 milliseconds. The L2 controller informs the L3
controller either using synchronized methods where it waits
for the response from L3 controller to send a packet_out
or using asynchronous methods where it does not wait for
the response of the L3 controller. Both asynchronous and
synchronous methods have their own limitations. The syn-
chronous methods allow the L3 controller to take action while
at the same time creating delay for the initial packets of the
flow, which affects the end user experience. The asynchronous
methods seem to reduce the delay for the initial packets of the
flow, whereas, leaves very less time for L3 controller to take
action as compared to the synchronized methods. In the result
analysis section, the proposed model has evaluated using both
asynchronous and synchronous methods.

F. Traffic Analysis

In this work, we analyzed layer 3 traffic from university data
centers in [24] and [25]. The data-set holds the Layer 3 traffic
traces for data center providing system backup services, E-
mail services, distributed file system services, Web application
services, and video streaming services.

This work focuses on solving the problem of predicting the
load for L3 controllers using the L2 controllers by analyzing
the traffic flow misses from the OF routers. The L2 controllers
play the most vital role, as the controllers can directly analyze

the end-users traffic. In order to analyze the end-users’ traf-
fic, the L2 controller sets the timeout values for the Layer 3
flow entries that are not present in the OF routers. In order to
assign the flow timeout values, the L2 controller should know
about the number of packet_in events caused due to end-users’
traffic flow. In real time scenario, finding out the number of
packet_in traffic flow is a very challenging task. Further, if the
timeout value is wrongly calculated, the end-users traffic may
suffer degradation of QoS parameters. Therefore, to find out
the number of packets in a L3, we perform traffic analysis.

In [26], authors classified the flows as small, medium and
large traffic flows. The small traffic flows usually have 1-2
packets, the medium traffic flows usually have 2-10 packets
and large traffic flows having more than 10 packets. Moreover,
from the analysis, it is clear that about 15% of flows have just
1-2 packets.

G. Timeout Computation

The delay due to processing the packets, against a particular
flow in an OFD is given by:

F (ti) =
S(i)

mspeed (i , j)
(14)

In Equation (14), S(i) denotes the number of packets against
i th flow and mspeed (i , j) is the processing capacity (Flow
Forwarding Rate) in mpps (million packets processed per
second) for i th flow on j th OFD.

In this work, we consider the load prediction error metric
and try to minimize this error.

Definition 2: The load prediction error is given by the
following equation:

E (L) =
F (ti)

L
(15)

In Equation (15), L represents the time out value defined
by the controller and F (ti) is the optimal timeout value. The
error function shows two cases; one in which the time-out set
by the controller L is less than the actual optimal timeout value
F (ti) which is known as overhead error and in another case,
the L value is more than the actual optimal time value known
as the prediction error.

The overhead error occurs only when the controllers’ time-
out value L is equal to or less than the half of the actual
time out value F (ti). The reason is obvious, if the flow entry
already exists in the flow table and flow entry time out value
is more than half of the actual time out value, then only one
packet_in will be generated for the traffic flow and which is
sufficient for the L2 controller to predict the load for the L3
controller.

In the second case, when the timeout value L of the traf-
fic flow exceeds two times of the optimal processing delay
(F (ti)), packet processing of the corresponding flow might
have completed. If the flow exists in the flow table, another
traffic flow may pass undetected during that period before it
expires. The timeout value has assigned as n.F (ti) (n usu-
ally 2 to 3 times), to ensure that the flow entries with fewer
occurrences, can be taken care.The reason is obvious; if the
controllers’ time out value is less than two times of the optimal

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 15:19:05 UTC from IEEE Xplore. Restrictions apply.

702 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 2, JUNE 2020

timeout value, meanwhile if a flow passes before the expiry of
the flow entry, then it might expires before every packet of the
flow is processed. Hence the device will generate a packet_in
to the L2 controller which is sufficient for the controller to
detect the load of the L3 controller. Further, we propose a
minimization of the error function, which is defined as follows:

Min E (L) (16)

such that

0 < L < ∞ (17)

E (L) > 0.5 (18)

E (L) < 2 (19)

In Equation (17) and (19), the E(L) value has been selected
more than 0.5 to avoid the overhead error and less than 2 to
avoid prediction error.

H. Utility Function for End-Users

The limitations of the proposed method is that, it degrades
the end-users’ QoS parameters by creating additional latency
for the initial packets of the traffic flow. On the other-hand, this
scheme improves the TCAM (Ternary Content Addressable
Memory) utilization by quickly removing the flow entries and
creates the space for other flow entries. A utility function mea-
sures user’s relative preference over different levels of decision
metric values. Here, the objective is to maximize the end-users
utility by minimizing the effect of migration on QoS metrics.
The utility function depends on the value of the load factor
announced by the controller. The utility of end-user is given
as Equation (20).

∂U(L)
∂L

< 0 (20)

The value less than 0 indicates, if the timeout value increases,
the end users traffic flow will not suffer any extra latency
for packet_in. At the same time, this will reduce the TCAM
memory utilization.

∂2U(L)
∂L2

< 0 (21)

Equation (21) shows the marginal utility of end-users. The
marginal utility represents the end-users’ utility at extreme
conditions. The marginal utility of the end-users increases with
increase in the value of L. The Algorithm 1 describes the
evaluation of the flow entry timeout value.

The flow timeout computation algorithm aims for computing
optimal timeout value for a flow entry, such that when the traf-
fic flow has traversed the device, the flow entry should expire
from device flow table. The input parameters to Algorithm 1
is a particular flow entry F, OFD processing rate mspeed , total
packets against the flow entry S(F), in turn, the algorithm
returns the timeout value L. In Step 1, the timeout value is
maintained as NULL. Then the algorithm checks the occur-
rence of the flow entry in terms of flow misses. If the flow
miss is for the first time, then the router flow table is checked
against the same flow entry as discuss in Step 3. If the flow
entry exists in the router, then the flow entry is assigned a

Algorithm 1: Flow Entry Timeout Computation
Inputs : Flow_Entry − (F)

Device Processing Speed-mspeed
FlowPackets − S(F)

Outputs: Flow_Timeout − L

1 L← NULL
2 if Flow_Occurrence(F) == 0 then
3 if Flow_Present_Router(F) then
4 L = HighValue
5 else
6 L = F (ti) +K

7 else if (Flow_Occurrence(F)≤X &
8 Flow_Present_Router(F)==False then
9 L = 2 · F (ti)

10 else
11 if Flow_Present_Router(F) then
12 L = HighValue
13 else
14 Update(L3_Controller)
15 L = HighValue

16 Return L

high timeout value, else the flow entry is assigned the time-
out value as depicted in Step 6 where K is a constant value.
The value of K is chosen such that the timeout value satis-
fies all subject to constraints as given in Equation (17)-(19).
The function Flow_Occurrence (F) returns the number of flow
miss for the flow entry F in a given interval of time ti and
the function Flow_Present_Router(F) returns true if the corre-
sponding flow entry is found in Routers flow table. If the flow
miss is not the first time and less than X, at the same time a
corresponding flow entry is not found in the router (Step 8),
the timeout value is assigned as discussed in Step 9. After
the flow misses exceed the value X, the algorithm checks for
the corresponding flow entry in the router. If the flow entry is
present with router, a high timeout value is assigned as shown
in Step 13; else L3 controller is updated for the particular
flow F for which a high timeout value is assigned to the flow
entry. In this case, L3 controller adds the flow entry in the
routers’ flow table. The value of X is chosen by the adminis-
trator based on the number of flow entries for the L2 device.
The high value of timeout is computed based on multiple of
F (ti), i.e., (n.F (ti)). The value of n is decided by the adminis-
trator, where a high value of n determines low TCAM memory
utilization, and at the same time, high flow misses and vice
versa. The value of n.F (ti) should always be less than the
current time slot ti . In the above algorithm, the values of n
and x can also be different for different OFDs and end-users.
If a high priority users traffic is considered, the value of X
has to be less and a value of n has to be high. Algorithm 1,
addresses the problem of traffic flows with unknown or highly
dynamic number of packets, i.e., S(F). If the number of pack-
ets in a flow entry is very dynamic, then high misses will occur
against the corresponding flow entry and ultimately the num-
ber of misses exceeds X. When the miss exceeds the value of
X, the L2 controller updates the L3 controller for adding the
same flow entry to the router. If the router’s TCAM is full,
the router has to evict some existing flows to add the new
flow entry.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 15:19:05 UTC from IEEE Xplore. Restrictions apply.

SAHOO et al.: IMPROVING END-USERS UTILITY IN SDWAN SYSTEMS 703

Algorithm 2: Asynchronous Load Prediction
Inputs : packet_in(τ)

Router R
Li (Current CPU Utilization Level)

Outputs: Boolean_Variable
packet_out

1 Boolean_Variable ← False
2 packet_out ← NULL
3 if Flow_Entry(R, τ) then
4 Boolean_Variable ← False
5 packet_out ← Process(packet_in)
6 else
7 if CPUutil + 10τt ≥ Li ∗ 100

L then
8 Boolean_Variable ← True
9 packet_out ← Process(packet_in)

10 Inform_L3_Controller()
11 else
12 Boolean_Variable ← False
13 packet_out ← Process(packet_in)

For the synchronous load prediction, L2 controller has
to wait for the action of the L3 controller. In this mecha-
nism, the L2 controller has to inform L3 controller but will
not wait to receive an acknowledgment from the controller.
Simultaneously it processes the packet_in event to gener-
ate packet_out message. The asynchronous method of load
prediction has summarized in Algorithm 2. In Step 3, flow
entry corresponding to a packet_in in L2, is checked in the
flow table of the router. If the flow entry is found then the
algorithm returns Boolean_Variable as false and a packet_out
is generated for processing packetin in Step 5. But, if the
flow entry is not found then overload condition is checked by
using Equation (8) and if this flow request will overload con-
troller then Boolean_Variable becomes true and information
of the upcoming load is passed on to L3 controller (Step
9). The L2 controller waits for the acknowledgment from L3
controller and then generates packet_out for the respective
packet_in requests as in Step 11. If the controller doesn’t get
overloaded then forwarding rules are responded for respective
packet requests. In Step 10, the algorithm causes a delay in
response to packet_in requests and its effects are evaluated on
the predicted load in the result reported in Section V.

I. Router and Controller Selection

The main aim of load prediction or adaptive load balancing
is to create a traffic aware load balancing mechanism for L3
controllers. The major bottleneck in load balancing is the con-
stant time which occurs during device migration. Therefore,
during the device migrations, the end-users suffer degradation
of QoS. In the proposed approach, the L2 controller analyzes
each traffic flow and predicts the load. During the analysis
phase, L2 controller can view the packet headers of each traf-
fic flow. Using this information, L2 controllers can help to L3
controllers in the selection of optimal OFD for migration such
that high priorities users will not suffer degraded QoS during
device migrations.

In Algorithm 3, L3 controller is notified for load change
information from all L2 controllers as shown in Step 1.
Then L3 controller performs traffic statistics on the L2

Algorithm 3: Effective Migration Decision
Inputs : Route_Set R

L3(L3 Controller Set)
Outputs: Target_Controller

1 if Real_Time_Load(Li ,) ≥ Th then
2 High_Priorities_Routers = Check_Traffic_Stats(Ri , H)
3 Low_Priorities_Routers = Check_Traffic_Stats(Ri , L)
4 Migrated_Devices = 0
5 while CPU [Ri] ≤ Li do
6 if Migrated_Devices ≤ 3

4 · |R| then
7 Router = Select_Any_Router(Low_Priorities_Routers);
8 New_Controller(Router)=Get_Lest_Loaded

_Controller(Router[τmax]);
9 Migrated_Devices ++;

10 else
11 Router = Select_Any_Router(High_Priorities_Routers);
12 New_Controller(Router)=Get_Lest_Loaded

_Controller(Router[τmax]);
13 Migrated_Devices ++;

14 else
15 Wait();
16 Return Target_Controller ;

devices, where L2 controller collects flow-based statistics
and passes to L3 controller. These statistics include band-
width consumption for different flow entries (by sending
FLOW_STATS_REQUEST). Based on the flow entries, L3
controller identifies the high priority end-user traffic using
the priority assigned to each flow entry. If in a time slot
ti a high priority traffic flow entry has high bandwidth, the
same router is marked as high priority router as shown in
Step 2 and 3. Then based on the value of τmax for a router
a suitable controller is selected based on the controllers cur-
rent CPU utilization level as described in Steps 4 - 11. The
Check_Traffic_Stats() takes Router set Ri as input and indi-
cator H or L. This function returns all routers in order of
their flow rules and priorities. The function checks the traf-
fic statistics against the flow entry rules and uses the priority
field of the flow entry for prioritizing the routers. If the
indicator passed is H, the function returns the routers in
descending order and vice versa. Finally, we control the total
number of migrated devices using the Migrated_Devices vari-
able. The while loop continues until the CPU utilization of
the source L3 controller comes below Li level. The func-
tion Get_Least_LoadedController(·) returns a new controller
which has minimum response time for the control packets for
the router. This function evaluates the response time for all
available L3 controllers based on their announced load factors
value.

V. PERFORMANCE EVALUATION

In order to implement the proposed work, 12 extreme
switches (Extreme Summit X440-24p) have been used, with
OpenFlow support 1.3v. For simulating the control plane, Java-
based Floodlight [11] controller has been used. We created 30
dynamic flow-entries and 160 static flow entries (ARP entries)
with infinite time out values. The controllers communicated
among themselves using Java’s socket programming. In the

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 15:19:05 UTC from IEEE Xplore. Restrictions apply.

704 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 2, JUNE 2020

topological ordering, 3 switches were deployed in LAN envi-
ronment and 4 switches are deployed in WAN environment.
To simulate the WAN link, the queues have created which
were bandwidth limited. The switches in WAN were deployed
and rate limiting was accomplished using bandwidth limited
queues so that the OF switches can simulate as routers. The
WAN link bandwidth used during performance evaluation has
fixed to 54 Mbps and the delay is 15 ms.

For the performance evaluation, the following metrics have
been considered:
• QoS Parameters: The whole process of load prediction

causes degradation of end-users traffic in terms of QoS
parameters. For instance jitter and packet loss parameter
has been considered.

• Prediction Error: The overall goal of the proposed work
is load prediction. The prediction rate depends on the
traffic dynamism and optimal solution of the flow entry
timeout variable.

• End-Users’ Utility: The improvement of end-users’ utility
is also considered in the proposed work based against
QoS parameters. The end-users’ utility is measured by
averaging the drop in different QoS parameters on the
percentage scale.

• Controller Communication: Controller communication
plays an important role in the improvement of end-users
utility. We evaluate L3 controller to L2 controller com-
munication using two methods, such as: synchronous and
asynchronous methods.

For further evaluation,the proposed work has compared with
the following conditions:
• Timeout With F(ti): The evaluation of timeout using

F (ti) produces the optimal value of timeout, whereas
this strategy is not suitable for high flow dynamism.

• Timeout With N.F(ti): The evaluation of timeout using
N .F (ti) does not gives the optimal value. But this
strategy can handle high traffic dynamism and at
the same time can decrease the TCAM memory
utilization.

• With Error Optimization: Here, the optimization only
depends on the error prediction minimization as in
Equations (8)-(11).

• Static Distribution: The flow entry time out values and a
minimum number of flow entries are assigned statically
which remain same for every time slot.

The proposed work evaluates the flow entry timeout using
the packets in the traffic flow and device processing rate.
The device processing rate is measured in Million Packets
Processed per Seconds (Mpps). The device processing rate for
X440 is 72.5 Mpps. Further finding out the number of packets
S(F) for a given flow is achieved by observing the traffic statis-
tics. As mentioned in the above traffic analysis in Section IV,
the number of packets against a flow entry can be determined
statistically. But there can be some traffic flows, where the
flow packets vary dynamically. The proposed Algorithm 1
takes care of such traffic flows by adding the flow entry in the
router flow table. The time slot ti is evaluated using maximum
length traffic flow (ti = (N +2)F (ti), where F (ti) evaluates
the optimal flow time for traffic flow with maximum length).

Fig. 3. Impact of QoS during i) synchronous ii) asynchronous mode of
communication between L3 and L2 controller.

Based on the proposed algorithm, at the end of a time slot, ti
the miss history of the flow entries is flushed out. The graphs in
Fig. 3 represent the variations of QoS metric during the com-
munication between L3 and L2 controller. Both asynchronous
and synchronous methods are evaluated against only TCP traf-
fic. The Fig. 3(b) and 3(d) represent the variation of packet loss
for synchronous and asynchronous methods that are evaluated
against TCP traffic. From the plots represented in Fig. 3 it
can be observed that the overall QoS parameters are degraded
for initial packets of the traffic flows in all cases. In static

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 15:19:05 UTC from IEEE Xplore. Restrictions apply.

SAHOO et al.: IMPROVING END-USERS UTILITY IN SDWAN SYSTEMS 705

Fig. 4. Average end-user utility.

distribution, the QoS degradation is even more as compared
to other. In static timeout distribution, the flow misses is very
high as this strategy cannot well handle traffic dynamism. The
time out strategy using F (ti), increases the flow misses for
dynamic traffic flows. Whereas, the evaluated timeout value
shows very low degradation in QoS because the flow miss is
minimal.

But this strategy causes high TCAM memory utilization.
Lastly, the timeout strategy using proposed Algorithm 1 has
lower flow misses upto the value of X. In another experiment,
Fig. 6(a) represents an average of end-users utility. For com-
paring the proposed approach, the following approaches have
been considered.
• In [6], for shifting the load from one controller to other,

Yuanhao et al. have made use of distributed decisions.
To find the load on the controller, the following equation
has been used by the author.

ρ =
1
n

∑n
i=1 Li

maxni=1Li
(22)

where, {L1,L2,L3, . . . ,Ln} represent the loads on var-
ious controllers. If the value of ρ approaches 1, then
that would indicate that the load is uniformly distributed.
If ρ approaches 0.7, then the controller can afford to
have more load. For the selection process, the OFDs are
checked for the following condition:

Lmigrate ≤ Loverloaded − Ltarget

2
(23)

The Lmigrate represents the load on the controller by the
OFD’s load on the controller. The Loverloaded represents
the controller which is overloaded and Ltarget represents
the target controller.

Fig. 5. Load Prediction Error for N = 100.

• In [9], an elastic and distributed control architecture has
been proposed by Dixit et al. In their work, CPU uti-
lization metric has been used to check load imbalance
criteria. Therefore, the load has been transferred to the
controller which has minimum CPU utilization.

• In [23], optimal switch has been selected by the over
loaded controller. A zero sum game is formed among
switches and controllers. Switches being treated as the
commodities and controllers as players. For calculation of
payoff α of each player, authors proposed the following
equation:

Bj (f
′) = Bj (f) + λ(si) (24)

The f ′ and f are the network configurations before and
after the switch (si) migrations. And λ(si) depends upon
the event count for the controllers (migration events).

Fig. 4 shows that the proposed approach exhibits higher end-
users utility due to less processing delay for both low and high
priority traffic. Fig. 5 represents the load prediction error with
varying inter-arrival time. With higher value of λ, the proposed
approach outperforms different competing schemes. The rea-
son is that, the proposed approach considers both prediction
error minimization along with processing delay minimization.

For this experiment three different time-out values have
been set. From the Fig. 5, it can be observed that the error
is minimal for only a specific inter-arrival time. When the
flow entry timeout is calculated by using F (ti), the error
is minimum. Otherwise, the error would have significantly
increased

The Fig. 6(a) and 6(b) show the average end-users’ utility
for different values of X and N. It can be noted that with an
increasing value of X, the average flow misses increases, and
the end-users’ utility reduces. Fig. 6(a) shows a steep slope
when the value of X is in between 1-4, and the slope decreases
when the value of X further progresses. The reason is that,
when the value of X is in the range of 1 to 4, the traffic flow
that hits the OFD, shows less dynamism in terms of number of
packets. Whereas when the value of N increases, the flow miss
decreases, and in turn, the average end-user utility improved,
as shown in Fig. 6(b).

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 15:19:05 UTC from IEEE Xplore. Restrictions apply.

706 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 2, JUNE 2020

Fig. 6. Average end-user utility with varying X and N.

VI. CONCLUSION

The proposed work focuses on a new control plane archi-
tecture, where the control decision demands are handled
separately. Based on the control plane architecture, the L2
controllers predict the load for L3 controllers. Further, the
load prediction approach downgrades the QoS parameters for
the initial packets of the flow. To solve the initial delay,
the proposed approach solves a single-objective optimization
problem considering by minimizing the load prediction error.
The timeout strategy also checks the high traffic dynamism
and hence increases the end-users utility. We evaluated the
performance of the algorithms in synchronous and asyn-
chronous modes on real switches. The proposed work out-
performs other competing schemes in optimal control load
distribution because it ensures improved results in terms of
QoS, prediction error, and end users’ utility. In the future work,
this scheme will be evaluated on a real-time topology in a
heavy traffic scenario.

REFERENCES

[1] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, “Survey on network
virtualization hypervisors for software defined networking,” IEEE
Commun. Surveys Tuts., vol. 18, no. 1, pp. 655–685, 1st Quart., 2016.

[2] Y. Zhou et al., “A load balancing strategy of SDN controller based
on distributed decision,” in Proc. IEEE 13th Int. Conf. Trust Security
Privacy Comput. Commun., 2014, pp. 851–856.

[3] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann,
“Logically centralized: State distribution trade-offs in software defined
networks,” in Proc. 1st Workshop Hot Topics Softw. Defined Netw., 2012,
pp. 1–6.

[4] Y. Ganjali and A. Tootoonchian, “HyperFlow: A distributed con-
trol plane for openflow,” in Proc. Internet Netw. Manag. Conf. Res.
Enterprise Netw., vol. 3, 2010, p. 3.

[5] T. Koponen et al., “Onix: A distributed control platform for large-scale
production networks,” in Proc. 9th USENIX Conf. Oper. Syst. Design
Implement. (OSDI), vol. 10, 2010, pp. 351–364.

[6] F. Yonghong, B. Jun, W. Jianping, C. Ze, W. Ke, and L. Min, “A dor-
mant multi-controller model for software defined networking,” China
Commun., vol. 11, no. 3, pp. 45–55, Mar. 2014.

[7] W. Yong, T. Xiaoling, H. Qian, and K. Yuwen, “A dynamic load balanc-
ing method of cloud-center based on SDN,” China Commun. vol. 13,
no. 2, pp. 130–137, Jan. 2016.

[8] G. Cheng, H. Chen, Z. Wang, and S. Chen, “DHA: Distributed decisions
on the switch migration toward a scalable SDN control plane,” in Proc.
IFIP Netw. Conf. (IFIP Netw.), 2015, pp. 1–9.

[9] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. R. Kompella,
“ElastiCon; an elastic distributed SDN controller,” in Proc. ACM/IEEE
Symp. Archit. Netw. Commun. Syst. (ANCS), 2014, pp. 17–28.

[10] K. Lee et al., “MC-SDN: Supporting mixed-criticality real-time com-
munication using software-defined networking,” IEEE Internet Things
J., vol. 6, no. 4, pp. 6325–6344, Aug. 2019.

[11] Floodlight Controller OpenFlow. Accessed: Jan. 10, 2019. [Online].
Available: http://www.projectfloodlight.org/floodlight/

[12] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability of
software-defined networking,” IEEE Commun. Mag., vol. 51, no. 2,
pp. 136–141, Feb. 2013.

[13] F. Benamrane, M. B. Mamoun, and R. Benaini, “Short: A case study
of the performance of an openflow controller,” in Proc. Int. Conf. Netw.
Syst., 2014, pp. 330–334.

[14] Y. Jarraya, T. Madi, and M. Debbabi, “A survey and a layered taxonomy
of software-defined networking,” IEEE Commun. Surveys Tuts., vol. 16,
no. 4, pp. 1955–1980, 4th Quart., 2014.

[15] P. Xiao, W. Qu, H. Qi, Z. Li, and Y. Xu, “The SDN controller place-
ment problem for WAN,” in Proc. IEEE/CIC Int. Conf. Commun. China
(ICCC), 2014, pp. 220–224.

[16] Y. Jiménez, C. Cervelloó-Pastor, and A. J. García, “On the controller
placement for designing a distributed SDN control layer,” in Proc. IFIP
Netw. Conf., 2014, pp. 1–9.

[17] S. Lange et al., “Heuristic approaches to the controller placement
problem in large scale SDN networks,” IEEE Trans. Netw. Serv. Manag.,
vol. 12, no. 1, pp. 4–17, Mar. 2015.

[18] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” in Proc. 1st Workshop Hot Topics Softw. Defined Netw., 2012,
pp. 7–12.

[19] D. Tuncer, M. Charalambides, S. Clayman, and G. Pavlou, “Adaptive
resource management and control in software defined networks,” IEEE
Trans. Netw. Serv. Manag., vol. 12, no. 1, pp. 18–33, Mar. 2015.

[20] M. T. I. U. Huque, G. Jourjon, and V. Gramoli, “Revisiting the controller
placement problem,” in Proc. IEEE 40th Conf. Local Comput. Netw.
(LCN), 2015, pp. 450–453.

[21] C. Coello, S. De Computación, and C. Zacatenco, “Twenty years of
evolutionary multi-objective optimization: A historical view of the field,”
IEEE Comput. Intell. Mag., vol. 1, no. 1, pp. 28–36, May 2006.

[22] N. Srinivas and K. Deb, “Muiltiobjective optimization using nondom-
inated sorting in genetic algorithms,” Evol. Comput., vol. 2, no. 3,
pp. 221–248, Sep. 1994.

[23] G. Cheng and H. Chen, “Game model for switch migrations in software-
defined network,” Electron Lett., vol. 50, no. 23, pp. 1699–1700,
Jun. 2014.

[24] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteris-
tics of data centers in the wild,” in Proc. 10th ACM SIGCOMM Conf.
Internet Meas., 2010, pp. 267–280.

[25] Data Set for IMC 2010 Data Center Measurement.
Accessed: Jan. 15, 2019. [Online]. Available:
http://pages.cs.wisc.edu/∼tbenson/IMC10_Data.html

[26] B. Ryu, D. Cheney, and H.-W. Braun, “Internet flow characterization:
Adaptive timeout strategy and statistical modeling,” in Proc. Workshop
Passive Active Meas. (PAM), vol. 105, 2001, p. 45.

[27] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: Scaling flow management for high-
performance networks,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 41, no. 4, pp. 254–265, 2011.

[28] K. S. Sahoo and B. Sahoo, “CAMD: A switch migration based load
balancing framework for software defined networks,” IET Netw., vol. 8,
no. 4, pp. 264–271, Jul. 2019.

[29] J. Cui, Q. Lu, H. Zhong, M. Tian, and L. Liu, “A load-balancing mech-
anism for distributed SDN control plane using response time,” IEEE
Trans. Netw. Serv. Manag., vol. 15, no. 4, pp. 1197–1206, Dec. 2018.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 15:19:05 UTC from IEEE Xplore. Restrictions apply.

SAHOO et al.: IMPROVING END-USERS UTILITY IN SDWAN SYSTEMS 707

[30] H. Zhong, Y. Fang, and J. Cui, “LBBSRT: An efficient SDN load bal-
ancing scheme based on server response time,” Future Gener. Comput.
Syst., vol. 68, pp. 183–190, Mar. 2017.

[31] J. Xie, D. Guo, C. Qian, L. Liu, B. Ren, and H. Chen, “Validation
of distributed SDN control plane under uncertain failures,” IEEE/ACM
Trans. Netw., vol. 27, no. 3, pp. 1234–1247, Jun. 2019.

[32] M. He, A. Varasteh, and W. Kellerer, “Towards a flexible design of SDN
dynamic control plane: An online optimization approach,” IEEE Trans.
Netw. Serv. Manag., to be published.

Kshira Sagar Sahoo received the M.Tech. degree
in information and communication technology from
IIT, Kharagpur, India, in 2014, and the Ph.D.
degree in computer science and engineering from the
National Institute of Technology, Rourkela, India,
in 2019. He is currently working as an Assistant
Professor with the Department of IT, VNR VJIET,
Hyderbad, India. His research interest includes
future generation network infrastructure, such as
software defined networks, edge computing, and IoT.
He is a Student Member of IEEE Computer Society

and an Associate Member of the Institute of Engineers, India.

Pritish Mishra received the graduation degree from
IIIT, Bhubaneswar, India. He is working as a Core
Developer with SAP Cloud Platform, SAP Labs
Bangalore, India. He has been contributing to many
open-source projects related to the domain of cloud
for over two years. He has been published papers in
reputed journal and conferences.

Mayank Tiwary received the graduation degree
from the Biju Patnaik University of Technology,
Rourkela, India. He is working as a Core Developer
with SAP Cloud Platform, SAP Labs Bangalore,
India. He has numbers of publications in the domain
of distributed and cloud computing.

Somula Ramasubbareddy received the master’s
degree in computer science and engineering in 2015.
He is currently pursuing the Ph.D. degree in com-
puter science with VIT University Vellore, India. His
areas of interest are mobile cloud computing and big
data analytics.

Balamurugan Balusamy received the B.E.
degree in computer science and engineering from
Bharathidasan University, Tiruchirappalli, India,
in 2001, the M.E. degree in computer science
and engineering from Anna University, Chennai,
India, in 2005, and the Ph.D. degree in computer
science and engineering from VIT University,
Vellore, India, in 2015. He is a Professor with the
School of Computing Science and Engineering,
Galgotias University, Greater Noida, India. His
current research interests include big data, network

security, and cloud computing. He is a Pioneer Researcher in the areas of big
data and IoT and has published over 70 papers in various top international
journals.

Amir H. Gandomi (GS’14–M’15–SM’19) was an
Assistant Professor with the School of Business,
Stevens Institute of Technology, NJ, USA, and
a Distinguished Research Fellow with BEACON
Centre, Michigan State University, MI, USA. He
is a Professor of data science with the Faculty of
Engineering and Information Technology, University
of Technology Sydney, Australia. He has published
over one hundred and sixty journal papers and five
books which collectively have been cited more than
13 000 times (H-index = 56). He has been named as

one of the most influential scientific minds and a Highly Cited Researcher
(top 1%) for three consecutive years, 2017 to 2019. Because of his efforts in
genetic programming, he also ranked 19th in GP bibliography among more
than 12 000 researchers. His research interests are global optimization and
(big) data analytics using machine learning and evolutionary computations in
particular. He has also served as an Associate Editor, an Editor, and the Guest
Editor in several prestigious journals and has delivered several keynotes and
invited talks.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 15:19:05 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

