
Segment Routing in Hybrid Software-Defined Networking

Ziqiang Li, Liusheng Huang, Hongli Xu, Gongming Zhao
Department of Computer Science and Technology

University of Science and Technology of China
Hefei, China

e-mail: {lzqrush, zgm1993}@mail.ustc.edu.cn, {lshuang, xuhongli}@ustc.edu.cn

Abstract—Software-defined networking (SDN) decouples the
network into different layers, bringing many new attributes
over traditional network. But SDN also comes with its own set
of challenges and limitations. Combining the mature
traditional network with new benefits of SDN, hybrid SDN has
attracted significant attention. On the other hand, segment
routing keeps partial routing information within packet header
so that switch can directly dispatch without calculate routing
path or looking flow entry table. In this paper, we first propose
a mechanism which integrates segment routing into hybrid
SDN that can reduce the needs of flow entries of SDN switch.
Then we formulate a routing algorithm for this mechanism.
Our algorithm considers the balance of traffic load and
reduces the needs of flow entries in each switch. Simulation
results show that the performance of our mechanism
significantly reduces the number of flow entries than compared
solution, and achieves better load balance compared with
previous routing protocols.

Keywords-software defined networking (SDN); openolow;
hybrid SDN; segment routing; traffic engineering

I. INTRODUCTION

A. Hybrid SDN
Because of the flexible, manageable and responsive to

rapid changes, software-defined networking has attracted
significant attention from many researchers. Those qualities
of SDN enable network designers to directly control network
through programmable open standardized interface called
OpenFlow [1]. SDN promises the ease of network design,
operation and management and therefore, breaks through the
bottleneck to the acceleration towards the age of cloud
computing that networks are evolving to.

With the architecture of decoupling the control
framework from data plane, SDN can obtain a global view of
entire network and provide centralized control over
complementing network function virtualization (NVF).
SDN's inherit advantages unlock the new potential of the
network fabric.

But along with the promising feature, inevitably, SDN
itself still remains many unresolved challenges. According to
OpenFlow protocol, the SDN attribute implies that an SDN
switch requires a larger sized flow table than that of a
traditional switch for storing the same number of flows [2].
Flow tables are implemented by TCAM (Ternary Content
Addressable Memory), which is small, costly and energy-

hungry [3]. And all the switches are reported to controller,
every decision is made by controller and then controller
distributes rules to all the switches. This results significant
burden to controller and the link between switches and
controller.

On the other hand, compared with newly born
networking paradigm, traditional network has evolved
through decades. Most protocols and techniques have been
tested by large-scale network in a long period of time. With
its mature functionalities and proven success, conventional
network is more attractive to the network operators.

So summing up the advantages of both SDN and
traditional network while mitigating their respective
challenges into Hybrid SDN seems one better choice.
Targeting to these concerns, OpenFlow protocol v1.3.0 in [1]
proposed a new hybrid switch mode called OpenFlow-hybrid.
OpenFlow-hybrid switches support both OpenFlow
operation and normal Ethernet switching operation. Such as
traditional L2 Ethernet switching, L3 routing and Qos
processing.

Reference [4] classifies hybrid SDN into four types,
topology-based, service-based, class-based and integrated
hybrid SDN. In the first three hybrid models, traditional
network node and SDN node complement each other by
controlling disjoint parts of node forwarding information.
From perspective of control plan, the control power is
divided into two parts, one part is distributed on the
traditional switch, and the rest belongs to SDN controller,
which can cause severe inconsistency [4]. On the contrary,
integrated hybrid SDN only has one kind of node, but
contains two working modules, OpenFlow protocol and
traditional network protocol. It is responsible for all the
network services, and uses traditional network protocols as
an interface to node. Controller can get full access to both
situation, have entire network status and control network
traffic. However, Hybrid SDN contains two kinds of traffic:
Normal Ethernet traffic and OpenFlow traffic. The one big
problem of hybrid SDN is the co-exist of normal Ethernet
traffic and OpenFlow traffic. Normally, two kinds of traffic
either share one link, or preserve certain percentage of link
capacity respectively.

B. Segment Routing
Restricted by high cost of TCAM, many solutions have

been proposed and one of them is segment routing (SR) [5].
Usually, traditional switch stores the entire network topology
and then forwarding packet based on computed path

160

2017 9th IEEE International Conference on Communication Software and Networks

978-1-5090-3822-0/17/$31.00 ©2017 IEEE

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 15:00:15 UTC from IEEE Xplore. Restrictions apply.

according to this network topology. For every new flow,
Openflow switch intercepts flow packet header and reports to
the controller, then controller computes the forwarding path,
generates forwarding rules and distributes to all switches.
Either way, switch has to keep a large amount of forwarding
information. The key idea of SR is to keep partial forwarding
information within the packet rather than store in switch.
This approach can largely reduce the network information
status that is stored in each switch and hence minimizes the
needs of TCAM for Openflow switch. As the number of
forwarding rules become smaller, the complexity of
maintaining a large-scale forwarding rules is much eased.

Taking advantage of the global view of SDN, SR can be
perfectly implanted into SDN. Controller calculates routing
path, divides the path into several segment, generates
segment routing entry and distribute routing rules down to
switches.

The contributions of this paper are as follows. First, we
propose a hybrid segment routing mechanism. This
mechanism integrates segment routing into Openflow-hybrid
mode, which becomes a new hybrid SDN model. Second, we
formulate the traffic engineering problem targeting this new
hybrid SDN model as an integer linear program, and one
algorithm is designed to solve this problem.

The rest of the paper is organized as follows. In Section
II, we summarize related work. In Section III, we present the
hybrid segment routing mechanism in details. In Section IV,
we present the traffic engineering targeting proposed hybrid
SDN model. In Section V, we evaluate system performance.
Finally, we conclude the paper in Section VI.

II. RELATED WORK

The authors in [6] concerned that today's SDN system
still remain a large set of unsolved challenges and keeps high
deployment cost, most enterprise are willing to incrementally
deploy SDN element. The co-exist of SDN element and
traditional network device resulting in a transitional form of
networks a hybrid SDN (H-SDN). Authors look into
traditional network and SDN, analyze the routing protocols,
and proposed a new routing protocol for H-SDN, resolves
the problem of SDN traffic passing through traditional
network element. Then authors modeling the traffic
engineering problem in two modes of H-SDN: barrier mode
and hybrid mode. Reference. [7] proposed a novel label
switching mechanism by rewriting mac address field with
"shadow" MAC address. Each shadow mac address is
associated with one spanning tree to achieve traffic
engineering. And whole network uses multiple spanning
trees rooted at each destination. In this case only few path are
available. With the overhead in mac address rewriting,
limited path can affected throughput performance.

The authors in [8] raises the issue that even though
classical traffic engineering methods can achieve the optimal
routing based on single traffic matrix, but it not handle
unexpected traffic changes, and propose an approach named
hybrid routing. The key idea of this approach is to select
small fraction of nodes pairs. The traffic between selected
node pairs using explicit routing forwarding, and rest of

traffic using destination-based routing. All the explicit
routing entries are stored in fast but expensive TACM table
and using cheap but large SRAM table to keep destination-
based routing entries. Incoming packet will be first matched
by TCAM table. When hit one entry, router then apply the
action which was specified by that entry. If misses, the router
continue to match entries in the SRAM table like normal
destination-based routing protocol. Authors try to take
advantage of both routing approaches to achieve load
balancing.

SecondNet in [9] uses port-switching based source
routing (PSSR) to forwarding packet, implement with MPLS.
But MPLS increases header overhead because each label
length is 4 bytes. Ref. [3] proposed a routing algorithm based
on segment routing, authors limit the length of MPLS
through hop count constraint. JumpFlow in [10] uses SR
method, but it applied into whole network. This caused
overhead of egress switch to rewrite the packet. Our method
select part of the traffic, the rest of network can still choose
normal Ethernet or OpenFlow pipeline.

III. DESIGN OF HYBRID SEGMENT ROUTING MECHANISM

We target OpenFlow-hybrid SDN. The objective of
hybrid SDN is to manage the co-exist of normal Ethernet
traffic and OpenFlow traffic. To ensure this circumstance,
we adopt the hybrid mode of OpenFlow switch [1]. The goal
of this paper is to design a forwarding mechanism that can
achieve balanced flow table usage and load balancing
through SR based on Hybrid SDN, denote as HSR. In our
considered OpenFlow-hybrid SDN, network traffic shared
one link between switches and each switch contained two
layer: Normal Ethernet Switching Layer (NESL) and
OpenFlow Switching Layer (OFSL). In NESL, Open
Shortest Path First (OSPF) is the most commonly used
routing protocol to achieve optimized traffic. In OFSL, after
studied the current internet protocol, we found that there
exists many unused place in packet header (VLAN identifier,
etc.). Thanks to the open programmable of SDN, we can put
forwarding information into those space, then switch based
on those information can decide which port should be
forward to. In this paper, forwarding information simply
means forwarding port number and so called port-based
segment routing. Controller will determine which new flow
is using this approach and install classify entries into switch.
When one new flow is using this approach, controller
calculate the flow path and install related rules into switch
along the path. Switch at the beginning of each segment
insert the list of forwarding port number into packet header.
The field of routing segment is depicted in Fig. 1.

Figure 1. Examples of forwarding field in packet header

161

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 15:00:15 UTC from IEEE Xplore. Restrictions apply.

Assuming that the length of each segment is 4. After 4
ports is the offset which indicate the port number of switch
should be used. At the end of entry actions, the offset should
increase. After four switches, the fifth switch will contain a
rule specify for this flow or one destination to load next
segment route path and the offset is set to 0. The last action
of this rule is to forward packet to one port number at this
loading node. So it is clear that packet header do not have
forwarding information of loading node, but contained
within those rules. The purpose of this design is maximally
reduces forward information on each packet. We should note
that the length of segment can be optimized according to
different network size.

Not all flow are using port-based segment routing, real
network is composed of many kinds of traffic. On the
prospective of quantity of flows, the majority are short-lived
with light traffic [11]. The quantity of those flow is large but
traffic bytes are relatively small compared with elephant
flows and have limited influence on network. When large
amount of new short-lived with light traffic hit the network,
switches need to communicate with controller to request
forwarding rules. This process add additional delay on the
entire network. It is wise to direct these flow through NESL,
for the purpose of minimizing the number of forwarding
rules. On the contrary, elephant flow are dominate in traffic
volume although their number may be relatively small [11],
so it is wise to steer those traffic into OPSL and using port-
based forwarding method for better control of network. Also
controller can choose any flow to use segment routing
mechanism according to different traffic engineering
circumstance.

A. Overview of HSR Mechanism
In OpenFlow, OpenFlow-compliant switch comes in two

types: OpenFlow-only, and OpenFlow-hybrid. OpenFlow-
only switches support only OpenFlow operation. In those
switches all packets are processed by the OpenFlow pipeline.
And the switch can only handle OpenFlow traffic, which
mean many function of traditional switch is not available.
But for OpenFlow-hybrid switch, at every packet header,
there is one field indicating this packet is whether openflow
packet or traditional packet. For example, switch may use the
VLAN tag to decide whether to process the packet using
Openflow pipeline or the other.

In our designed mechanism, for every new flow,
controller should decide whether this flow goes to NESL or
OFSL, and whether using segment routing, then distribute
one rule to inform ingress switch injecting classification tag
into every packet belongs to this flow. We denote this rule as
tag rule.

In Fig. 2, we demonstrate the main process of our
designed HSR mechanism. When packet entering a switch, it
will be handled by classification process. The classification
process is to check specific packet header tag. The
classification tag divides traffic into two parts. One part goes
to NESL, and the rest goes to OFSL. If the packet is
classified to normal flow, it will be forwarded to normal
Ethernet switching operation. Otherwise, The OpenFlow

operation catch this packet and use OpenFlow pipeline to
handle it. Next we will discuss these two layers in detail.

Figure 2. Examples of forwarding field in packet header

B. Normal Ethernet Switching Layer
Incoming packet through NESL has two sources. One is

packet forwarded by adjacent switch, another is forwarded
by OpenFlow pipeline within the switch. NESL identify
flows by their destinations and forward them to
corresponding outgoing links along the shortest paths that are
calculated via OSPF protocol. NESL do not aware of the
difference between two sources packet and treat SDN packet
as normal packet. NESL traffic is assumed to be optimized
via standard link-state routing protocols such as Open
Shortest Path First Traffic Engineering (OSPF-TE).

C. OpenFlow Switching Layer
We integrate port-based segment routing into this layer.

Port-based segment routing uses unused tag within packet
header to store forwarding information. For example, the
next header in IPv6 protocol is used to packet header
extension. So data structure which depicted in Fig. 1 can be
injected into those spaces.

We discuss OFSL from control plane and data plane:
Control Plane: The control plane is implemented via

extensions to a centralized SDN controller. All the new flows
are controlled by network controller. Here we only discuss
the control procedure of traffic which using segment routing.
Other traffic is standard OpenFlow procedure.

First, controller sent the tag rule into ingress switch of
this flow. Then controller calculate the path of the requests,
get the port number of switch along the path that need to be
forward to and split the list of port number into several
segment. The length of each segment of hop path is set to a
reasonable number, this paper is set to 4. The switches in
each beginning of segment list have the responsibility of
loading segment list into packet, other switch just forward
packet.

The controller sees switches into two types: loading
nodes and forwarding nodes. Forwarding node simply get the
port number, which this packet will be forwarded to, based
on the pointer. On the basis of forwarding node, loading
node have one more function that is loading routing segment
into packet header. The specific rule of loading segment list
is denoted as loading rule.

So it is obvious that every node can be loading node and
forwarding node at the same time from the perspective of

162

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 15:00:15 UTC from IEEE Xplore. Restrictions apply.

different flows. Controller can select any flow or any sub-
path of specific traffic to use port-based routing.

For the ingress switch, the last action of tag rule is to
match the flow entry table which contains loading rules to
loading the first segment list.

Data Plane: Two types of nodes in SDN Routing
procedure: loading nodes and forwarding nodes all have been
pre-installed a default forwarding action, denote as DF action.
The functionality of this default action is simply extract the
forwarding port number which stored in packet header, then
forwarding this packet through given port number.

When packet is classified as OFSL packet, switch will
first check packet for segment routing tag. When this packet
is using segment routing, switch will compare the pointer
with the length of segment list. If pointer number is smaller,
DF action will be execute on this packet. If pointer number
exceed the length of segment list, means packet needs reload
segment list. So packet will be matched by flow table which
contains loading rules and reload the segment list.

According to [1], OpenFlow pipeline contains multiple
flow tables, each flow table contains a certain amount of
flow entries. And the number of tables within OpenFlow
pipeline are in ascending order, starting at 0. All the
incoming packet will be firstly matched against flow entries
of flow table 0. Packets are matched by one or more table.
First, packet will be match against table 0 for segment
routing tag. If hit, indicates packet needs to load next
segment list, then goes to the table which contains all the
loading rules. If missed, means this packet is standard

OpenFlow packet. Loading rule have two actions: loading
routing segment list and forwarding packet through given
port.

When packet arrives at loading node, the forwarding
information of this node is given by loading rule rather than
insert into packet header. Switch find out that the pointer is
bigger than given length, so start to match against the flow
table which contains all loading rules.

Fig. 3 demonstrates how data plane works. Host a sends
flow to Host b. S1 reports to Controller. And controller
decide this flow using segment routing protocol. Then
controller informs ingress switch to inject OFSL and
segment routing protocol tag into this flow, and calculates
the path. The length of routing path is 7, so should split into
2 segments. Controller then install one loading rules in
switch s1 and s6 for loading segment routing list. When the
rest packets of this flow reach its ingress switch s1, first it
will be tagged OFSL tag and SR tag, then match all the
loading rule. Matched by installed loading rule, according to
action 1, switch load routing list {2, 3, 4, 3} into packet
header, and pointer is set to 0. According to action 2, this
packet is forwarding through port 1. For the next four hop,
switch simply execute DF action. When packet arrived s6,
pointer is exceed length of segment list. Then s6 extract
packet information and look up the flow entry table contains
all loading rules. Because the length of rest path is small than
4, so the extra field is 0. After s7, packet is reached its
destination. So this flow only takes total two flow rules
among seven hop.

Figure 3. Examples of segment routing in SDN

IV. TRAFFIC ENGINEERING IN HYBRID SDN

A. Network Model
We formulate the hybrid network as a directed

graph G(V, E), where V is the set of switch nodes with n = |V|,
E is the set of directed link in the network. Switches in
network are working under hybrid mode and network links
are shared by Normal protocol traffic and OpenFlow traffic.
The whole network traffic is divided into two types: port-
based traffic (using segment routing mechanism) and
background traffic(standard Openflow traffic and normal
Ethernet traffic).

Link e ∈ E has a capacity c(e), contain both port-based
traffic and background traffic. The background traffic b(e)
on each link e is readily retrieved or estimated by the
controller. Between any host pair may exist many micro-

flow, those flow all have same source address and
destination address.

Let γ denote one flow in the network, the flow set Γ
denotes all the flow within network. We assume the traffic
demand of flow γ ∈ Γ is denoted by f(γ) , and use Pஓ to
represent a feasible path set from source to destination for
each flowγ ∈ Γ.

Variable yஓ
୮ ∈ {0,1} denotes whether flow γ ∈ Γ is using

path p ∈ Pஓ . Let I(γ, v) be a binary value for this problem. If
switch v have one loading entry for flow γ , I(γ, v) = 1 ,
otherwise I(γ, v) = 0. Let T୴ denote as the number of loading
rules that one switch can store. We should know that T୴ is
much smaller than switch flow table capacity.

Finally, we try to formalize the segment routing traffic
engineering (SR-TE) problem into a non-linear program as
(1).

163

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 15:00:15 UTC from IEEE Xplore. Restrictions apply.

:

:

,

min

1,

(,) ,
. .

() () (),

{0,1},

p
p P

p v
p e p P

p
e p p P

p

y

I v y T v V
s t

y f b e c e e E

y p P

p vy , y , (1)

B. Algorithm Description
It can be proofed that (1) is an NP-hard problem. So it is

hard to solve this problem optimally. We first present one
approximation algorithm for (1), called RRSD. The
algorithm are shown in Table I. On the purpose of solving
the problem formalized in (1), the algorithm constructs a
linear program as a relaxation of the SR-TE problem. Back
to SR-TE problem, each flow is assumed that only has one
routing option. By relaxing this assumption, traffic of each
flow is allowed to be divided through a path set P . The
relaxed SR-TE is expressed by (2).

:

:

,

min

1,

(,) ,
. .

() () (),

0,

p
p P

p v
p e p P

p
e p p P

p

y

I v y T v V
s t

y f b e c e e E

y p P

p vy , y , (2)

TABLE I. RRSD ALGORITHM

Algorithm 1 RRSD: Rounding-Based Route Selection and
Deployment
1: Step 1: Solving the Relaxed SR-TE Problem

2: Obtain Traffic demand ()f for

3: Obtain link capacity ()c e for e E

4: vT is the number of remaining flow entries on v

5: Calculate the feasible path set P for

6: Construct a linear program in (2)

7: Obtain the optional solution y

8: Step 2: Route Selection for Load Balancing

9: Derive an integer solution py by randomized rounding

10: for each flow do

11: for each routing path p P do

12: if py = 1 then

13: Appoint a path p for flow

With the algorithm, we first set system parameter,
calculate the path set for each flow. To ease the algorithm,
we only consider the feasible path with minimum hop count,
because there may have exponential number of feasible paths
for each flow. Then since (2) is a linear program, we can
solve it in polynomial time with a linear program solver.

V. PERFORMANCE EVALUATION

In this section, we evaluate our proposed mechanism
through a network simulator.

A. Simulation Settings
As running examples, we select two practical topologies

with different network sizes. The first topology is for campus
networks, denoted by (a), containing 100 switches, 200
servers and 398 links from [12]. The second one is the
famous fat-tree topology [13], denoted by (b). Our fat-tree
topology containing 16 core switches, 32 aggregation
switches, 32 edge switches and 128 servers. For both
topologies, each link has a uniform capacity, 10Gbps.

To evaluate how well our scalable routing algorithm
performs, we compare with three other reference methods.
One is the Open Shortest Path First (OSPF). Another is
modified version of OSPF. Each flow will calculate three
routing path, one of which is shortest path. And randomly
choose one path, denote as OSPF_Random. The last one is
the Equal-Cost Multi-path Routing (ECMP) method. Each
flow will be routed into one of the three paths.

B. Simulation Evaluation
Flow Table Requirement Comparison: First set of

simulations compared two solutions in terms of the
consumption of different table entries under network (a) and
(b). The results are shown in Fig. 4 and Fig. 5, where the
horizontal axis represents the number of flows. With the
increasing number of flows in network, there are more and
more elephant flows. As result, the maximum/average
numbers of forwarding rules (or required flow entries) are
increased for both OSPF and HSR. However, our proposed
HSR mechanism needs much less flow entries on switches
than OSPF. HSR can reduce the required flow entries by
about 60% compared with OSPF. That is because our hybrid
segment routing only need one rule for each segment of
routing path.

Route Performance Comparison: The next set of
simulations is to evaluate the traffic engineering performance
of four methods (OSPF, OSPF_Random, ECMP and HSR).
First, from Fig. 6, it is clear that OSPF has the worst
performance.

Figure 4. Maximum number of flow entries on one switch. Left plot:
Topology (a); Right plot: Topology (b)

164

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 15:00:15 UTC from IEEE Xplore. Restrictions apply.

Figure 5. Average number of flow entries on switch. Left plot: Topology
(a); Right plot: Topology (b)

Figure 6. Link Load Ratio. Left plot: Topology (a); Right plot: Topology (b)

That is because when all flows using the shortest path,
few switches will be heavily loaded, this situation can
severely degenerate network performance. Second, when
given three routing options, randomly choosing one is much
better than default shortest path first algorithm, and ECMP is
slightly better than OSPF_Random, about 15%. Third, our
proposed HSR is much better than other three methods. In
other words, our method can increase the network
performance (link load ratio) by about 60% with the OSPF
method using the same number of flow entries for both
network (a) and (b).

But we can also notice that our method in topology (b)
has little improvement. That is because in fat-tree topology,
several top level core switches have to deal with all the
traffic. Since all switches have same capacity, when top level
switches come to its process limitation, the link load is
higher than lower level switches.

VI. CONLUSIONS

This paper proposed a mechanism that integrate segment
routing into hybrid SDN. Using unused field within packet
header to store forwarding information, switch can classify
packet through different Layers (NESL, OFSL). Controller
decides whether each flow adopt segment routing or other
process. For the traffic engineering part, this paper
formulates one routing algorithm to obtain perfect network
performance.

The performance results indicate that HSR can highly
reduce the number of switch entries, and traffic engineering
targeting some network could achieve better performance
than several traditional algorithm. But under specific kind of
network topology, this method still needs improvement.

ACKNOWLEDGMENT

This paper is supported by the National Science
Foundation of China under No. 61472383 and 61472385.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling
innovation in campus networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1355734.1355746

[2] K. Kannan and S. Banerjee, Compact TCAM: Flow Entry
Compaction in TCAM for Power Aware SDN. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 439–444. [Online]. Available:
http: //dx.doi.org/10.1007/978-3-642-35668-1_32

[3] M.-C. Lee and J.-P. Sheu, “An efficient routing algorithm based on
segment routing in software-defined networking,” Computer
Networks, vol. 103, pp. 44 – 55, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S138912861630087
1

[4] S. Vissicchio, L. Vanbever, and O. Bonaventure, “Opportunities and
research challenges of hybrid software defined networks,” ACM SIG-
COMM Computer Communication Review, vol. 44, no. 2, pp. 70–75,
2014.

[5] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois,
“The segment routing architecture,” in 2015 IEEE Global
Communications Conference (GLOBECOM). IEEE, 2015, pp. 1–6.

[6] J. He and W. Song, “Achieving near-optimal traffic engineering in
hybrid software defined networks,” in IFIP Networking Conference
(IFIP Networking), 2015. IEEE, 2015, pp. 1–9.

[7] K. Agarwal, C. Dixon, E. Rozner, and J. Carter, “Shadow macs:
Scalable label-switching for commodity ethernet,” in Proceedings of
the Third Workshop on Hot Topics in Software Defined Networking,
ser. HotSDN ’14. New York, NY, USA: ACM, 2014, pp. 157–162.
[Online]. Available: http://doi.acm.org/10.1145/2620728.2620758

[8] J. Zhang, K. Xi, M. Luo, and H. J. Chao, “Load balancing for
multiple traffic matrices using sdn hybrid routing,” in 2014 IEEE 15th
International Conference on High Performance Switching and
Routing (HPSR), July 2014, pp. 44–49.

[9] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and Y.
Zhang, “Secondnet: a data center network virtualization architecture
with bandwidth guarantees,” in Proceedings of the 6th International
COnference. ACM, 2010, p. 15.

[10] Z. Guo, Y. Xu, M. Cello, J. Zhang, Z. Wang, M. Liu, and H. J. Chao,
“Jumpflow: Reducing flow table usage in software-defined networks,”
Computer Networks, vol. 92, pp. 300–315, 2015.

[11] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of data center traffic: measurements & analysis,” in
Proceedings of the 9th ACM SIGCOMM conference on Internet
measurement conference. ACM, 2009, pp. 202–208.

[12] “The network topology from the monash university,”
http://www.ecse.monash.edu.au/twiki/bin/view/InFocus/
LargePacket-switchingNetworkTopologies.

[13] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 4, pp. 63–74, Aug. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1402946.140296

165

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 15:00:15 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

