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Abstract—The SRv6 architecture (segment routing based on
IPv6 data plane) is a promising solution to support services like
Traffic Engineering, service function chaining and virtual private
networks in IPv6 backbones and datacenters. The SRv6 archi-
tecture has interesting scalability properties as it reduces the
amount of state information that needs to be configured in the
nodes to support the network services. In this paper, we describe
the advantages of complementing the SRv6 technology with an
software defined networking (SDN) based approach in backbone
networks. We discuss the architecture of a SRv6 enabled network
based on Linux nodes. In addition, we present the design and
implementation of the Southbound API between the SDN con-
troller and the SRv6 device. We have defined a data-model and
four different implementations of the API, respectively based on
gRPC, REST, NETCONF, and remote command line interface.
Since it is important to support both the development and test-
ing aspects we have realized an Intent-based emulation system
to build realistic and reproducible experiments. This collection
of tools automate most of the configuration aspects relieving the
experimenter from a significant effort. Finally, we have realized
an evaluation of some performance aspects of our architecture
and of the different variants of the Southbound APIs and we
have analyzed the effects of the configuration updates in the
SRv6 enabled nodes.

Index Terms—Software defined networking (SDN), segment
routing (SR), SRv6, Southbound APIs, open source.

I. INTRODUCTION

THE SEGMENT Routing (SR) architecture [1], [2] gives
the possibility to include a list of instructions (called seg-

ments) in the packet headers. This Segment List influences the
forwarding path of the packets and can also provide instruc-
tions to be performed on a packet in a given node. The
Segment Routing architecture can support several use cases
of great value for Service Providers, like: Traffic Engineering,
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Service Function Chaining (SFC), Fast Failover, Operation
And Management (OAM), Virtual Private Networks (VPNs).
For a more exhaustive list of use cases see [3].

There are two variants of the Segment Routing architec-
ture, as it can be implemented using either the MPLS or the
IPv6 data plane for packet forwarding. In the former case, the
Segment IDs (SID) are expressed using MPLS labels and a
Segment List is a “stack” of labels in the MPLS header. In
the latter case, the SIDs are expressed using IPv6 addresses
and the Segment List is carried in a new type of IPv6 Routing
Extension Header called SR Header (SRH) [4]. In this paper
we focus on the IPv6 data plane and we will refer to the
Segment Routing implemented on the IPv6 data plane as SRv6.

In general, the advantage of Segment Routing is the possi-
bility to add state information in the packet headers, avoiding
or minimizing the information to be configured in the internal
nodes to realize network services. Adding state information
in the packets at the network edge, as opposed to reconfig-
ure internal network nodes, greatly improves the scalability of
services based on SR and allows simpler and faster service
setup and reconfiguration. In particular with SRv6 we can
use a connection-less forwarding technology like IPv6 and
obtain the same flexibility and degree of control of a tech-
nology like MPLS. For the above considerations, the SRv6
technology is attracting interest from Service Providers and
equipment vendors [5]. In [3], the documents under discus-
sion in IETF and the open source initiatives for implementing
SRv6 are reported. Noteworthy, Segment Routing support has
been included in the recent Linux kernels and in the VPP
platform developed by the open source initiative FD.io [6].

The Software Defined Networking (SDN) concept [7], [8]
is now becoming ubiquitously widespread both in data cen-
ter networks and in large scale wide area networks. In the
original SDN concept, the control plane (i.e., the network
intelligence) is logically centralized and separated from the
data plane. The SDN controller is the entity which imple-
ments the control plane functionality and takes full control of
the forwarding devices running in the data plane. The commu-
nication between these two layers is handled via an interface
called Southbound API. Currently, the SDN concept is mostly
used in a wider meaning, also considering the remote configu-
ration of arbitrary devices that include their own control plane.
Therefore SDN becomes almost synonymous of automatic and
centralized configuration.

It is natural to consider an SDN based approach to control
Segment Routing based services in a Service Provider
network. A centralized logic can take decisions concerning
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the Segment Lists that need to be applied to implement the
services, then the SDN controller can interact with the edge
nodes to enforce the application of such Segment Lists. The
possibility for the SDN controllers to interact only with edge
nodes to setup and reconfigure complex services is extremely
appealing from the point of view of the simplicity and
efficiency of the solution. The centralized vision of the SDN
controller can be used to perform an optimal selection of the
Segment Lists to be applied to the packets flows. Different
optimality criteria can be considered, e.g., share equally
the load in the network, reduce the energy consumption,
maximize the resilience to faults, in any case these criteria
are out of the scope of this work.

In this paper, we present the design and implementation
of a SDN architecture to control SRv6 enabled networks.
This work has been performed in the context of the ROSE
research project [9] which aims at creating an open source
SRv6 ecosystem. In particular, we designed and implemented
a Linux based SRv6 node made of open source components.
The proposed SRv6 node exposes an API towards the SDN
controller, which is a Southbound API considering it from
the perspective of the SDN controller. Therefore we will refer
to it as the SRv6 Southbound API. We have focused on the
definition and implementation of the SRv6 Southbound API
considering 4 different variants (gRPC, REST, NETCONF,
SSH/CLI). We have released the implementation of the Linux
SRv6 based node, the specifications of the SRv6 Southbound
API and their implementation as open source libraries (writ-
ten in python) for the SDN controller and as modules to be
installed in the Linux based routers [10]. Our contributions
also include a set of management tools which offer an Intent
based API to the users and allow to realize replicable testbeds
on Mininet emulator [11], distributed IaaS infrastructures and
physical testbeds [9]. Using these tools we have realized:
i) a performance evaluation and a comparison of the different
implementations of the Southbound APIs; ii) an analysis of the
effects of the SRv6 configuration changes in the Linux SRv6
nodes, showing that we can achieve hitless reconfiguration of
SRv6 policies.

The paper is structured as follows: in Section II we pro-
vide a short introduction on the SRv6 technology. Section III
presents the architecture of the Linux SRv6 node, followed
by the SDN architecture in Section IV. The details of the
SRv6 Southbound API are discussed in Section V. Section VI
describes the emulation tools that we have released, while the
experimental results are illustrated in Section VII.

II. IPV6 SEGMENT ROUTING (SRV6)

The Segment Routing (SR) architecture [1], [2] is based
on (loose) source routing. Basically, it allows the source of
a packet (e.g., a host or a router) to add a list of Segments
to a packet header. According to [2], a Segment is an iden-
tifier for a topological instruction (steering the packet over a
given path) or a service instruction (delivering the packet to
a service). The SR architecture can run over a MPLS or an
IPv6 data plane. It supports several use cases of great interest
for a Service Provider, like for example Traffic Engineering,

Network Resilience and VPNs (see [12]–[15]). Moreover, it
has been designed to be high scalable as explained in [16]
where the scaling capability of Segment Routing has been
demonstrated considering an use case of 600,000 nodes and
300 millions of endpoints.

The concepts of SRv6 have been extended in [17]: each
Segment represents not only a location but also a function to
be called at a specific location in the network. A function can
represent a simple action like forwarding or a complex behav-
ior defined by the user. Each SRv6 capable node maintains
the “My Local SID Table” where the association of SIDs with
these local functions is defined. In order to signal the avail-
ability of a function, a node can advertise it using an IGP
routing protocol leveraging the fact the SIDs are represented
as regular IPv6 addresses (this is also an advantage with the
respect of SR-MPLS which requires extensions to the routing
protocols). Combining these “network instructions” it is possi-
ble to literally program the networks and realize very complex
behaviors minimizing the need of state information in the core
network nodes.

In this work, we focus on the IPv6 data plane solution for
Segment Routing, in short SRv6. In this solution, the Segment
List (or SID List) is carried in the Segment Routing Header
(SRH) [4]. Three basic operations are defined with respect to
the SRH: encapsulation, processing, and decapsulation. The
SRH added by the source (encap operation) contains a num-
ber of “intermediate” SIDs, the final destination of the packet,
and a pointer called “Segments Left” (SL) which points to
the “active” SID, i.e., the next SID to be processed. The SR
information can be pushed into the packets using two different
approaches, denoted as insert and encap modes, respectively.
When a node uses the insert mode the SRH is pushed as
next header in the original IPv6 packet, immediately after
the IPv6 header and before the transport header. The origi-
nal IPv6 header is changed, in particular the next header is
modified according to the value of SRH, the IPv6 destination
address is replaced with the IPv6 address of the first SID in
the Segment List, while the original IPv6 destination address is
carried into the SRH header as the last segment of the list. In
the encap mode, an outer IPv6 header is pushed, which carries
the SRH header with the Segment List. While the original IPv6
packet is transported as the inner packet of an IPv6-in-IPv6
encapsulated packet and travels unmodified in the network.

Let us consider a packet sent by a node A1, with a SID list
that contains two intermediate SIDs (A2 and A3) and the IPv6
destination address (A4). In this case the SL pointer will start
at 2 and the packet will be sent by A1 by setting the IPv6
destination address to A2. When A2 receives the packet, it
decrements the SL pointer to 1, so that the next SID becomes
A3, and it copies A3 into the IPv6 destination address. Note
that the SID list is not modified, only the SL pointer is decre-
mented. When A3 receives the packets it decrements SL to 0
so that it points to A4 (the final destination) and copies A4
into the IPv6 destination address.

III. LINUX SRV6 NODE ARCHITECTURE

We propose the architecture of a Linux based SRv6 node,
which foresees the coexistence of a local control logic based
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Fig. 1. Linux based SRv6 node architecture.

on distributed IP routing and of an SDN approach in which
the node offers an API towards an SDN controller. This
is a Southbound API as seen from the controller point of
view. Similar solutions have been proposed recently and often
referred to as hybrid IP/SDN (see for example [18]). The pecu-
liarity and novelty of our approach is that we consider an SRv6
enabled network, hence our node offers a SRv6 Southbound
API.

Figure 1 shows the high level architecture of our Linux
based SRv6 node. This logical architecture can be specialized
and applied to different physical realizations, ranging from
specialized hardware boxes to general purpose servers. We
discuss Figure 1 proceeding bottom up.

At the lowest level, there are the hardware resources that
we have classified in Special Purpose, Network and General
Purpose resources. Considering a specialized network node,
the hardware resources would be the Switching Silicon (ASIC)
and possibly other peripherals. On top of this, we envisage a
Linux based Operating System (OS), which could be either a
general purpose Linux distribution or a specialized one like
Open Network Linux (ONL) [19]. ONL is a Linux distribu-
tion made for open hardware switches, and in general network
devices built from commodity hardware.

The operations needed to control the hardware resources
(that perform data plane packet processing) are performed in
the kernel space. The Linux OS is shipped with the necessary
drivers which allows the kernel space to use the hardware
resources. On top of this, there are the kernel abstractions and
their APIs; they are provided in the form of kernel modules
and include also what is necessary to directly program the
network resources, to properly use GP hardware and so on. In
this level we find the Network SDKs which offers proper means
to access the resources of the specialized nodes like switches
or routers. There is already a number of devices available in
the market that follow this design approach. For example a list
of hardware switches certified for Open Networking Linux can
be found at [19]. Cumulus Linux [20] is another example of
a customized version of Linux that is used by Cumulus for
their Linux based solutions.

IPC (Inter Process Communications) mechanisms like the
netlink protocol [21] represents the way through which user
and kernel spaces communicate. In the user space level, we
foresee the coexistence between the control logic based on dis-
tributed routing control protocols and the SDN approach: pro-
tocols like OSPFv3 [22] and BGP [23] program the Network
Abstractions using their internal logic. The IP routing protocol
allows the nodes to exchange the basic reachability informa-
tion (IPv6 prefixes) about all network entities including the
IPv6 addresses that will be used as Segment Identifiers (SIDs).
The decisions taken by the routing protocols can be overrid-
den by a SDN controller which programs the SRv6 instructions
in the nodes leveraging the Southbound API exposed by the
network itself. The main component of this architecture is the
so called SRv6 Manager which acts as mediators interacting
on the south with the SRv6 abstractions offered by the kernel
and on the north with the SDN controller. In our architecture
the SRv6 Manager is the user space agent translating the mes-
sages received over the SRv6 Southbound API into actions to
be sent to the kernel components.

A. Implementation of the Node Architecture

We have implemented a Linux SRv6 node leveraging com-
modity hardware. We have used a general purpose distribution
of the Linux OS, we only require the kernel to be recent (at
least 4.10) in order to have native support for SRv6 oper-
ations in the kernel space. For our purposes, we did not
need to enhance or modify the existing Linux kernel support
of SRv6 [24], we only worked on the user space compo-
nents necessary to implement the previously described node
architecture. In particular, we focused on the SRv6 Manager
component and on the implementation of SRv6 Southbound
API. Figure 2 shows the software modules included in our
node implementation.

The SRv6 Manager component is developed in python. It
allows to translate the instructions carried by the Southbound
protocols into SRv6 instructions which are submitted to the
Linux kernel. As shown in Figure 2, the SRv6 Manager can
support four different variants of the SDN Southbound API
(gRPC, SSH/CLI, REST and NETCONF), as it will be dis-
cussed in Section V-A. The communication among the SRv6
Manager and the Linux kernel is based on the open source
project pyroute2 [25], a pure python netlink library. We have
added the support for the SRv6 functionality and this con-
tribution has been accepted and merged in the mainstream
distribution of pyroute2. In this way, the messages coming
from the SDN controller can be translated directly in netlink
messages. In the future, we plan to extend the SRv6 Manager
taking advantages of the other protocols managed by pyroute2.
For example, we could inform the SDN controller of the
interfaces going up/down, or we can bring administratively
up/down a network interface. In other words, the same archi-
tecture that we have used to control the SRv6 capabilities can
be reused to control all other types of networking capabilities
of a Linux node.

In the implemented Linux SRv6 node the distributed rout-
ing protocol component is an OSPFv3 daemon. We have
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leveraged the open source implementation provided by the
Quagga Routing suite [26]. The OSPFv3 daemon distributes
the IPv6 reachability information setting up the basic connec-
tivity among all network entities, in this way the IP forwarding
can be always used as default forwarding. We have also used
OSPFv3 to feed the SDN controller with topological informa-
tion about the SRv6 enabled network (see Section IV-A for
further details).

IV. SDN ARCHITECTURE FOR SRV6 WANS

We consider a Service Provider offering network services
based on SRv6. The edge and core IPv6 routers of the Service
Provider network constitute a SRv6 domain. Customer packets
entering in the edge routers are classified and encapsulated into
IPv6 packets that can include a Segment Routing Header with
the Segments List. While the SRv6 domain is operating with
IPv6, there are no limitations on the type of customer traffic
that can be supported: IPv4 and IPv6 transport services can be
offered, as well as pure layer 2 connectivity services. The IPv6
routing information needed for the forwarding of packets in
the SRv6 domain is exchanged among edge and core routers
using well established IGP routing protocols.

Differently from a classic SDN approach based on
OpenFlow, the SDN controller does not need to interact with
all the edge and core nodes to discover the network topology
and to setup the packet forwarding rules. In our SDN architec-
ture for SRv6 enabled WANs, as for the topology discovery
we assume that the SDN controller can interact with routers
and synchronize with the vision of the topology computed
by the routing protocol (see Section IV-A for further details).
As regards the setup of forwarding rules, it is possible for the
SDN controller to interact with a single node (the ingress edge
node) to enforce the application of a Segments List to a given
flow (see Section IV-B). Of course, this architecture does not
preclude the possibility for the SDN controller to interact with
the core nodes for other services and use cases.

SDN approaches fully based on OpenFlow have been
demonstrated to work well in data-center scenarios, where
all the switches to be controlled are reachable with sub-
millisecond delay. Controlling a WAN in which the network
latency between the SDN controller and the forwarding nodes
can be in the order of hundreds of milliseconds with the same
approach is a much more challenging task. For this reason we
advocate that even in a Software Defined WAN scenario it is
better to manage the basic connectivity using traditional dis-
tributed routing protocols. These solutions can be augmented
with Fast Reroute mechanisms [15], which in turn could rely
on an SDN approach for their configuration.

A. Topology Discovery

The SDN controller will be running in a datacenter or in a
point of presence, usually co-located with one or more routers
belonging to the SRv6 domain. Assuming that a link-state IGP
routing protocol is running in the SRv6 domain, we want to
discuss how the SDN controller can become aware of the
network topology and of its changes. A fundamental char-
acteristic of link state routing protocols is that each router

Fig. 2. Linux SRv6 node: implemented components.

becomes aware of the full network topology in its topological
database. In this discussion, we refer to the specific routing
protocol (OSPFv3) that we have integrated in our implemen-
tation and also on the specific open source implementation
for Linux that we have used. Nevertheless, our considerations
have a more general architectural validity for other link-state
routing protocols.

We propose two different approaches to let the SDN con-
troller become aware of the topology, that we call respectively
TI-Extraction (Topology Information Extraction) and TD-
Entity (Topology Discovery Entity). In the TI-Extraction case
only the routers take part in the (OSPFv3) routing protocol
exchanges, the topological information is extracted from one
or more routers and transferred to the SDN controller. From
the implementation point of view, the simplest approach is to
log in into a router using the CLI (Command Line Interface),
dump the topological database and parse it to extract the topol-
ogy to be sent to the controller. This could be achieved with
a periodic polling. A relatively short polling interval (e.g., in
the order of few seconds) could be used to promptly update
the topology in the SDN controller. Update operations at a
time scale of few seconds are acceptable, as we recall that
the fast reaction to link/node failures is not meant to be real-
ized through an immediate reaction by the SDN controller.
A more efficient approach is to implement a software mod-
ule integrated in the router that can export the topology. For
example considering the Linux platform, the Quagga OSPFv3
daemon could be enhanced to support this feature and interact
with a SDN controller. In this case, the SDN controller could
be notified of the topology changes by the enhanced routing
daemon rather than using a periodic polling.

In the TD-Entity case, a Topology Discovery Entity inter-
acts with one or more routers using the (OSPFv3) routing
protocol, with the only purpose of building and updating the
topological database. The TD-Entity can be integrated in the
SDN controller or it can be a separate entity that communicate
the topology to the SDN controller in some way. For example
Quagga offers the so called Quagga Fib Push Interface through
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Fig. 3. SRv6 southbound API design.

which the daemon can notify the learned routes to an external
entity. This can be the SRv6 Manager running in the node or
directly the SDN controller. In the existing implementations,
it is possible find also solutions integrating OSPFv3 speak-
ers in the Southbound of the SDN controllers. This approach
has the advantage of not having to modify/enhance a spe-
cific implementation of the routing protocol and provides the
same advantages in terms of readiness without any polling
procedure. The fact that the Topology Discovery Entity can
be connected to more than one router is very useful from the
resiliency point of view, as the SDN controller can remain
updated on the network topology status also in case of fail-
ures, as long as there is at least one router which remains
active and connected to the SDN controller.

For our implementation, we have followed the TI-Extraction
approach. Our entity is actually a process, running alongside
with the SDN controller, which connects to a given router
and dumps its topological database and build a network graph
using the extracted information.

B. Setup of SR Based Services

The setup of SR based services consists in the configuration
of ingress edge routers to classify the incoming packets, asso-
ciate them with the proper Segments List and SRv6 behavior.
Moreover it may be needed to associate further SRv6 behav-
iors to the Segment Identifiers (SIDs), both in edge and in
core routers.

In the proposed SDN based architecture, the SDN controller
is in charge of performing these configuration operations.
From the point of view of the SDN controller, the SRv6
Southbound API represents the functionality that can be
offered by the SRv6 node and used by the SDN controller
to setup the SR based services. We considered the SRv6
functionality offered by a Linux router in the most recent
kernel versions and we carried out a thorough analysis in
order to identify the requirements from the perspective of the
Southbound API. The main functional requirements we have
identified are the support of the L3 transit behaviors [17],

which include encap mode for IPv4 and IPv6 traffic and insert
mode for IPv6 traffic. The creation of a SR policy inside the
node and association to a supported behavior. The removal of
a specific SR policy; the update of a SR policy which can
affect the Segments List, the behavior and the security mech-
anisms. Finally, listing of the policies installed in the nodes.
In future, we plan to extend this SRv6 Southbound API to
support the functionalities described in [17]. More in detail,
the SRv6 operations that are available in a Linux node can be
accessed through iproute2, a collection of utilities which allow
to control and monitor most of the aspects of the networking
in the Linux kernel. iproute2 is a user space utility that offers a
CLI and uses a netlink socket to communicate with the kernel.
We consider the SRv6 commands and corresponding parame-
ters available in iproute2 as the reference to define the SRv6
Southbound API. Figure 3 provides a visual representation of
the design choices behind the implementation of the proposed
APIs. With this approach, we expose on the SRv6 Southbound
API the same functionality that a local application running
inside the SRv6 Linux node would have.

It is worth to notice that is important to define not only
the functionality offered by this Southbound API but also
the protocol mechanisms at its ground. The protocol mech-
anism should be lightweight, that is the processing overhead
should be reasonably low, since the agent managing the proto-
col should coexist also with the IP routing protocols. It should
be network efficient in terms of traffic exchanged and response
time to perform an operation. It is important to take into
account also the robustness to network impairments like packet
loss and delay. Finally, we do believe that the protocol mech-
anism should support proper security which means at least
authentication of the parties involved in the communication,
protection of the privacy and integrity of the exchanged data.
Insecure mechanisms have been considered in Section VII only
for benchmarking purposes,

As illustrated in Section V, there is a large number of dif-
ferent technologies for the Southbound API. Among them,
there are traditional solutions like OpenFlow which is a binary
Application level protocol structured to transport the instruc-
tions to be sent to the devices in its messages. NETCONF
bases its operations on top of a simple Remote Procedure Call
(RPC) layer. Configurations are encoded using an Extensible
Markup Language (XML) and are serialized over secured
transport channels. Instead, RESTCONF is based on HTTP.
Consider the high diversity in the Southbound API solutions,
the technological question “what is the best way to implement
a Southbound API for SRv6?” is still open and different solu-
tions have been proposed so far (for example see [27]). For
this reason, we have considered and implemented four differ-
ent variants of the SRv6 Southbound API (see Section V-A),
each one using a different transport mechanism and we have
carried a performance evaluation in Section VII to address the
above question.

C. Comparison With OpenFlow Based SDN Solution

The proposed SDN architecture for SRv6 enabled networks
foresees the coexistence of distributed routing protocols with
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an SDN based approach. We can compare it with the more
general OpenFlow based SDN approach which offers a great
flexibility, enabling the classification of the packets through
a “cross-layer” approach. To give an example OpenFlow
allows to specify a set of matching conditions to influence
the processing of the packets by considering packet headers at
different protocol levels (MPLS, VLANs, Q-in-Q, Mac-in-Mac
and so on). However, this flexibility may turn into high com-
plexity and the risk of mis-configurations and routing errors
should be properly taken into account (see [28]). Another side
effect, it is the lack of wide support of the aforementioned
capabilities from most of vendors which can easily transform
in a vendor lock-in.

On the other hand, the SRv6 approach considers the clas-
sification based on Forwarding Equivalence Class or on the
receiving interface at the ingress edge of an SRv6 domain and
coexistence in the core with non-SRv6 traffic is based on the
addition of the SRv6 header to the packets. This approach can
effectively support important use cases as shown in [3] and it is
entirely based on IPv6 which represents the technology at the
ground of the IP networks for the following years. Moreover,
the SRv6 approach closely resembles the coexistence in the
data-plane we currently have between IP and MPLS technolo-
gies which has proved to be a winning solution over the last
twenty years.

V. SOUTHBOUND API FOR SRV6

In this section, we review the state of the art of the SDN
Southbound APIs, then we present our proposal (Section V-A)
highlighting the most important implementation details. There
are several types of Southbound APIs which are designed for
different goals. Some of them focus on traffic management
and rule enforcement while the others facilitate the process of
configuration of network devices. In the following we briefly
introduce the most famous ones.

OpenFlow (OF), developed by the Open Networking
Foundation (ONF), is one of the most well-known Southbound
interface and is considered as the first SDN standard for
flow entries enforcement. Through this interface, the SDN
Controller pushes down changes to the flow-table of switch-
ing/routing devices. This allows network administrators to
partition traffic, control flows for optimal performance, and
start testing new configurations and applications [29]. There
are numbers of switch and router vendors that have announced
their support of OF, including Cisco, Juniper, Big Switch
Networks, Brocade, Arista, Extreme Networks, IBM, Dell,
NoviFlow, HP, NEC, among others. It is notable that almost
all controllers support OF.

While OF is a flow entries enforcement API, Open vSwitch
Database (OVSDB) [30] is a programmatic management pro-
tocol interface which is now being supported by network
vendors, such as Cisco, Cumulus, Arista, and Dell. Cisco
OpFlex [31] is a mechanism to transfer abstract policy from a
network controller to a set of smart devices capable of render-
ing abstract policy. The goal is to enable policies to be applied
across physical and virtual switches/routers in a multi-vendor
environment. Cisco One Platform Kit (OnePK) is another

Southbound protocol used in Cisco devices to develop, auto-
mate, and rapidly create a service. However, it is not supported
any more by Cisco [32].

Path Computation Element Communication Protocol
(PCEP) [33] is another Southbound API for creation of Label
Switched Path (LSP) in MPLS networks. More in details, it
is a special set of rules that allows a Path Computation Client
(PCC) to request path computations from Path Computation
Elements (PCEs). Most of the available SDN controllers (com-
mercial and non) support PCEP. The Network Configuration
Protocol (NETCONF) is a network management protocol
developed and standardized by the IETF for accessing data
defined in YANG [34]. It provides mechanisms to install,
manipulate, and delete the configuration of network devices
on top of a simple RPC layer. It leverages SSH as transport
mechanism and uses an Extensible Markup Language (XML)
to communicate with the routing devices to install and make
configuration changes. Instead RESTCONF [35] is a REST
like protocol running over HTTP and defines the mapping of
a YANG specification to a RESTful interface.

REST/HTTP interfaces have been historically used on the
northbound side of a SDN controller, recently it is possible to
find a number of devices exposing a RESTful interface towards
the controllers [36]. gRPC [37] is a modern RPC framework
initially developed by Google and then run by an active com-
munity of developers. It uses the modern HTTP/2 for transport,
Protocol Buffers [38] as the interface description language, and
provides out-of-box interesting functionalities like authentica-
tion, bidirectional streaming, flow control and many others.
Then, there are a number of solutions leveraging Thrift [39]
as RPC mechanism to implement the Southbound APIs. For
example, FBOSS from Facebook [40] provides Thrift APIs
to allow external routing processes (BGP or SDN Controller)
to get their routes programmed into the hardware forwarding
tables.

In the SDN research field, usually the focus has been on
proposing new controller architectures and TE applications;
an exhaustive survey of research activities on SDN is pro-
vided in [8]. Some novel works focus on integrating SDN with
Segment Routing see [41]–[44]. For a comprehensive survey
of research activities, standardization efforts and implementa-
tion results on Segment Routing see [45]. To the best of our
knowledge, there are no research efforts among the analyzed
works proposing a Southbound API for Segment Routing.

A. Implemented Southbound APIs

The process of configuring the SRv6 rules in the routing
devices can be decomposed in two aspects: the communi-
cation protocol and the local configuration of the rules. The
SDN controller uses the communication protocol to send the
requests to the SRv6 Manager running on the node. Based on
the received messages, the SRv6 Manager takes care of the
SRv6 commands needed on the routing device to configure
the rules.

We have focused on the implementation of the SRv6 SDN
Southbound API considering four different variants: i) gRPC,
using the Protocol Buffers Interface Definition Language
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(IDL) and HTTP/2 as transport mechanism; ii) RESTful
approach over HTTP/1.1, leveraging JSON notation for
describing data; iii) NETCONF, carrying the configuration
in XML format; iv) using a wrapper module around the
CLI (Command Line Interface) that performs the commands
remotely over SSH. Both the gRPC and REST API are
based on HTTP and can additional provide security through
SSL/TLS layer, while the NETCONF and CLI API use SSH
as transport mechanism. From an architectural point of view,
all the realized APIs result to be similar, since both have a
client running inside the SDN controller and the server process
running in the SRV6 network node. As regards the CLI/SSH
implementation, we spawn a new server inside the node and
we did not reuse the SSH daemon already running inside the
device. This has been done in order to have more control of
the operations. The CLI/SSH Southbound API results to be
more limited compared to the other implementations, because
it can only transport commands which can be run inside the
node. On the other hand, the gRPC, REST and NETCONF
implementations are more flexible and more expressive since
they provide the means to realize a more structured API with
parameters and fields and not just a big string carrying on
the entire command. For all the four API variants we have
implemented a python library/wrapper that can be included in
a python SDN controller implementation.

Taking as reference the interface of iproute2, we have
defined the interfaces and the parameters and the fields of the
messages to be transported over the connection which are then
serialized over the wire. Figure 4 shows the representation of
the data-model we have used together with the definition of
the supported interfaces. More specifically, the RESTful imple-
mentation implements a JSON-RPC mechanism and basically
translates the data-model defined in Figure 4 in a JSON object
and send this data over an HTTP POST to the server. The dif-
ferent services to be called on the server are accessible using
as base path of the URL srv6-explicit-path and adding the
parameter operation in the query string of the URL, which
can take as value: create, remove, update and get.

NETCONF protocol has been designed to modify the con-
figuration of the devices and offers an already defined protocol,
in this case the implementation of the API has been straight-
forward since we were constrained by the framework defined
by the protocol. In particular the client does an <edit-config/>
RPC on the device and conveys in the message the data-model;
<srv6-explicit-path/> is sent as root element and operation is
a parameter of it. As regards the get operation we leverage the
<get-config/> RPC to dump the running configuration of the
device. As regards gRPC, it offers a better way to design and
structure a protocol thanks to the use of the Protocol Buffers
which drive also the serialization of the data. The serialized
data are then sent as binary over the TCP connection. With
respect to plain HTTP, gRPC requires a further step since all
the interfaces and the messages need to be defined creating a
proto file [38]. In particular, we have defined a Service offer-
ing 4 RPCs which allows to add, remove, get and change
SRv6 configuration in a SRv6 Linux based node. For the add,
remove and change RPCs we have defined a Request message
which basically carries a variable number of Path as showed in

Fig. 4. Southbound API data model and interfaces.

Figure 4 and a Reply to report the status of the operation. As
regards the get operation, there are no input parameters and
the Reply message returns the SRv6 routes installed in the
device. In the future, the gRPC implementation of the SRv6
Southbound API can be used as base and easily improved
thanks the ecosystem provided by the gRPC project. In our
current roadmap, we plan to focus on the gRPC based API,
while the other variants of the API have been developed mainly
for comparison. In fact, gRPC for SDN seems to be gaining
momentum as witnessed by the recently announced Stratum
project [46] run by ONF which aims at “enabling the era of
next generation SDN”. Our proposed SRv6 SDN framework
is available at [10].

It is worth noting that we did not consider an OpenFlow
based design for the SRv6 Southbound API like in [27]. From
the technical standpoint it is much more complex to design
and implement an OpenFlow based solution with respect
to the options that we have considered, making it a less
preferred solution. The theoretical advantage of OpenFlow lies
in its potential multi-vendor and multi-technology support, but
this require a standardization procedure which is long and
complex (and out of the reach of academy institutions). It
also worth mentioning another multi-vendor solutions, namely
OpenConfig [47] which could address most of the needs
covered by OpenFlow.

VI. INTENT BASED EMULATION OF SRV6 NETWORKS

We have released a set of tools that simplify the emulation
of a SRv6 enabled networks. The management tools are a col-
lection of projects meant to support SRv6 experiments both
over physical deployments, Mininet and virtual testbeds. As
regards the latter, the tools are enough generic to support dif-
ferent type of providers like Amazon, Azure and others; since
the minimal requirement is virtual testbeds which offer VMs
as resources and connectivity between them. These tools offer
means to design, control and measure several aspects of an
experiment, they include: i) a Web GUI to design the topol-
ogy to be emulated, ii) deployment scripts to configure the
nodes, iii) the possibility to interact with the emulated nodes
through the Web GUI; iv) the possibility to run experiments
over the emulated topology. The overall emulation framework
is described at [9], in which the instruction to download the
tools and setup of the emulation environment are provided.

Figure 5 shows the management tools in action and the sup-
ported scenarios; in the bottom part of the figure is shown the
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Fig. 5. Intent based emulation tools.

deployment of an overlay experiment over a virtual testbed
managed by a Cloud infrastructure. It is worth noting that
we can use the same software to run Mininet emulations or
deploy an experiment over a physical deployment made of
Linux boxes. For example using this framework, we have
deployed SRv6 experiments [48] over SoftFire testbed [49]
realizing Service Function Chaining scenarios which included
SRv6/OSPFv3 routers controlled by a SDN controller.

The emulation consists in a network composed of 4 types
of nodes: SRv6 enabled routers, terminal nodes, VNF nodes,
and a SDN controller. Each terminal and VNF node are con-
nected with one router (we applied a well-established principle
of having a single “default via” for them). The controller
can be connected with one or more routers. The routers can
be arbitrarily interconnected with other routers. The emula-
tion framework provides the automatic definition of the IPv6
addressing plan and the proper configuration and deployment
of dynamic routing among the SRv6 enabled routers (using
OSPFv3).

As mentioned before, two types of emulations are sup-
ported: i) Mininet emulation; ii) distributed emulation with
Virtual Machines (VMs) or physical nodes. In the Mininet
emulation case, all the 4 node types are deployed as Mininet
containers running inside a single Linux host. In the dis-
tributed emulation case, we assume that a set of Linux hosts
(VMs or physical machines) is available to run the emulated
nodes. In particular, on each box we deploy an SRv6 based
router, the set of terminals and VNFs that are connected to
the router. The terminals and VNF nodes can be deployed as
Linux network namespaces or as Linux containers (they are
technically containers running inside the SRv6 routers). The
links among the SRv6 routers in the emulated topology are
realized using VXLAN tunnels (the blue pipes in Figure 5),
which are automatically setup and configured by the manage-
ment tools leveraging the underlay connectivity provided by
the IAAS infrastructure. In the case of physical testbeds the

management scripts leverage directly the physical connection
of the machines.

All these steps, from the generation of the configuration up
to its “implementation” have been completely automated. A
management host (experiments orchestrator in Figure 5) coor-
dinates the overall process. In particular, it allows users to
express their intents regarding the emulation using a topology
GUI and codifies these desires through a graph. Then, this
representation is given as input to the emulation engine which
defines, for each machine participating in the experiment, its
role and its configuration together with IPv6 addressing plan.
Moreover, in the case of a deployment over a virtual testbed
it takes over the task of properly defining the VXLAN tun-
nels according to the links of the emulated topology. For
each machine, it creates a configuration file which is pushed
on the proper VM and then, using local management scripts
(deployed during the provisioning), the configuration is made
effective. In this way, the experimenter is relieved from a
huge configuration burden and can focus only on the SRv6
related aspects of the experiment. To further simplify the setup,
we also provide a VM image in which all the developed
components have been pre-installed [9].

VII. EXPERIMENTAL EVALUATION

In this section, we present an evaluation of some
performance aspects of our architecture. At first, we ana-
lyze the local configuration performances in our Linux based
SRv6 device (Section VII-A), then we provide a compari-
son of the different implementations of the Southbound APIs
(Section VII-B) and finally we evaluate the effects of the
dynamic reconfiguration of SRv6 policies on active flows
in an emulated network-wide scenario (Section VII-C). For
the local configuration performance and for the comparison
of the different Southbound APIs, the considered metrics
are the configuration execution time (or response time for
remote configurations) and the CPU and memory utilization
in the SRv6 device. For the effects of the dynamic recon-
figuration we considered the packet loss and compared the
received traffic profile with the traffic profile configured by
the controller. In order to run the considered experiments we
developed a set of measurement tools. They include two stub
servers for enforcing the configuration commands in the SRv6
device, respectively using pyroute2 or shell commands. These
Linux applications represent two reference implementations of
the SRv6 Manager and include timestamp recordings for the
main steps of the experiments. We have developed different
client/server applications for the analysis of the different com-
munication protocols. For the evaluation of CPU and memory
usage, we developed simple scripts to record the system CPU
usage along with the total memory usages inside our SRv6
nodes. Finally, for the evaluation of the effect of the dynamic
reconfiguration of SRv6 policies we have implemented a sim-
ple controller application that enforces the mapping of a flow
into different SRv6 tunnels with a predefined timing. All
implemented measurement tools are open source and available
on [10].
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TABLE I
PYROUTE2 VS. SHELL (AVERAGE OF 20 RUNS)

A. Local Rule Enforcement

The purpose of this experiment is to characterize the
performance of the execution of the configuration commands
on the Linux SRv6 device in isolation. In other words, there
are no control messages received from the SDN controller and
the whole operations are taking place locally. For this experi-
ment we have used a laptop equipped with an Intel Core Duo
2.4 Ghz dual core and 4GB of RAM. The machine uses a
Linux distribution as OS where we installed the kernel 4.15.
In particular, we compare two python based variants of the
back-end for the SRv6 Manager, one uses the pyroute2 library
to interact with Linux kernel networking, another one (called
shell hereafter) enforces the local configuration through the ip
route command executed in a shell.

The execution time of a single command can be very small,
therefore we execute a number Ni of identical commands
and measure the total execution time. We repeat the exper-
iment Mi times and estimate the average, the Coefficient of
Variation (CV) and the 95% Confidence Interval (CI95). As
described in Section III, the pyroute2 variant opens a netlink
socket with the Linux kernel to request the configuration oper-
ations. A single netlink connection is opened at the beginning
of the experiment and it is used to send the Ni configuration
commands.

Table I reports the mean µ, CV and CI95 of the execution
time for both add and delete operations and compares the
performance of pyroute2 and shell approaches. We enforced
Ni = 100 operations and repeated each experiment Mi =
20 times.

As can be seen, the execution time of delete operation is
lower than add operation in both approaches. Comparing shell
and pyroute2, the response time of pyroute2 is lower than
shell. This result is expected because the shell approach exe-
cutes most of the operations via external commands while
the pyroute2 version runs the configurations in the same user
process opening a netlink socket to talk with the kernel.

From these experiments we can estimate an upper bound
of the maximum configuration rate of the SRv6 device.
Considering the pyroute2 variant, the results reported in Table I
correspond to around 1700 add operations per second or more
than 2000 delete operations per second. The maximum config-
uration rate for the shell approach is substantially lower, i.e.,
in the range of 350 operation per second (for add operations).
Of course these results are dependent of the hardware capa-
bility (in particular CPU power) of the SRv6 device under
analysis. Anyway, even by scaling down 5 or 10 times the
processing capabilities of the device (i.e., considering low end
devices) in our opinion the configuration rate should remain
acceptable for the considered devices, in the order of 150-300
configuration operations per second.

Fig. 6. Pyroute2 vs shell (1000 add enforcements - 1 run).

We have run another type of experiments to analyze the
CPU and memory utilization of the pyroute2 and shell based
approach. For the CPU utilization, our main goal was to ver-
ify that the overall system performance is CPU-limited in the
experiments reported above. In this experiment, reported in
Figure 6(a), we execute Ni = 1000 add operations to have a
longer observation interval (around 1 second for pyroute2 and
2 seconds for shell). The total system CPU load (%) over time
is reported in the figure. As the system has 2 cores, the load
of 50% correspond to the full utilization of 1 core. The con-
figuration experiment starts at time 1.2 s in Figure 6(a), when
the CPU load starts to increase steeply for both pyroute2 and
shell. The CPU load remains at around 50% for one second
for pyroute2 and two seconds for shell (the oscillation above
50% are due to other processes on the other core).

The results shown in Figure 6(a) confirm that the overall
CPU work for Ni = 1000 add operations for pyroute2 is the
half of the work for shell, as the latter has a double duration
with the same CPU load. Finally, in Figure 6(b) we analyze the
memory utilization. The results show that the memory (RAM)
utilization is relatively low and it is not a concern in typi-
cal device configurations. In particular, Figure 6(b) shows the
overall free memory in the device sampled every 500 ms while
running the two experiments with Ni = 1000 add operations.
The memory used of the pyroute2 approach is in the order
of 15 MBytes, while the memory used by the shell approach
is 10 MBytes. This can be explained by the nature of the
execution of shell approach which leverages Ni separate con-
figuration commands which end after the enforcement of the
configuration. However this difference is practically negligible.

B. Comparison of the Southbound APIs

In this section we analyze some performance aspects of
the four implementations of SRv6 Southbound API (gRPC,
REST, NETCONF and SSH/CLI). We analyze different vari-
ants for the four implementations. In particular we consider
three different interaction modes between the SDN controller
and the SRv6 device: i) persistent connection (‘P-Conn’) in
which several requests are sent reusing one single TCP connec-
tion, ii) non-persistent connections (‘NP-Conn-Seq’) in which
the configuration requests are sent sequentially using a sepa-
rate TCP connection for each request, and iii) bulk requests
in which a number of configuration requests is sent on one
single message (‘NP-Bulk’). We note that the most common
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Fig. 7. Full config - response time.

interaction mode when there is the need of sending sev-
eral configuration messages over time should be the first one
(‘P-Conn’), in which the SDN controller establishes a TCP
connection with the SRv6 device and reuses it for all the mes-
sages. When the SDN controller needs to interact sporadically
with the devices, the other two interaction modes could make
sense.

We consider insecure and secure connections. In partic-
ular for the insecure connection scenario we consider only
the gRPC and REST implementations, for which we can eas-
ily enable and disable the security mechanism (authentication
and encryption). The NETCONF and SSH/CLI implementa-
tions are both based on SSH that includes security by default,
so they only belong to the secure scenario which allows
comparing all the 4 implementations.

We analyze the Southbound API implementations in two
ways. First, we include the execution of the configuration oper-
ations on the SRv6 device (Full Config experiments). Then, in
order to focus on the performance of the communication part
we exclude the execution of the configuration operations in
the SRv6 device (Communication Only experiments). For the
Full Config experiments we use the pyroute2 approach for the
interaction with the kernel in the gRPC, REST and NETCONF
implementations, while in case of the SSH/CLI the commands
are executed in a shell.

We have first considered the experiments in ideal condi-
tions in which the SDN controller and the SRv6 device are
physically close each other and connected over a LAN with
negligible packet loss, then we have considered a scenario with
network impairments by synthetically adding a one way delay
of 75 ms between the SDN controller and the SRv6 device
(corresponding to 150 ms of Round Trip delay) and different
packet loss ratios (0, 0.5, 1, and 2% on each direction). We
refer to this last scenario as NLD (Network Loss and Delay).
The topology of the experiments comprises two identical lap-
tops equipped with an Intel Core Duo 2.4 Ghz dual core and
4GB of RAM. A recent Linux kernel (4.15) has been installed
on the laptops. The laptops are connected with a point-to-point
cable at 1 Gb/s. The SDN controller is installed on one lap-
top and the other laptop is acting as SRv6 device. The results
reported hereafter are the average of Mi runs.

1) Full Configuration: In these experiments, we consider
a number Ni = 100 of configuration commands that needs
to be sent by the SDN controller. In the persistent connection

(‘P-Conn’) mode the Ni commands are sent reusing one single
TCP connection, in the non-persistent connection (‘NP-Conn-
Seq’) mode a TCP connection is opened for each command, in
the bulk scenario (‘NP-Bulk’), a message which contains Ni

commands is prepared and sent to the SRv6 device (opening
a new TCP connection). In all cases, we repeat the experi-
ment Mi = 20 times to evaluate the average response time.
Figure 7a shows the results of Full Config experiments consid-
ering insecure connection (only for gRPC and REST), while
Figure 7b and 7c secure connection (gRPC, REST, NETCONF
and SSH/CLI). In all figures the error markers represent the
95% Confidence Interval CI95.

Considering the insecure connection scenario, the
performance (response time) of gRPC is better than
REST for the ‘P-Conn’ and ‘NP-Conn-Seq’. In the ‘P-Conn’
scenario we obtain for gRPC and REST a response time
of around 0.20 s and 0.33 s respectively (for Ni = 100
commands). It corresponds to 500 operations per second for
gRPC and less than 300 op/s for REST, showing that in
our implementation gRPC is more efficient than REST for
the remotization of the configuration operations of the SRv6
device. Obviously, the achieved remote control throughput is
lower than the local throughput of 1700 op/s achieved in the
local rule enforcement (Section VII-A). If the connection is
established when sending each command (‘NP-Conn-Seq’)
the control throughput further decreases to 300 op/s for gRPC
and to 240 op/s for REST.

For the ‘NP-Bulk’ insecure case, the response time for send-
ing a single message with a 100 of commands is 0.087s and
0.069 s, respectively for gRPC and REST. As expected, these
values are higher than the time needed to execute 100 local
configurations (0.065s), due to the time spent on the com-
munication and message parsing parts. In this case REST is
slightly better than gRPC. Fig. 9(a)-NP-Bulk shows that for
the communication part gRPC is faster than REST. Hence we
conclude that the reason for the higher response time for gRPC
is the parsing of the message content, which is implemented
in a less efficient way in the gRPC case.

Using secure connections it is possible to compare all the
four implementations. From figure Figure 7b we see that in
some cases in the ‘P-Conn’ and ‘NP-Conn-Seq’ scenarios the
SSH/CLI and NETCONF have very poor performance (very
high response time). For these reason we have added Figure 7c
which focuses the y-axis in the range from 0 to 3 seconds,
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Fig. 8. CPU and memory usage, secure permanent connection mode, full config.

allowing to compare the performance of gRPC, REST and
NETCONF for the ‘P-Conn’ and ‘NP-Conn-Seq’ scenarios.
Looking at Figure 7c for the ‘P-Conn’ case, the performance
(response time) of NETCONF are worse than gRPC and
REST, but in the same order of magnitude. In particular for
gRPC, REST, NETCONF and SSH/CLI we obtain respectively
a response time of 0.28, 0.38, 0.56 and 12.2 seconds (for 100
commands) which respectively correspond to a throughput of
357, 263, 178 and 8 operations per second. The very low
performance of SSH/CLI is due to our poor implementation
for this case, which reuses the TCP connection but creates a
new secure socket for each command (i.e., the SSH authen-
tication handshake is repeated each time). On the other hand
NETCONF uses SSH as well, but performs the SSH handshake
only at the beginning after setting up the TCP connection. To
solve this issue, we should develop another version of the
SSH/CLI implementation that behaves like NETCONF and
this should drastically reduce the response time and increase
the control throughput.

In the ‘NP-Conn-Seq’ case, in which the connection is re-
established at each command, the gRPC performance looks
worse than REST. This is due to the initial TLS connec-
tion setup. Even if gRPC and REST use same protocol and
same version, i.e., TLSv1.2, there are some differences in the
initial handshake, gRPC uses more TLSv1.2 extensions. For
this reason the setup phase is slower. Our empirical analysis
showed that in general gRPC server replies after 0.073 s, while
REST after 0.049 s. This slower setup phase has an impact
in the ‘NP-Conn-Seq’ case, while in the ‘P-Conn’ case the
slower setup phase is performed only once and the impact is
negligible.

For gRPC and REST we can compare the results of the
secure and insecure connections, as expected in the ‘P-Conn’
scenario (persistent connection) there is a decrease in the
throughput from 500 to 357 operations per second for gRPC
and from 300 to 263 op/s for REST. With secure ‘NP-Conn-
Seq’ (non persistent), REST has better performance than
gRPC. This means that the security setup phase of gRPC
is slowing down its response time. The response time of
NETCONF and SSH/CLI are very high (23 s and 19 s respec-
tively for 100 operations), because for each command the TCP
connection is setup and then the SSH handshake is performed.
Moreover, NETCONF introduces further overhead due to the
creation of the NETCONF session. In ‘NP-Conn-Bulk’ mode,
only one message is sent (which contains 100 commands).
gRPC and REST still show the smallest response time, 0.134 s

and 0.126 s for 100 commands respectively. The NETCONF
implementation has a response time of 0.321 s because of the
SSH setup phase and of the setup of the NETCONF session.

As we have discussed for the local configuration case,
we have performed CPU and memory measurements exper-
iments in our comparison of the Southbound API implemen-
tations. The total system CPU load (%) over time is reported
Figures 8a and 8b. The plots are obtained by requesting 100
add commands using ‘P-Conn’ mode (i.e., the commands are
sent back-to-back over a single TCP connection). As already
mentioned, considering that the system has 2 cores, the load of
50% correspond to the full utilization of 1 core. Compared to
the local configuration case, the gRPC and REST implementa-
tions show only a small decrease in the efficiency, as the CPU
utilization is slightly less than the maximum load (due to the
communication overhead, the CPU is less utilized). The com-
munication overhead of NETCONF is higher, for this reason
it takes more time to complete the execution of the commands
and the average CPU utilization is lower. For the reasons that
we have explained before, our SSH implementation is not effi-
cient because of the re-establishment of a secure SSH socket
for each command. This is clearly visible in Fig. 8b, which
show a small CPU utilization for the long time interval needed
to complete the execution of the commands (15 seconds).
Finally, figures 8c and 8d show the memory usage on the
device side for the different API implementations. The results
confirm that the memory usage is relatively low in all cases,
so it should not be a concern in practical cases.

2) Communication Only: In this part, we focus on the com-
munication aspects of different implementations of the API.
Therefore we implemented server side applications on the
SRv6 device that accepts the requests from the client (SDN
controller) and returns a predefined value without doing any-
thing on the SRv6 device. Similar to the previous part, we
make Ni = 100 requests in the client side, repeat the exper-
iment Mi = 20 times and evaluate the average of overall
response time. The results are shown in Fig. 9 and are con-
sistent with the ones discussed in the previous subsection
(Full config), the differences among the API implementations
are enhanced because no commands are actually executed
in the SRv6 device. The gRPC implementation shows the
best performance, followed by REST and NETCONF. The
SSH/CLI implementation has a much worse performance, but
we recall that we are repeating SSH authentication at each
command, which reduces the performance of the ‘P-Conn’
mode.
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Fig. 9. Communication only - execution time.

TABLE II
TCP CONNECTION ANALYSIS

For further comparison of these APIs, we evaluated the
transmitted packets and total transferred bytes.1 We send 100
add commands and report the observation in Table II. Also
in terms of exchanged data, gRPC and REST are the most
efficient solutions. gRPC has a larger overhead than REST
in the initial setup phase, therefore gRPC sends more data
than REST in the Non-Persistent connection case, while in
Persistent connection and Bulk modes gRPC has the lowest
overhead.

3) Impact of Network Delay and Packet Loss: All the exper-
iments reported so far have been run in ideal conditions, with
the SDN controller close to the SRv6 device and connected
through a LAN (or even a simple Ethernet cable). In this
subsection we report a simple and obviously not exhaustive
analysis of the impact of network delay and packet loss. In
particular, we assume a fixed one way delay of 75 ms (which
corresponds to 150 ms Round Trip Time (RTT) considering
the two directions) and different packet loss ratios: 0%, 0.5%,
1%, 2% on each network interface. In the experiments we
have synthetically applied the delay and loss ratio on the out-
going network interfaces of the SDN controller and of the
SRv6 device using the netem tool. The goal of this simple

1We captured the traffic over the communication link using tcpdump and
analyzed it using Wireshark application.

Fig. 10. Response time of full config in P-conn scenario with secure
connections and network impairments.

analysis is to verify if the introduction of these network impair-
ments creates critical problems to our implementations of the
Southbound API.

We assume that in real-world scenarios, the P-Conn mode
(permanent connection) will be the most typical approach for
the SDN controller to connect to switches and configure them.
Therefore, in this section, we focus on the response time of P-
Conn scenario. The response time of Full config experiments
are reported in Fig. 10(a). Consider that every time a com-
mand is sent and the corresponding response is received by
the controller, 150 ms of delay is added due to the Round Trip
time. For 100 commands, the total time spent by packets trav-
eling in the network is 15 seconds. Therefore in Fig. 10(b) we
plot only the part of the response time exceeding 15 seconds.
When there is no loss the performance of gRPC and REST
are good and similar each other (around 1 second is added
to execute 100 commands), while NETCONF adds around
3 seconds to execute 100 commands. The SSH/CLI based
mechanism is not performing well in this case because the re-
establishment of the secure socket for each command requires
3 additional Round Trip Times, so that 45 seconds are added
to the minimum of 15 seconds needed to send the commands.

4) Discussion of the Results: We found that gRPC and
REST are the most efficient solutions, providing higher control
throughput and lower response times. In the different scenar-
ios that we have tested, these two implementations showed
comparable performance. Despite gRPC being slightly better
in most cases, we conclude that the choice between the two
cannot be based on performance aspects. We plan to select
gRPC for our future work as it offers a nice way to design,
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Fig. 11. Dynamic reconfiguration experiment.

structure and manage the API thanks to the use of the Protocol
Buffers which also drive the serialization of the data. Anyway
this decision is rather subjective as the experiments show
that the REST/HTTP 1.1 performance are comparable. The
NETCONF implementation is less performant from the point
of view of response time. Considering that the NETCONF
approach provides more functionality, in particular offering
inherent transaction capabilities, the performance loss that we
have measured is still acceptable. For a network operator
having devices already supporting NETCONF/Yang proba-
bly it will be better to re-use these technologies since the
performance gains do not justify gRPC/REST approaches.

C. Dynamic Reconfiguration of SRv6 Policies

The possibility of dynamically change the network configu-
ration in the devices is an important feature, this should happen
with no impact on live traffic. For this reason, we have ana-
lyzed the effects of the dynamic configuration of SRv6 policies
in the devices. In these experiments the effects of dynamic
reconfiguration of SRv6 policies have been evaluated through
the packet loss (to verify if a configuration change is hitless
or not) and the traffic split. We define:

1) Packet loss as the amount of packets lost during a
network re-configuration;

2) Traffic split refers to the distribution of the traffic due
to network re-configurations.

We have analyzed the impact of dynamic reconfiguration
of SRv6 policies in the SRv6 edge devices. In our phys-
ical testbed we have implemented the topology shown in
Figure 11. The deployment is composed by four mini PCs
with a low-energy Intel Celeron 1.3 Ghz dual core and 8GB
of RAM. Each device is equipped with four Intel 82583V
NICs at 1 Gb/s. One interface has been used as the man-
agement interface (not shown in Figure 11) and the other
three for the direct interconnections with the other nodes (data
plane network), so that a full mesh topology is realized. A
recent Linux kernel (4.15) has been installed on the devices.
In node N1 and N2 we have configured two network names-
paces respectively acting as source (S) and destination (D) in
our experiment. The SDN controller is running in an external
node, connected via the management interface. In experi-
ment described hereafter the controller is a Linux VM in a
VirtualBox hypervisor running on a laptop.

We consider a flow of ICMPv6 packets (generated by the
ping6 command) from the container S in the node N1 to a con-
tainer D in the node N4. Node N1 is acting as ingress edge
device, while node N4 as egress device. The SDN controller
is setting the SRv6 policies in the ingress device node N1.

TABLE III
IMPACT OF THE DYNAMIC RECONFIGURATION

In particular, the SDN controller associates the IPv6 destina-
tion address of the sink D to three different SRv6 Segment
lists: {N4}, {N2, N4}, {N2, N3, N4}, each for a time interval
of duration T [s]. After that the SDN controller sets the first
Segment List, the ICMPv6 flow is started by launching the
ping6 application. Note that for each Segment list there is
a different incoming interface in node N4, so that we can
count the SRv6 encapsulated packets incoming on the differ-
ent interfaces to easily evaluate how many packets have been
transmitted using the three Segment lists. In the experiment
the controller application uses the SSH/CLI approach to con-
trol the edge device. We also developed a local application
running in the device (a bash script) that performs the same
reconfiguration based on local timers. We refer to the exper-
iments with the controller as remote configuration and to the
experiment with the application running in the edge device as
local configuration.

We ran a number of experiments at different packet sending
rates, by configuring the interval parameter of the ping6 appli-
cation, which defines the packet inter-departure interval [s].
First of all, we verified that the re-configurations are com-
pletely hitless, as no ICMPv6 lost packets have been reported
by the ping6 application in any experiment, both in the local
and in the remote experiments. By counting the packets on
the incoming interfaces we verified that the distribution over
the 3 Segments lists matches very well the configuration pat-
tern. Table III show the results of this test for a duration
T = 20 [s].

In Table III the row marked REF represent the reference
target values (i.e., evenly splitting the packets over the three
Segment Lists), the LOC and REM rows refer respectively to
the measured results of local configuration and remote con-
figuration tests. The reported values represent the number of
received packets over the three interfaces (i.e., on the three
different segment lists). The columns represent different inter-
departure packet intervals: 1s, 0.5s, 0.1s and 0.005s, which
respectively correspond to a rate of 1, 2, 10 and 200 pack-
ets/s. As shown in Table III, the results are pretty stable and
show an optimal distribution of the packets both for local
changes and remote configurations with slight differences from
the reference target values.

VIII. CONCLUSION

In this paper, we have described an SDN based approach
for controlling SRv6 enabled networks. We have discussed the
architecture of SRv6 capable Linux nodes and the design of
the SDN Southbound API offered to the controller. As regards
this Southbound API, we have provided four implementa-
tions using different technologies (gRPC, REST, NETCONF,
CLI/SSH). We released the implementation as Open Source
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and realized a testbed and a set of tools to easily replicate
the proposed architecture and evaluate it with practical experi-
ments. The different API implementations have been evaluated
in terms of response time and CPU/memory utilization on
the device. After the performance characterization, we con-
cluded that in our implementation gRPC and REST show
the best performance (in most cases gRPC is slightly bet-
ter), NETCONF is less performant but still in the same order
of magnitude (and it offers transaction capabilities). We con-
clude that there are no strong indications coming from the
performance evaluation that could clearly drive the selection of
one of these solutions for the Southbound API. The SSH/CLI
implementation shows much lower performance, but we have
identified a shortcoming in our design that could be addressed
to improve the SSH/CLI performance. Finally, we have per-
formed an analysis of the effects of the SRv6 configuration
changes in the Linux SRv6 nodes, showing that we can achieve
hitless reconfiguration of SRv6 policies with no packet loss.
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