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ABSTRACT | The Internet has led to the creation of a digital

society, where (almost) everything is connected and is acces-

sible from anywhere. However, despite their widespread adop-

tion, traditional IP networks are complex and very hard to

manage. It is both difficult to configure the network according

to predefined policies, and to reconfigure it to respond to

faults, load, and changes. To make matters even more difficult,

current networks are also vertically integrated: the control and

data planes are bundled together. Software-defined network-

ing (SDN) is an emerging paradigm that promises to change this

state of affairs, by breaking vertical integration, separating the

network’s control logic from the underlying routers and

switches, promoting (logical) centralization of network control,

and introducing the ability to program the network. The

separation of concerns, introduced between the definition of

network policies, their implementation in switching hardware,

and the forwarding of traffic, is key to the desired flexibility: by

breaking the network control problem into tractable pieces,

SDNmakes it easier to create and introduce new abstractions in

networking, simplifying network management and facilitating

network evolution. In this paper, we present a comprehensive

survey on SDN. We start by introducing the motivation for SDN,

explain its main concepts and how it differs from traditional

networking, its roots, and the standardization activities regard-

ing this novel paradigm. Next, we present the key building

blocks of an SDN infrastructure using a bottom-up, layered

approach. We provide an in-depth analysis of the hardware

infrastructure, southbound and northbound application prog-

ramming interfaces (APIs), network virtualization layers,

network operating systems (SDN controllers), network prog-

ramming languages, and network applications. We also look at

cross-layer problems such as debugging and troubleshooting.

In an effort to anticipate the future evolution of this new pa-

radigm, we discuss the main ongoing research efforts and

challenges of SDN. In particular, we address the design of

switches and control platformsVwith a focus on aspects

such as resiliency, scalability, performance, security, and

dependabilityVas well as new opportunities for carrier trans-

port networks and cloud providers. Last but not least, we ana-

lyze the position of SDN as a key enabler of a software-defined

environment.

KEYWORDS | Carrier-grade networks; dependability; flow-

based networking; network hypervisor; network operating sys-

tems (NOSs); network virtualization; OpenFlow; programmable

networks; programming languages; scalability; software-

defined environments; software-defined networking (SDN)

I . INTRODUCTION

The distributed control and transport network protocols

running inside the routers and switches are the key tech-
nologies that allow information, in the form of digital

packets, to travel around the world. Despite their wide-

spread adoption, traditional IP networks are complex and
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Göttingen (GWDG), 37077 Göttigen, Germany (e-mail: siamak.azodolmolky@gwdg.de).

S. Uhlig is with Queen Mary University of London, London E1 4NS, U.K.

(e-mail: steve@eecs.qmul.ac.uk).

Digital Object Identifier: 10.1109/JPROC.2014.2371999

0018-9219 � 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

14 Proceedings of the IEEE | Vol. 103, No. 1, January 2015
Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 15:24:02 UTC from IEEE Xplore.  Restrictions apply. 



hard to manage [1]. To express the desired high-level net-
work policies, network operators need to configure each

individual network device separately using low-level and

often vendor-specific commands. In addition to the config-

uration complexity, network environments have to endure

the dynamics of faults and adapt to load changes. Automa-

tic reconfiguration and response mechanisms are virtually

nonexistent in current IP networks. Enforcing the required

policies in such a dynamic environment is therefore highly
challenging.

To make it even more complicated, current networks

are also vertically integrated. The control plane (that de-

cides how to handle network traffic) and the data plane

(that forwards traffic according to the decisions made by

the control plane) are bundled inside the networking de-

vices, reducing flexibility and hindering innovation and

evolution of the networking infrastructure. The transition
from IPv4 to IPv6, started more than a decade ago and still

largely incomplete, bears witness to this challenge, while

in fact IPv6 represented merely a protocol update. Due to

the inertia of current IP networks, a new routing protocol

can take five to ten years to be fully designed, evaluated,

and deployed. Likewise, a clean-slate approach to change

the Internet architecture (e.g., replacing IP) is regarded as

a daunting taskVsimply not feasible in practice [2], [3].
Ultimately, this situation has inflated the capital and ope-

rational expenses of running an IP network.

Software-defined networking (SDN) [4], [5] is an

emerging networking paradigm that gives hope to change

the limitations of current network infrastructures. First, it

breaks the vertical integration by separating the network’s

control logic (the control plane) from the underlying rout-

ers and switches that forward the traffic (the data plane).
Second, with the separation of the control and data planes,

network switches become simple forwarding devices and

the control logic is implemented in a logically centralized

controller (or network operating system1), simplifying po-

licy enforcement and network (re)configuration and evol-

ution [6]. A simplified view of this architecture is shown in

Fig. 1. It is important to emphasize that a logically cen-

tralized programmatic model does not postulate a physi-
cally centralized system [7]. In fact, the need to guarantee

adequate levels of performance, scalability, and reliability

would preclude such a solution. Instead, production-level

SDN network designs resort to physically distributed con-

trol planes [7], [8].

The separation of the control plane and the data plane

can be realized by means of a well-defined programming

interface between the switches and the SDN controller.
The controller exercises direct control over the state in the

data plane elements via this well-defined application prog-

ramming interface (API), as depicted in Fig. 1. The most

notable example of such an API is OpenFlow [9], [10]. An

OpenFlow switch has one or more tables of packet-

handling rules (flow table). Each rule matches a subset of

the traffic and performs certain actions (dropping, for-

warding, modifying, etc.) on the traffic. Depending on the

rules installed by a controller application, an OpenFlow
switch canVinstructed by the controllerVbehave like a

router, switch, firewall, or perform other roles (e.g., load

balancer, traffic shaper, and in general those of a

middlebox).

An important consequence of the SDN principles is the

separation of concerns introduced between the definition

of network policies, their implementation in switching

hardware, and the forwarding of traffic. This separation is
key to the desired flexibility, breaking the network control

problem into tractable pieces, and making it easier to

create and introduce new abstractions in networking, sim-

plifying network management and facilitating network

evolution and innovation.

Although SDN and OpenFlow started as academic

experiments [9], they gained significant traction in the

industry over the past few years. Most vendors of com-
mercial switches now include support of the OpenFlow

API in their equipment. The SDN momentum was strong

enough to make Google, Facebook, Yahoo, Microsoft,

Verizon, and Deutsche Telekom fund Open Networking

Foundation (ONF) [10] with the main goal of promotion

and adoption of SDN through open standards develop-

ment. As the initial concerns with SDN scalability were

addressed [11]Vin particular the myth that logical cen-
tralization implied a physically centralized controller, an

issue we will return to later onVSDN ideas have matured

and evolved from an academic exercise to a commercial

success. Google, for example, has deployed an SDN to

interconnect its data centers across the globe. This pro-

duction network has been in deployment for three years,

helping the company to improve operational efficiency

and significantly reduce costs [8]. VMware’s network1We will use these two terms interchangeably.

Fig. 1. Simplified view of an SDN architecture.
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virtualization platform, NSX [12], is another example.
NSX is a commercial solution that delivers a fully func-

tional network in software, provisioned independent of the

underlying networking devices, entirely based around

SDN principles. As a final example, the world’s largest IT

companies (from carriers and equipment manufacturers to

cloud providers and financial services companies) have

recently joined SDN consortia such as the ONF and the

OpenDaylight initiative [13], another indication of the
importance of SDN from an industrial perspective.

A few recent papers have surveyed specific architectu-

ral aspects of SDN [14]–[16]. An overview of OpenFlow

and a short literature review can be found in [14] and [15].

These OpenFlow-oriented surveys present a relatively

simplified three-layer stack composed of high-level net-

work services, controllers, and the controller/switch inter-

face. In [16], Jarraya et al. go a step further by proposing a
taxonomy for SDN. However, similarly to the previous

works, the survey is limited in terms of scope, and it does

not provide an in-depth treatment of fundamental aspects

of SDN. In essence, existing surveys lack a thorough dis-

cussion of the essential building blocks of an SDN such as

the network operating systems (NOSs), programming lan-

guages, and interfaces. They also fall short on the analysis
of cross-layer issues such as scalability, security, and de-

pendability. A more complete overview of ongoing re-

search efforts, challenges, and related standardization

activities is also missing.

In this paper, we present, to the best of our knowledge,

the most comprehensive literature survey on SDN to date.

We organize this survey as depicted in Fig. 2. We start, in

the next two sections, by explaining the context, introduc-
ing the motivation for SDN and explaining the main

concepts of this new paradigm and how it differs from

traditional networking. Our aim in the early part of the

survey is also to explain that SDN is not as novel as a

technological advance. Indeed, its existence is rooted at

the intersection of a series of ‘‘old’’ ideas, technology driv-

ers, and current and future needs. The concepts underly-

ing SDNVthe separation of the control and data planes,
the flow abstraction upon which forwarding decisions are

made, the (logical) centralization of network control, and

the ability to program the networkVare not novel by

themselves [17]. However, the integration of already tested

concepts with recent trends in networkingVnamely the

availability of merchant switch silicon and the huge

Fig. 2. Condensed overview of this survey on SDN.
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interest in feasible forms of network virtualizationVare

leading to this paradigm shift in networking. As a result of

the high industry interest and the potential to change the

status quo of networking from multiple perspectives, a

number of standardization efforts around SDN are ongo-

ing, as we also discuss in Section III.

Section IV is the core of this survey, presenting an

extensive and comprehensive analysis of the building
blocks of an SDN infrastructure using a bottom-up, layered

approach. The option for a layered approach is grounded

on the fact that SDN allows thinking of networking along

two fundamental concepts, which are common in other

disciplines of computer science: separation of concerns

(leveraging the concept of abstraction) and recursion. Our

layered, bottom-up approach divides the networking prob-

lem into eight parts: 1) hardware infrastructure; 2) south-
bound interfaces; 3) network virtualization (hypervisor

layer between the forwarding devices and the NOSs);

4) NOSs (SDN controllers and control platforms);

5) northbound interfaces (to offer a common programming

abstraction to the upper layers, mainly the network appli-

cations); 6) virtualization using slicing techniques provid-

ed by special purpose libraries or programming languages

and compilers; 7) network programming languages; and
finally 8) network applications. In addition, we also look at

cross-layer problems such as debugging and troubleshoot-

ing mechanisms. The discussion in Section V on ongoing

research efforts, challenges, future work, and opportuni-

ties concludes this paper.

II . STATUS QUO IN NETWORKING

Computer networks can be divided in three planes of func-
tionality: the data, control, and management planes (see

Fig. 3). The data plane corresponds to the networking de-

vices, which are responsible for (efficiently) forwarding

data. The control plane represents the protocols used to

populate the forwarding tables of the data plane elements.

The management plane includes the software services,

such as simple network management protocol (SNMP)-

based tools [18], used to remotely monitor and configure the
control functionality. Network policy is defined in the man-

agement plane, the control plane enforces the policy, and

the data plane executes it by forwarding data accordingly.

In traditional IP networks, the control and data planes

are tightly coupled, embedded in the same networking

devices, and the whole structure is highly decentralized.

This was considered important for the design of the Inter-

net in the early days: it seemed the best way to guarantee
network resilience, which was a crucial design goal. In

fact, this approach has been quite effective in terms of

network performance, with a rapid increase of line rate

and port densities.

However, the outcome is a very complex and relatively

static architecture, as has been often reported in the net-

working literature (e.g., [1]–[3], [6], and [19]). It is also

the fundamental reason why traditional networks are rigid,
and complex to manage and control. These two character-

istics are largely responsible for a vertically integrated in-

dustry where innovation is difficult.

Network misconfigurations and related errors are ex-

tremely common in today’s networks. For instance, more

than 1000 configuration errors have been observed in

border gateway protocol (BGP) routers [20]. From a single

misconfigured device, very undesired network behavior
may result (including, among others, packet losses, for-

warding loops, setting up of unintended paths, or service

contract violations). Indeed, while rare, a single miscon-

figured router is able to compromise the correct operation

of the whole Internet for hours [21], [22].

To support network management, a small number of

vendors offer proprietary solutions of specialized hard-

ware, operating systems, and control programs (network
applications). Network operators have to acquire and

maintain different management solutions and the corre-

sponding specialized teams. The capital and operational

cost of building and maintaining a networking infrastruc-

ture is significant, with long return on investment cycles,

which hamper innovation and addition of new features and

services (for instance, access control, load balancing,

energy efficiency, traffic engineering). To alleviate the lack
of in-path functionalities within the network, a myriad of

specialized components and middleboxes, such as fire-

walls, intrusion detection systems, and deep packet inspec-

tion engines, proliferate in current networks. A recent

survey of 57 enterprise networks shows that the number of

middleboxes is already on par with the number of routers

in current networks [23]. Despite helping in-path func-

tionalities, the net effect of middleboxes has increased
complexity of network design and its operation.

III . WHAT IS SOFTWARE-DEFINED
NETWORKING?

The term SDN was originally coined to represent the ideas

and work around OpenFlow at Stanford University,

Fig. 3. Layered view of networking functionality.
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Stanford, CA, USA [24]. As originally defined, SDN refers
to a network architecture where the forwarding state in the

data plane is managed by a remotely controlled plane de-

coupled from the former. The networking industry has on

many occasions shifted from this original view of SDN by

referring to anything that involves software as being SDN.

We therefore attempt, in this section, to provide a much

less ambiguous definition of SDN.

We define an SDN as a network architecture with four
pillars.

1) The control and data planes are decoupled. Con-

trol functionality is removed from network devices

that will become simple (packet) forwarding

elements.

2) Forwarding decisions are flow based, instead of

destination based. A flow is broadly defined by a

set of packet field values acting as a match (filter)
criterion and a set of actions (instructions). In the

SDN/OpenFlow context, a flow is a sequence of

packets between a source and a destination. All

packets of a flow receive identical service policies

at the forwarding devices [25], [26]. The flow

abstraction allows unifying the behavior of differ-

ent types of network devices, including routers,

switches, firewalls, and middleboxes [27]. Flow
programming enables unprecedented flexibility,

limited only to the capabilities of the implemen-

ted flow tables [9].

3) Control logic is moved to an external entity, the

so-called SDN controller or NOS. The NOS is a

software platform that runs on commodity server

technology and provides the essential resources

and abstractions to facilitate the programming of
forwarding devices based on a logically central-

ized, abstract network view. Its purpose is there-

fore similar to that of a traditional operating system.

4) The network is programmable through software

applications running on top of the NOS that in-

teracts with the underlying data plane devices.

This is a fundamental characteristic of SDN, con-

sidered as its main value proposition.
Note that the logical centralization of the control logic,

in particular, offers several additional benefits. First, it is

simpler and less error prone to modify network policies

through high-level languages and software components,

compared with low-level device specific configurations.

Second, a control program can automatically react to

spurious changes of the network state and thus maintain

the high-level policies intact. Third, the centralization of
the control logic in a controller with global knowledge of

the network state simplifies the development of more so-

phisticated networking functions, services, and applications.

Following the SDN concept introduced in [5], an SDN

can be defined by three fundamental abstractions: for-

warding, distribution, and specification. In fact, abstrac-

tions are essential tools of research in computer science

and information technology, being already an ubiquitous
feature of many computer architectures and systems [28].

Ideally, the forwarding abstraction should allow any

forwarding behavior desired by the network application

(the control program) while hiding details of the under-

lying hardware. OpenFlow is one realization of such ab-

straction, which can be seen as the equivalent to a ‘‘device

driver’’ in an operating system.

The distribution abstraction should shield SDN appli-
cations from the vagaries of distributed state, making the

distributed control problem a logically centralized one. Its

realization requires a common distribution layer, which in

SDN resides in the NOS. This layer has two essential

functions. First, it is responsible for installing the control

commands on the forwarding devices. Second, it collects

status information about the forwarding layer (network

devices and links), to offer a global network view to net-
work applications.

The last abstraction is specification, which should al-

low a network application to express the desired network

behavior without being responsible for implementing that

behavior itself. This can be achieved through virtualization

solutions, as well as network programming languages.

These approaches map the abstract configurations that the

applications express based on a simplified, abstract model
of the network, into a physical configuration for the global

network view exposed by the SDN controller. Fig. 4 de-

picts the SDN architecture, concepts, and building blocks.

As previously mentioned, the strong coupling between

control and data planes has made it difficult to add new

functionality to traditional networks, a fact illustrated in

Fig. 5. The coupling of the control and data planes (and its

physical embedding in the network elements) makes the
development and deployment of new networking features

Fig. 4. SDN architecture and its fundamental abstractions.
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(e.g., routing algorithms) very difficult, since it would

imply a modification of the control plane of all network

devicesVthrough the installation of new firmware and, in

some cases, hardware upgrades. Hence, the new network-

ing features are commonly introduced via expensive, spe-
cialized, and hard-to-configure equipment (also known as

middleboxes) such as load balancers, intrusion detection

systems (IDSs), and firewalls, among others. These mid-

dleboxes need to be placed strategically in the network,

making it even harder to later change the network topo-

logy, configuration, and functionality.

In contrast, SDN decouples the control plane from the

network devices and becomes an external entity: the NOS
or SDN controller. This approach has several advantages.

• It becomes easier to program these applications

since the abstractions provided by the control plat-

form and/or the network programming languages

can be shared.

• All applications can take advantage of the same

network information (the global network view),

leading (arguably) to more consistent and effective
policy decisions, while reusing control plane soft-

ware modules.

• These applications can take actions (i.e., reconfig-

ure forwarding devices) from any part of the net-

work. There is therefore no need to devise a precise

strategy about the location of the new functionality.

• The integration of different applications becomes

more straightforward [29]. For instance, load ba-

lancing and routing applications can be combined
sequentially, with load balancing decisions having

precedence over routing policies.

A. Terminology
To identify the different elements of an SDN as un-

equivocally as possible, we now present the essential

terminology used throughout this work.

1) Forwarding Devices (FD): These are hardware- or

software-based data plane devices that perform a set of

elementary operations. The forwarding devices have well-

defined instruction sets (e.g., flow rules) used to take ac-

tions on the incoming packets (e.g., forward to specific

ports, drop, forward to the controller, rewrite some

header). These instructions are defined by southbound

interfaces (e.g., OpenFlow [9], ForCES [30], protocol-
oblivious forwarding (POF) [31]) and are installed in the

forwarding devices by the SDN controllers implementing

the southbound protocols.

2) Data Plane (DP): Forwarding devices are intercon-

nected through wireless radio channels or wired cables.

The network infrastructure comprises the interconnected

forwarding devices, which represent the data plane.

3) Southbound Interface (SI): The instruction set of the

forwarding devices is defined by the southbound API,

which is part of the southbound interface. Furthermore,

the SI also defines the communication protocol between

forwarding devices and control plane elements. This pro-

tocol formalizes the way the control and data plane ele-

ments interact.

4) Control Plane (CP): Forwarding devices are prog-

rammed by control plane elements through well-defined

SI embodiments. The control plane can therefore be seen

as the ‘‘network brain.’’ All control logic rests in the appli-

cations and controllers, which form the control plane.

5) Northbound Interface (NI): The NOS can offer an API
to application developers. This API represents a north-

bound interface, i.e., a common interface for developing

applications. Typically, a northbound interface abstracts

the low-level instruction sets used by southbound inter-

faces to program forwarding devices.

6) Management Plane (MP): The management plane is

the set of applications that leverage the functions offered
by the NI to implement network control and operation

logic. This includes applications such as routing, fire-

walls, load balancers, monitoring, and so forth. Essen-

tially, a management application defines the policies,

which are ultimately translated to southbound-specific

instructions that program the behavior of the forwarding

devices.

Fig. 5. Traditional networking versus SDN. With SDN, management

becomes simpler and middleboxes services can be delivered as

SDN controller applications.
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B. Alternative and Broadening Definitions
Since its inception in 2010 [24], the original Open-

Flow-centered SDN term has seen its scope broadened

beyond architectures with a cleanly decoupled control

plane interface. The definition of SDN will likely continue

to broaden, driven by the industry business-oriented views

on SDNVirrespective of the decoupling of the control

plane. In this survey, we focus on the original, ‘‘canonical’’

SDN definition based on the aforementioned key pillars
and the concept of layered abstractions. However, for the

sake of completeness and clarity, we acknowledge

alternative SDN definitions [32], as follows.

1) Control Plane/Broker SDN: A networking approach

that retains existing distributed control planes but offers

new APIs that allow applications to interact (bidirection-

ally) with the network. An SDN controllerVoften called
orchestration platformVacts as a broker between the ap-

plications and the network elements. This approach

effectively presents control plane data to the application

and allows a certain degree of network programmability by

means of ‘‘plug-ins’’ between the orchestrator function and

network protocols. This API-driven approach corresponds

to a hybrid model of SDN, since it enables the broker to

manipulate and directly interact with the control planes of
devices such as routers and switches. Examples of this view

on SDN include recent standardization efforts at the In-

ternet Engineering Task Force (IETF) (see Section III-C)

and the design philosophy behind the OpenDaylight pro-

ject [13] that goes beyond the OpenFlow split control mode.

2) Overlay SDN: This is a networking approach where

the (software- or hardware-based) network edge is dyna-
mically programmed to manage tunnels between hyper-

visors and/or network switches, introducing an overlay

network. In this hybrid networking approach, the distrib-

uted control plane providing the underlay remains un-

touched. The centralized control plane provides a logical

overlay that utilizes the underlay as a transport network.

This flavor of SDN follows a proactive model to install the

overlay tunnels. The overlay tunnels usually terminate
inside virtual switches within hypervisors or in physical

devices acting as gateways to the existing network. This

approach is very popular in recent data center network

virtualization [33], and are based on a variety of tunneling

technologies (e.g., stateless transport tunneling [34],

virtualized layer 2 networks (VXLAN) [35], network vir-

tualization using generic routing encapsulation (NVGRE)

[36], locator/ID separation protocol (LISP) [37], [38], and
generic network virtualization encapsulation (GENEVE)

[39]) [40].

Recently, other attempts to define SDN in a layered ap-

proach have appeared [16], [41]. From a practical perspective

and trying to keep backward compatibility with existing

network management approaches, one initiative in the IRTF

Software-Defined Networking Research Group (SDNRG)

[41] proposes a management plane at the same level of the
control plane, i.e., it classifies solutions in two categories:

control logic (with control plane southbound interfaces) and

management logic (with management plane southbound

interfaces). In other words, the management plane can be

seen as a control platform that accommodates traditional

network management services and protocols, such as SNMP

[18], BGP [42], path computation element communication

protocol (PCEP) [43], and network configuration protocol
(NETCONF) [44].

In addition to the broadening definitions above, the

term SDN is often used to define extensible network man-

agement planes (e.g., OpenStack [45]), whitebox/bare-

metal switches with open operating systems (e.g., Cumulus

Linux), open-source data planes (e.g., Pica8 Xorplus [46],

Quagga [47]), specialized programmable hardware devices

(e.g., NetFPGA [48]), virtualized software-based appli-
ances (e.g., open platform for network functions virtualiza-

tion (OPNFV) [49]), in spite of lacking a decoupled control

and data plane or common interface along its API. Hybrid

SDN models are further discussed in Section V-G.

C. Standardization Activities
The standardization landscape in SDN (and SDN-

related issues) is already wide and is expected to keep
evolving over time. While some of the activities are being

carried out in standard development organizations

(SDOs), other related efforts are ongoing at industrial or

community consortia (e.g., OpenDaylight, OpenStack,

OPNFV), delivering results often considered candidates

for de facto standards. These results often come in the

form of open source implementations that have become

the common strategy toward accelerating SDN and
related cloud and networking technologies [50]. The

reason for this fragmentation is due to SDN concepts

spanning different areas of IT and networking, both

from a network segmentation point of view (from access

to core) and from a technology perspective (from optical

to wireless).

Table 1 presents a summary of the main SDOs and

organizations contributing to the standardization of SDN,
as well as the main outcomes produced to date.

The ONF was conceived as a member-driven organi-

zation to promote the adoption of SDN through the devel-

opment of the OpenFlow protocol as an open standard to

communicate control decisions to data plane devices. The

ONF is structured in several working groups (WGs). Some

WGs are focused on either defining extensions to the

OpenFlow protocol in general, such as the extensibility
WG, or tailored to specific technological areas. Examples

of the latter include the optical transport (OT) WG, the

wireless and mobile (W&M) WG, and the northbound in-

terfaces (NBI) WG. Other WGs center their activity in

providing new protocol capabilities to enhance the pro-

tocol itself, such as the architecture WG or the forwarding

abstractions (FA) WG.
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Similar to how network programmability ideas have

been considered by several IETF working groups (WGs) in

the past, the present SDN trend is also influencing a

number of activities. A related body that focuses on re-

search aspects for the evolution of the Internet, IRTF, has

created the SDNRG. This group investigates SDN from

Table 1 Openflow Standardization Activities
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various perspectives with the goal of identifying the ap-
proaches that can be defined, deployed, and used in the

near term, as well as identifying future research challenges.

In the International Telecommunications Union’s Tele-

communication sector (ITU–T), some study groups (SGs)

have already started to develop recommendations for

SDN, and a Joint Coordination Activity on SDN (JCA-

SDN) has been established to coordinate the SDN stan-

dardization work.
The Broadband Forum (BBF) is working on SDN topics

through the Service Innovation & Market Requirements

(SIMR) WG. The objective of the BBF is to release recom-

mendations for supporting SDN in multiservice broadband

networks, including hybrid environments where only

some of the network equipment is SDN enabled.

The Metro Ethernet Forum (MEF) is approaching SDN

with the aim of defining service orchestration with APIs
for existing networks.

At the IEEE, the 802 LAN/MAN Standards Committee

has recently started some activities to standardize SDN

capabilities on access networks based on IEEE 802 infra-

structure through the P802.1CF project, for both wired

and wireless technologies to embrace new control

interfaces.

The Optical Internetworking Forum (OIF) Carrier WG
released a set of requirements for transport SDN. The ini-

tial activities have as main goal to describe the features and

functionalities needed to support the deployment of SDN

capabilities in carrier transport networks. The Open Data

Center Alliance (ODCA) is an organization working on

unifying data center in the migration to cloud computing

environments through interoperable solutions. Through

the documentation of usage models, specifically one for
SDN, the ODCA is defining new requirements for cloud

deployment. The Alliance for Telecommunication Industry

Solutions (ATIS) created a focus group for analyzing ope-

rational issues and opportunities associated with the prog-

rammable capabilities of network infrastructure.

At the European Telecommunication Standards Insti-

tute (ETSI), efforts are being devoted to network function

virtualization (NFV) through a newly defined Industry
Specification Group (ISG). NFV and SDN concepts are

considered complementary, sharing the goal of accelerat-

ing innovation inside the network by allowing program-
mability, and altogether changing the network operational

model through automation and a real shift to software-

based platforms.

Finally, the mobile networking industry 3rd Genera-

tion Partnership Project consortium is studying the

management of virtualized networks, an effort aligned

with the ETSI NFV architecture and, as such, likely to

leverage from SDN.

D. History of SDN
Albeit a fairly recent concept, SDN leverages on net-

working ideas with a longer history [17]. In particular, it

builds on work made on programmable networks, such as

active networks [81], programmable ATM networks [82],

[83], and on proposals for control and data plane separa-

tion, such as the network control point (NCP) [84] and

routing control platform (BCP) [85].

In order to present a historical perspective, we sum-
marize in Table 2 different instances of SDN-related work

prior to SDN, splitting it into five categories. Along with

the categories we defined, the second and third columns of

the table mention past initiatives (pre-SDN, i.e., before the

OpenFlow-based initiatives that sprung into the SDN con-

cept) and recent developments that led to the definition

of SDN.

Data plane programmability has a long history. Active
networks [81] represent one of the early attempts on

building new network architectures based on this concept.

The main idea behind active networks is for each node to

have the capability to perform computations on, or modify

the content of, packets. To this end, active networks pro-

pose two distinct approaches: programmable switches and

capsules. The former does not imply changes in the existing

packet or cell format. It assumes that switching devices
support the downloading of programs with specific in-

structions on how to process packets. The second approach,

on the other hand, suggests that packets should be replaced

by tiny programs, which are encapsulated in transmission

frames and executed at each node along their path.

ForCES [30], OpenFlow [9], and POF [31] represent

recent approaches for designing and deploying program-

mable data plane devices. In a manner different from

Table 2 Summarized Overview of the History of Programmable Networks
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active networks, these new proposals rely essentially on
modifying forwarding devices to support flow tables,

which can be dynamically configured by remote entities

through simple operations such as adding, removing, or

updating flow rules, i.e., entries on the flow tables.

The earliest initiatives on separating data and control

signaling date back to the 1980s and 1990s. The NCP [84]

is probably the first attempt to separate control and data

plane signaling. NCPs were introduced by AT&T to im-
prove the management and control of its telephone net-

work. This change promoted a faster pace of innovation of

the network and provided new means for improving its

efficiency, by taking advantage of the global view of the

network provided by NCPs. Similarly, other initiatives such

as Tempest [96], ForCES [30], RCP [85], and PCE [43]

proposed the separation of the control and data planes

for improved management in ATM, Ethernet, BGP,
and multiprotocol label switching (MPLS) networks,

respectively.

More recently, initiatives such as SANE [100], Ethane

[101], OpenFlow [9], NOX [26], and POF [31] proposed

the decoupling of the control and data planes for Ethernet

networks. Interestingly, these recent solutions do not re-

quire significant modifications on the forwarding devices,

making them attractive not only for the networking re-
search community, but even more to the networking in-

dustry. OpenFlow-based devices [9], for instance, can

easily coexist with traditional Ethernet devices, enabling a

progressive adoption (i.e., not requiring a disruptive

change to existing networks).

Network virtualization has gained a new traction with

the advent of SDN. Nevertheless, network virtualization

also has its roots back in the 1990s. The Tempest project
[96] is one of the first initiatives to introduce network

virtualization, by introducing the concept of switchlets in

ATM networks. The core idea was to allow multiple

switchlets on top of a single ATM switch, enabling multiple

independent ATM networks to share the same physical

resources. Similarly, MBone [102] was one of the early

initiatives that targeted the creation of virtual network to-

pologies on top of legacy networks, or overlay networks.
This work was followed by several other projects such as

Planet Lab [105], GENI [107], and VINI [108]. FlowVisor

[119] is also worth mentioning as one of the first recent

initiatives to promote a hypervisor-like virtualization ar-

chitecture for network infrastructures, resembling the

hypervisor model common for compute and storage. More

recently, Koponen et al. proposed a network virtualization

platform (NVP) [112] for multitenant data centers using
SDN as a base technology.

The concept of a NOS was reborn with the introduction

of OpenFlow-based NOSs, such as NOX [26], Onix [7], and

ONOS [117]. Indeed, NOSs have been in existence for

decades. One of the most widely known and deployed is

the Cisco IOS [113], which was originally conceived back

in the early 1990s. Other NOSs worth mentioning are

JUNOS [114], ExtremeXOS [115], and SR OS [116]. De-
spite being more specialized NOSs, targeting network de-

vices such as high-performance core routers, these NOSs

abstract the underlying hardware to the network operator,

making it easier to control the network infrastructure as

well as simplifying the development and deployment of

new protocols and management applications.

Finally, initiatives that can be seen as ‘‘technology pull’’

drivers are also worth recalling. Back in the 1990s, a
movement toward open signaling [118] began to happen.

The main motivation was to promote the wider adoption of

the ideas proposed by projects such as NCP [84] and

Tempest [96]. The open signaling movement worked to-

ward separating the control and data signaling by propos-

ing open and programmable interfaces. Curiously, a rather

similar movement can be observed with the recent advent

of OpenFlow and SDN, with the lead of the ONF [10]. This
type of movement is crucial to promote open technologies

into the market, hopefully leading equipment manufactur-

ers to support open standards and thus fostering interop-

erability, competition, and innovation.

For a more extensive intellectual history of program-

mable networks and SDN, we direct the reader to the

recent paper by Feamster et al. [17].

IV. SOFTWARE-DEFINED NETWORKS:
BOTTOM-UP

An SDN architecture can be depicted as a composition of

different layers, as shown in Fig. 6(b). Each layer has its

own specific functions. While some of them are always

present in an SDN deployment, such as the southbound

API, NOSs, northbound API, and network applications,
others may be present only in particular deployments, such

as hypervisor- or language-based virtualization.

Fig. 6 presents a trifold perspective of SDNs. The SDN

layers are represented in Fig. 6(b), as explained above.

Fig. 6(a) and (c) depicts a plane-oriented view and a sys-

tem design perspective, respectively.

The following sections introduce each layer, following

a bottom-up approach. For each layer, the core properties
and concepts are explained based on the different tech-

nologies and solutions. Additionally, debugging and trou-

bleshooting techniques and tools are discussed.

A. Layer I: Infrastructure
An SDN infrastructure, similarly to a traditional net-

work, is composed of a set of networking equipment

(switches, routers, and middlebox appliances). The main
difference resides in the fact that those traditional physical

devices are now simple forwarding elements without em-

bedded control or software to take autonomous decisions.

The network intelligence is removed from the data plane

devices to a logically centralized control system, i.e., the

NOS and applications, as shown in Fig. 6(c). More impor-

tantly, these new networks are built (conceptually) on top
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of open and standard interfaces (e.g., OpenFlow), a crucial

approach for ensuring configuration and communication

compatibility and interoperability among different data

and control plane devices. In other words, these open in-

terfaces enable controller entities to dynamically program

heterogeneous forwarding devices, something difficult in

traditional networks, due to the large variety of proprietary

and closed interfaces and the distributed nature of the
control plane.

In an SDN/OpenFlow architecture, there are two main

elements, the controllers and the forwarding devices, as

shown in Fig. 7. A data plane device is a hardware or

software element specialized in packet forwarding, while a

controller is a software stack (the ‘‘network brain’’) run-

ning on a commodity hardware platform. An OpenFlow-

enabled forwarding device is based on a pipeline of flow
tables where each entry of a flow table has three parts: 1) a

matching rule; 2) actions to be executed on matching

packets; and 3) counters that keep statistics of matching

packets. This high-level and simplified model derived from

OpenFlow is currently the most widespread design of SDN

data plane devices. Nevertheless, other specifications of

SDN-enabled forwarding devices are being pursued,

including POF [31], [120] and the negotiable datapath

models (NDMs) from the ONF Forwarding Abstractions

Working Group (FAWG) [121].

Inside an OpenFlow device, a path through a sequence

of flow tables defines how packets should be handled.
When a new packet arrives, the lookup process starts in the

first table and ends either with a match in one of the tables

of the pipeline or with a miss (when no rule is found for

that packet). A flow rule can be defined by combining

different matching fields, as illustrated in Fig. 7. If there is

no default rule, the packet will be discarded. However,

the common case is to install a default rule which tells

the switch to send the packet to the controller (or to the
normal non-OpenFlow pipeline of the switch). The

priority of the rules follows the natural sequence number

of the tables and the row order in a flow table. Possible

actions include: 1) forward the packet to outgoing port(s);

Fig. 6. Software-Defined Networks in (a) planes, (b) layers, and (c) system design architecture.

Fig. 7. OpenFlow-enabled SDN devices.
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2) encapsulate it and forward it to the controller; 3) drop it;

4) send it to the normal processing pipeline; and 5) send it to

the next flow table or to special tables, such as group or
metering tables introduced in the latest OpenFlow protocol.

As detailed in Table 3, each version of the OpenFlow

specification introduced new match fields including

Ethernet, IPv4/v6, MPLS, TCP/UDP, etc. However, only

a subset of those matching fields are mandatory to be

compliant to a given protocol version. Similarly, many ac-

tions and port types are optional features. Flow match

rules can be based on almost arbitrary combinations of bits
of the different packet headers using bit masks for each

field. Adding new matching fields has been eased with the

extensibility capabilities introduced in OpenFlow

version 1.2 through an OpenFlow Extensible Match

(OXM) based on type-length-value (TLV) structures. To

improve the overall protocol extensibility, with OpenFlow

version 1.4, TLV structures have been also added to ports,

tables, and queues in replacement of the hard-coded
counterparts of earlier protocol versions.

1) Overview of Available OpenFlow Devices: Several

OpenFlow-enabled forwarding devices are available on

the market, both as commercial and open source products

(see Table 4). There are many off-the-shelf, ready to de-

ploy, OpenFlow switches and routers, among other ap-

pliances. Most of the switches available on the market have
relatively small ternary content-addressable memory

(TCAMs), with up to 8000 entries. Nonetheless, this is

changing at a fast pace. Some of the latest devices released

in the market go far beyond that figure. Gigabit Ethernet

(GbE) switches for common business purposes are already

supporting up to 32 000 Layer 2 (L2) + Layer 3 (L3) or

64 000 L2/L3 exact match flows [122]. Enterprise class

10GbE switches are being delivered with more than
80 000 layer 2 flow entries [123]. Other switching devices

using high-performance chips (e.g., EZchip NP-4) provide

optimized TCAM memory that supports from 125 000 up

to 1 000 000 flow table entries [124]. This is a clear sign

that the size of the flow tables is growing at a pace aiming
to meet the needs of future SDN deployments. Networking

hardware manufacturers have produced various kinds of

OpenFlow-enabled devices, as is shown in Table 4. These

devices range from equipment for small businesses (e.g.,

GbE switches) to high-class data center equipment (e.g.,

high-density switch chassis with up to 100GbE connectiv-

ity for edge-to-core applications, with tens of terabits per

second of switching capacity).
Software switches are emerging as one of the most

promising solutions for data centers and virtualized net-

work infrastructures [147]–[149]. Examples of software-

based OpenFlow switch implementations include Switch

Light [145], ofsoftswitch13 [141], Open vSwitch [142],

OpenFlow Reference [143], Pica8 [150], Pantou [146], and

XorPlus [46]. Recent reports show that the number of vir-

tual access ports is already larger than physical access ports
on data centers [149]. Network virtualization has been one

of the drivers behind this trend. Software switches such as

Open vSwitch have been used for moving network func-

tions to the edge (with the core performing traditional IP

forwarding), thus enabling network virtualization [112].

An interesting observation is the number of small,

startup enterprises devoted to SDN, such as Big Switch,

Pica8, Cyan, Plexxi, and NoviFlow. This seems to imply
that SDN is springing a more competitive and open net-

working market, one of its original goals. Other effects of

this openness triggered by SDN include the emergence of

so-called ‘‘bare metal switches’’ or ‘‘whitebox switches,’’

where software and hardware are sold separately and the end

user is free to load an operating system of its choice [151].

B. Layer II: Southbound Interfaces
Southbound interfaces (or southbound APIs) are the

connecting bridges between control and forwarding

Table 3 Different Match Fields, Statistics, and Capabilities Have Been Added on Each Openflow Protocol Revision. The Number of

Required (REQ) and Optional (OPT) Capabilities Has Grown Considerably
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elements, thus being the crucial instrument for clearly

separating control and data plane functionality. However,

these APIs are still tightly tied to the forwarding elements

of the underlying physical or virtual infrastructure.

Typically, a new switch can take two years to be ready

for commercialization if built from scratch, with upgrade
cycles that can take up to nine months. The software de-

velopment for a new product can take from six months to

one year [152]. The initial investment is high and risky. As a

central component of its design, the southbound APIs

represent one of the major barriers for the introduction and

acceptance of any new networking technology. In this light,

the emergence of SDN southbound API proposals such as

OpenFlow [9] is seen as welcome by many in the industry.
These standards promote interoperability, allowing the de-

ployment of vendor-agnostic network devices. This has al-

ready been demonstrated by the interoperability between

OpenFlow-enabled equipments from different vendors.

As of this writing, OpenFlow is the most widely ac-

cepted and deployed open southbound standard for SDN.

It provides a common specification to implement Open-

Flow-enabled forwarding devices, and for the commu-
nication channel between data and control plane devices

(e.g., switches and controllers). The OpenFlow protocol

provides three information sources for NOSs. First, event-

based messages are sent by forwarding devices to the

controller when a link or port change is triggered. Second,

flow statistics are generated by the forwarding devices and

collected by the controller. Third, packet-in messages are

sent by forwarding devices to the controller when they do

not known what to do with a new incoming flow or

because there is an explicit ‘‘send to controller’’ action in

the matched entry of the flow table. These information

channels are the essential means to provide flow-level
information to the NOS.

Albeit the most visible, OpenFlow is not the only

available southbound interface for SDN. There are other

API proposals such as ForCES [30], Open vSwitch

Database (OVSDB) [153], POF [31], [120], OpFlex [154],

OpenState [155], revised open-flow library (ROFL) [156],

hardware abstraction layer (HAL) [157], [158], and

programmable abstraction of data path (PAD) [159].
ForCES proposes a more flexible approach to traditional

network management without changing the current archi-

tecture of the network, i.e., without the need of a logically

centralized external controller. The control and data

planes are separated, but can potentially be kept in the

same network element. However, the control part of the

network element can be upgraded on-the-fly with third-

party firmware.
OVSDB [153] is another type of southbound API, de-

signed to provide advanced management capabilities for

Open vSwitches. Beyond OpenFlow’s capabilities to confi-

gure the behavior of flows in a forwarding device, an Open

vSwitch offers other networking functions. For instance, it

allows the control elements to create multiple virtual

Table 4 OpenFlow Enabled Hardware and Software Devices
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switch instances, set quality of service (QoS) policies on
interfaces, attach interfaces to the switches, configure

tunnel interfaces on OpenFlow data paths, manage queues,

and collect statistics. Therefore, the OVSDB is a comple-

mentary protocol to OpenFlow for Open vSwitch.

One of the first direct competitors of OpenFlow is POF

[31], [120]. One of the main goals of POF is to enhance the

current SDN forwarding plane. With OpenFlow, switches

have to understand the protocol headers to extract the
required bits to be matched with the flow tables entries.

This parsing represents a significant burden for data plane

devices, in particular if we consider that OpenFlow

version 1.3 already contains more than 40 header fields.

Besides this inherent complexity, backward compatibility

issues may arise every time new header fields are included

in or removed from the protocol. To achieve its goal, POF

proposes a generic flow instruction set (FIS) that makes
the forwarding plane protocol oblivious. A forwarding

element does not need to know, by itself, anything about

the packet format in advance. Forwarding devices are seen

as white boxes with only processing and forwarding

capabilities. In POF, packet parsing is a controller task that

results in a sequence of generic keys and table lookup

instructions that are installed in the forwarding elements.

The behavior of data plane devices is, therefore, com-
pletely under the control of the SDN controller. Similar to

a central processing unit (CPU) in a computer system, a

POF switch is application and protocol agnostic.

A recent southbound interface proposal is OpFlex

[154]. Contrary to OpenFlow (and similar to ForCES), one

of the ideas behind OpFlex is to distribute part of the

complexity of managing the network back to the forward-

ing devices, with the aim of improving scalability. Similar
to OpenFlow, policies are logically centralized and

abstracted from the underlying implementation. The dif-

ferences between OpenFlow and OpFlex are a clear illus-

tration of one of the important questions to be answered

when devising a southbound interface: where to place each

piece of the overall functionality.

In contrast to OpFlex and POF, OpenState [155] and

ROFL [156] do not propose a new set of instructions for
programming data plane devices. OpenState proposes ex-

tended finite machines (stateful programming abstrac-

tions) as an extension (superset) of the OpenFlow match/

action abstraction. Finite state machines allow the imple-

mentation of several stateful tasks inside forwarding de-

vices, i.e., without augmenting the complexity or overhead

of the control plane. For instance, all tasks involving only

local state, such as media access control (MAC) learning
operations, port knocking, or stateful edge firewalls, can be

performed directly on the forwarding devices without any

extra control plane communication and processing delay.

ROFL, on the other hand, proposes an abstraction layer

that hides the details of the different OpenFlow versions,

thus providing a clean API for software developers,

simplifying application development.

HAL [157], [158] is not exactly a southbound API, but is
closely related. Differently from the aforementioned ap-

proaches, HAL is rather a translator that enables a south-

bound API such as OpenFlow to control heterogeneous

hardware devices. It thus sits between the southbound API

and the hardware device. Recent research experiments

with HAL have demonstrated the viability of SDN control

in access networks such as Gigabit Ethernet passive optical

networks (GEPONs) [160] and cable networks (DOCSISs)
[161]. A similar effort to HAL is PAD [159], a proposal that

goes a bit further by also working as a southbound API by

itself. More importantly, PAD allows a more generic prog-

ramming of forwarding devices by enabling the control of

data path behavior using generic byte operations, defining

protocol headers and providing function definitions.

C. Layer III: Network Hypervisors
Virtualization is already a consolidated technology in

modern computers. The fast developments of the past de-

cade have made virtualization of computing platforms

mainstream. Based on recent reports, the number of vir-

tual servers has already exceeded the number of physical

servers [162], [112].

Hypervisors enable distinct virtual machines to share

the same hardware resources. In a cloud infrastructure-as-
a-service (IaaS), each user can have its own virtual re-

sources, from computing to storage. This enabled new

revenue and business models where users allocate re-

sources on demand, from a shared physical infrastructure,

at a relatively low cost. At the same time, providers

make better use of the capacity of their installed physical

infrastructures, creating new revenue streams without

significantly increasing their capital expenditure and
operational expenditure (OPEX) costs. One of the

interesting features of virtualization technologies today is

the fact that virtual machines can be easily migrated from

one physical server to another and can be created and/or

destroyed on demand, enabling the provisioning of elastic

services with flexible and easy management. Unfor-

tunately, virtualization has been only partially realized in

practice. Despite the great advances in virtualizing com-
puting and storage elements, the network is still mostly

statically configured in a box-by-box manner [33].

The main network requirements can be captured along

two dimensions: network topology and address space.

Different workloads require different network topologies

and services, such as flat L2 or L3 services, or even more

complex L4–L7 services for advanced functionality. Cur-

rently, it is very difficult for a single physical topology to
support the diverse demands of applications and services.

Similarly, address space is hard to change in current net-

works. Today, virtualized workloads have to operate in the

same address of the physical infrastructure. Therefore, it is

hard to keep the original network configuration for a te-

nant, virtual machines cannot migrate to arbitrary loca-

tions, and the addressing scheme is fixed and hard to
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change. For example, IPv6 cannot be used by the virtual
machines (VMs) of a tenant if the underlying physical

forwarding devices support only IPv4.

To provide complete virtualization, the network should

provide similar properties to the computing layer [33]. The

network infrastructure should be able to support arbitrary

network topologies and addressing schemes. Each tenant

should have the ability to configure both the computing

nodes and the network simultaneously. Host migration
should automatically trigger the migration of the corre-

sponding virtual network ports. One might think that long

standing virtualization primitives such as VLANs (virtua-

lized L2 domain), NAT (virtualized IP address space), and

MPLS (virtualized path) are enough to provide full and

automated network virtualization. However, these tech-

nologies are anchored on a box-by-box basis configuration,

i.e., there is no single unifying abstraction that can be
leveraged to configure (or reconfigure) the network in a

global manner. As a consequence, current network provi-

sioning can take months, while computing provisioning

takes only minutes [112], [163]–[165].

There is hope that this situation will change with SDN

and the availability of new tunneling techniques (e.g.,

VXLAN [35] and NVGRE [36]). For instance, solutions

such as FlowVisor [111], [166], [167], FlowN [168], NVP
[112], OpenVirteX [169], [170], IBM SDN VE [171], [172],

RadioVisor [173], AutoVFlow [174], eXtensible Datapath

Daemon (xDPd) [175], [176], optical transport network

virtualization [177], and version-agnostic OpenFlow slicing

mechanisms [178], have been recently proposed, eval-

uated, and deployed in real scenarios for on-demand pro-

visioning of virtual networks.

1) Slicing the Network: FlowVisor is one of the early

technologies to virtualize an SDN. Its basic idea is to allow

multiple logical networks share the same OpenFlow net-

working infrastructure. For this purpose, it provides an

abstraction layer that makes it easier to slice a data plane

based on off-the-shelf OpenFlow-enabled switches, allow-

ing multiple and diverse networks to coexist. Five slicing

dimensions are considered in FlowVisor: bandwidth, topo-
logy, traffic, device CPU, and forwarding tables. Moreover,

each network slice supports a controller, i.e., multiple

controllers can coexist on top of the same physical network

infrastructure. Each controller is allowed to act only on its

own network slice. In general terms, a slice is defined as a

particular set of flows on the data plane. From a system

design perspective, FlowVisor is a transparent proxy that

intercepts OpenFlow messages between switches and con-
trollers. It partitions the link bandwidth and flow tables of

each switch. Each slice receives a minimum data rate, and

each guest controller gets its own virtual flow table in the

switches.

Similarly to FlowVisor, OpenVirteX [169], [170] acts as

a proxy between the NOS and the forwarding devices.

However, its main goal is to provide virtual SDNs through

topology, address, and control function virtualization. All
these properties are necessary in multitenant environ-

ments where virtual networks need to be managed and

migrated according to the computing and storage virtual

resources. Virtual network topologies have to be mapped

onto the underlying forwarding devices, with virtual

addresses allowing tenants to completely manage their

address space without depending on the underlying net-

work elements addressing schemes.
AutoSlice [179] is another SDN-based virtualization

proposal. Differently from FlowVisor, it focuses on the

automation of the deployment and operation of virtual

SDN (vSDN) topologies with minimal mediation or arbi-

tration by the substrate network operator. Additionally,

AutoSlice targets also scalability aspects of network hyper-

visors by optimizing resource utilization and by mitigating

the flow-table limitations through a precise monitoring of
the flow traffic statistics. Similarly to AutoSlice, AutoV-

Flow [174] also enables multidomain network virtualiza-

tion. However, instead of having a single third party to

control the mapping of vSDN topologies, as is the case of

AutoSlice, AutoVFlow uses a multiproxy architecture that

allows network owners to implement flow space virtuali-

zation in an autonomous way by exchanging information

among the different domains.
FlowN [168], [180] is based on a slightly different

concept. Whereas FlowVisor can be compared to a full vir-

tualization technology, FlowN is analogous to a container-

based virtualization, i.e., a lightweight virtualization

approach. FlowN was also primarily conceived to address

multitenancy in the context of cloud platforms. It is de-

signed to be scalable and allows a unique shared controller

platform to be used for managing multiple domains in a
cloud environment. Each tenant has full control over its

virtual networks and is free to deploy any network ab-

straction and application on top of the controller platform.

The compositional SDN hypervisor [181] was designed

with a different set of goals. Its main objective is to allow

the cooperative (sequential or parallel) execution of appli-

cations developed with different programming languages

or conceived for diverse control platforms. It thus offers
interoperability and portability in addition to the typical

functions of network hypervisors.

2) Commercial Multitenant Network Hypervisors: None of

the aforementioned approaches is designed to address all

challenges of multitenant data centers. For instance, te-

nants want to be able to migrate their enterprise solutions

to cloud providers without the need to modify the network
configuration of their home network. Existing networking

technologies and migration strategies have mostly failed to

meet both tenant and service provider requirements. A

multitenant environment should be anchored in a network

hypervisor capable of abstracting the underlaying forward-

ing devices and physical network topology from the te-

nants. Moreover, each tenant should have access to control
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abstractions and manage its own virtual networks inde-
pendently and isolated from other tenants.

With the market demand for network virtualization

and the recent research on SDN showing promise as an

enabling technology, different commercial virtualization

platforms based on SDN concepts have started to appear.

VMWare has proposed a network virtualization platform

(NVP) [112] that provides the necessary abstractions to

allow the creation of independent virtual networks for
large-scale multitenant environments. NVP is a complete

network virtualization solution that allows the creation of

virtual networks, each with independent service model,

topologies, and addressing architectures over the same

physical network. With NVP, tenants do not need to know

anything about the underlying network topology, config-

uration, or other specific aspects of the forwarding devices.

NVP’s network hypervisor translates the tenants config-
urations and requirements into low-level instruction sets

to be installed on the forwarding devices. For this purpose,

the platform uses a cluster of SDN controllers to mani-

pulate the forwarding tables of the Open vSwitches in the

host’s hypervisor. Forwarding decisions are therefore made

exclusively on the network edge. After the decision is

made, the packet is tunneled over the physical network to

the receiving host hypervisor (the physical network sees
nothing but ordinary IP packets).

IBM has also recently proposed SDN VE [171], [172],

another commercial and enterprise-class network virtualiza-

tion platform. SDN VE uses OpenDaylight as one of the

building blocks of the so-called software-defined environ-

ments (SDEs), a trend further discussed in Section V. This

solution also offers a complete implementation framework

for network virtualization. Like NVP, it uses a host-based
overlay approach, achieving advanced network abstraction

that enables application-level network services in large-scale

multitenant environments. Interestingly, SDN VE 1.0 is

capable of supporting in one single instantiation up to 16 000

virtual networks and 128 000 virtual machines [171], [172].

To summarize, currently there are already a few net-

work hypervisor proposals leveraging the advances of

SDN. There are, however, still several issues to be ad-
dressed. These include, among others, the improvement of

virtual-to-physical mapping techniques [182], the defini-

tion of the level of detail that should be exposed at the

logical level, and the support for nested virtualization [29].

We anticipate, however, this ecosystem to expand in the

near future since network virtualization will most likely

play a key role in future virtualized environments, simi-

larly to the expansion we have been witnessing in virtual-
ized computing.

D. Layer IV: Network Operating Systems/Controllers
Traditional operating systems provide abstractions

(e.g., high-level programming APIs) for accessing lower

level devices, manage the concurrent access to the under-

lying resources (e.g., hard drive, network adapter, CPU,

memory), and provide security protection mechanisms.
These functionalities and resources are key enablers for

increased productivity, making the life of system and ap-

plication developers easier. Their widespread use has sig-

nificantly contributed to the evolution of various

ecosystems (e.g., programming languages) and the devel-

opment of a myriad of applications.

In contrast, networks have so far been managed and

configured using lower level, device-specific instruction
sets and mostly closed proprietary NOSs (e.g., Cisco IOS

and Juniper JunOS). Moreover, the idea of operating sys-

tems abstracting device-specific characteristics and provid-

ing, in a transparent way, common functionalities is still

mostly absent in networks. For instance, today designers of

routing protocols need to deal with complicated distrib-

uted algorithms when solving networking problems. Net-

work practitioners have therefore been solving the same
problems over and over again.

SDN is promised to facilitate network management and

ease the burden of solving networking problems by means

of the logically centralized control offered by a NOS [26].

As with traditional operating systems, the crucial value of a

NOS is to provide abstractions, essential services, and

common APIs to developers. Generic functionality as net-

work state and network topology information, device dis-
covery, and distribution of network configuration can be

provided as services of the NOS. With NOSs, to define

network policies a developer no longer needs to care about

the low-level details of data distribution among routing

elements, for instance. Such systems can arguably create a

new environment capable of fostering innovation at a

faster pace by reducing the inherent complexity of creating

new network protocols and network applications.
A NOS (or a controller) is a critical element in an SDN

architecture as it is the key supporting piece for the control

logic (applications) to generate the network configuration

based on the policies defined by the network operator.

Similar to a traditional operating system, the control plat-

form abstracts the lower level details of connecting and

interacting with forwarding devices (i.e., of materializing

the network policies).

1) Architecture and Design Axes: There is a very diverse

set of controllers and control platforms with different de-

sign and architectural choices [7], [13], [183]–[186]. Exist-

ing controllers can be categorized based on many aspects.

From an architectural point of view, one of the most rele-

vant is if they are centralized or distributed. This is one of

the key design axes of SDN control platforms, so we start
by discussing this aspect next.

2) Centralized Versus Distributed: A centralized control-

ler is a single entity that manages all forwarding devices of

the network. Naturally, it represents a single point of fail-

ure and may have scaling limitations. A single controller

may not be enough to manage a network with a large
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number of data plane elements. Centralized controllers
such as NOX–MT [187], Maestro [188], Beacon [186], and

Floodlight [189] have been designed as highly concurrent

systems, to achieve the throughput required by enterprise

class networks and data centers. These controllers are

based on multithreaded designs to explore the parallelism

of multicore computer architectures. As an example,

Beacon can deal with more than 12 million flows per sec-

ond by using large size computing nodes of cloud providers
such as Amazon [186]. Other centralized controllers such

as Trema [190], Ryu NOS [191], Meridian [192], and

ProgrammableFlow [133], [193] target specific environ-

ments such as data centers, cloud infrastructures, and

carrier grade networks. Furthermore, controllers such as

Rosemary [194] offer specific functionality and guarantees,

namely security and isolation of applications. By using a

container-based architecture called micro-NOS, it achieves
its primary goal of isolating applications and preventing

the propagation of failures throughout the SDN stack.

Contrary to a centralized design, a distributed NOS can

be scaled up to meet the requirements of potentially any

environment, from small- to large-scale networks. A dis-

tributed controller can be a centralized cluster of nodes or

a physically distributed set of elements. While the first

alternative can offer high throughput for very dense data
centers, the latter can be more resilient to different kinds

of logical and physical failures. A cloud provider that spans

multiple data centers interconnected by a wide area net-

work may require a hybrid approach, with clusters of con-

trollers inside each data center and distributed controller

nodes in the different sites [8].

Onix [7], HyperFlow [195], HP VAN SDN [184],

ONOS [117], DISCO [185], yanc [196], PANE [197],
SMaRt-Light [198], and Fleet [199] are examples of distri-

buted controllers. Most distributed controllers offer weak

consistency semantics, which means that data updates on
distinct nodes will eventually be updated on all controller

nodes. This implies that there is a period of time in which

distinct nodes may read different values (old value or new

value) for the same property. Strong consistency, on the

other hand, ensures that all controller nodes will read the

most updated property value after a write operation. De-

spite its impact on system performance, strong consistency

offers a simpler interface to application developers. To
date, only Onix, ONOS, and SMaRtLight provide this data

consistency model.

Another common property of distributed controllers is

fault tolerance. When one node fails, another neighbor

node should take over the duties and devices of the failed

node. So far, despite some controllers tolerating crash

failures, they do not tolerate arbitrary failures, which

means that any node with an abnormal behavior will not be
replaced by a potentially well-behaved one.

A single controller may be enough to manage a small

network, however it represents a single point of failure.

Similarly, independent controllers can be spread across the

network, each of them managing a network segment, re-

ducing the impact of a single controller failure. Yet, if the

control plane availability is critical, a cluster of controllers can

be used to achieve a higher degree of availability and/or for
supporting more devices. Ultimately, a distributed controller

can improve the control plane resilience and scalability and

reduce the impact of problems caused by network partition,

for instance. SDN resiliency as a whole is an open challenge

that will be further discussed in Section V-C.

3) Dissecting SDN Controller Platforms: To provide a bet-

ter architectural overview and understanding the design of
a NOS, Table 5 summarizes some of the most relevant

architectural and design properties of SDN controllers and

Table 5 Architecture and Design Elements of Control Platforms
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control platforms. We have focused on the elements, ser-

vices, and interfaces of a selection of production-level,

well-documented controllers and control platforms. Each

line in the table represents a component we consider

important in a modular and scalable control platform. We

observe a highly diversified environment, with different
properties and components being used by distinct control

platforms. This is not surprising, given an environment

with many competitors willing to be at the forefront of

SDN development. Note also that not all components are

available on all platforms. For instance, east/westbound

APIs are not required in centralized controllers such as

Beacon. In fact, some platforms have very specific niche

markets, such as telecom companies and cloud providers,
so the requirements will be different.

Based on the analysis of the different SDN controllers

proposed to date (both those presented in Table 5 and

others, such as NOX [26], Meridian [192], ForCES [30],

and FortNOX [201]), we extract several common elements

and provide a first attempt to clearly and systematically

dissect an SDN control platform in Fig. 8.

There are at least three relatively well-defined layers in
most of the existing control platforms: 1) the application,

orchestration, and services; 2) the core controller func-

tions; and 3) the elements for southbound communica-

tions. The connection at the upper level layers is based on

northbound interfaces such as REST APIs [202] and prog-

ramming languages such as FML [203], Frenetic [204], and

NetCore [205]. On the lower level part of a control

platform, southbound APIs and protocol plug-ins interface
the forwarding elements. The core of a controller platform

can be characterized as a combination of its base network

service functions and the various interfaces.

4) Core Controller Functions: The base network service

functions are what we consider the essential functionality

all controllers should provide. As an analogy, these func-

tions are like base services of operating systems, such as

program execution, input/output (I/O) operations control,

communications, protection, and so on. These services are
used by other operating system level services and user

applications. In a similar way, functions such as topology,

statistics, notifications, and device management, together

with shortest path forwarding and security mechanisms,

are essential network control functionalities that network

applications may use in building its logic. For instance, the

notification manager should be able to receive, process,

and forward events (e.g., alarm notifications, security
alarms, state changes) [55]. Security mechanisms are

another example, as they are critical components to pro-

vide basic isolation and security enforcement between

services and applications. For instance, rules generated by

high priority services should not be overwritten with rules

created by applications with a lower priority.

5) Southbound: On the lower level of control platforms,
the southbound APIs can be seen as a layer of device driv-

ers. They provide a common interface for the upper layers,

while allowing a control platform to use different south-

bound APIs (e.g., OpenFlow, OVSDB, and ForCES) and

protocol plug-ins to manage existing or new physical or

virtual devices (e.g., SNMP, BGP, and NetConf). This is

essential both for backward compatibility and heteroge-

neity, i.e., to allow multiple protocols and device
management connectors. Therefore, on the data plane, a

mix of physical devices, virtual devices (e.g., Open vSwitch

[109], [142], vRouter [206]) and a variety of device

Fig. 8. SDN control platforms: elements, services, and interfaces.
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interfaces (e.g., OpenFlow, OVSDB, of-config [207],

NetConf, and SNMP) can coexist.

Most controllers support only OpenFlow as a south-
bound API. Still, a few of them, such as OpenDaylight,

Onix, and HP VAN SDN Controller, offer a wider range of

southbound APIs and/or protocol plug-ins. Onix supports

both the OpenFlow and OVSDB protocols. The HP VAN

SDN Controller has other southbound connectors such as

L2 and L3 agents.

OpenDaylight goes a step beyond by providing a service

layer abstraction (SLA) that allows several southbound
APIs and protocols to coexist in the control platform. For

instance, its original architecture was designed to support

at least seven different protocols and plug-ins: OpenFlow,

OVSDB [153], NETCONF [44], PCEP [43], SNMP [208],

BGP [42], and LISP Flow Mapping [13]. Hence, OpenDay-

light is one of the few control platforms being conceived to

support a broader integration of technologies in a single

control platform.

6) Eastbound and Westbound: East/westbound APIs, as

illustrated in Fig. 9, are a special case of interfaces required

by distributed controllers. Currently, each controller imple-

ments its own east/westbound API. The functions of these

interfaces include import/export data between controllers,

algorithms for data consistency models, and monitoring/

notification capabilities (e.g., check if a controller is up or
notify a take over on a set of forwarding devices).

Similarly to southbound and northbound interfaces,

east/westbound APIs are essential components of distrib-

uted controllers. To identify and provide common compa-

tibility and interoperability between different controllers,

it is necessary to have standard east/westbound interfaces.

For instance, SDNi [209] defines common requirements to

coordinate flow setup and exchange reachability informa-
tion across multiple domains. In essence, such protocols

can be used in an orchestrated and interoperable way to

create more scalable and dependable distributed control

platforms. Interoperability can be leveraged to increase the

diversity of the control platform element. Indeed, diversity

increases the system robustness by reducing the probabil-

ity of common faults, such as software faults [210].

Other proposals that try to define interfaces between
controllers include Onix data import/export functions [7],

ForCES CE–CE interface [30], [211], ForCES Intra-NE cold-

standby mechanisms for high availability [212], and distrib-

uted data stores [213]. An east/westbound API requires

advanced data distribution mechanisms such as the advanced

message queuing protocol (AMQP) [214] used by DISCO

[185], techniques for distributed concurrent and consistent

policy composition [215], transactional databases and DHTs
[216] (as used in Onix [7]), or advanced algorithms for strong

consistency and fault tolerance [198], [213].

In a multidomain setup, east/westbound APIs may re-

quire also more specific communication protocols between

SDN domain controllers [217]. Some of the essential func-

tions of such protocols are to coordinate flow setup origi-

nated by applications, exchange reachability information

to facilitate inter-SDN routing, reachability update to keep
the network state consistent, among others.

Another important issue regarding east/westbound in-

terfaces is heterogeneity. For instance, besides communi-

cating with peer SDN controllers, controllers may also

need to communicate with subordinate controllers (in a

hierarchy of controllers) and non-SDN controllers [218],

as is the case of Closed-Flow [219]. To be interoperable,

east/westbound interfaces thus need to accommodate dif-
ferent controller interfaces, with their specific set of ser-

vices, and the diverse characteristics of the underlying

infrastructure, including the diversity of technology, the

geographic span and scale of the network, and the distinc-

tion between WAN and LANVpotentially across adminis-

trative boundaries. In those cases, different information

has to be exchanged between controllers, including adja-

cency and capability discovery, topology information (to
the extent of the agreed contracts between administrative

domains), billing information, among many others [218].

Last, an ‘‘SDN compass’’ methodology [220] suggests a

finer distinction between eastbound and westbound

horizontal interfaces, referring to westbound interfaces

Fig. 9. Distributed controllers: east/westbound APIs.
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as SDN-to-SDN protocols and controller APIs while

eastbound interfaces would be used to refer to standard

protocols used to communicate with legacy network con-

trol planes (e.g., PCEP [43] and GMPLS [221]).

7) Northbound: Current controllers offer a quite broad

variety of northbound APIs, such as ad hoc APIs, RESTful
APIs [202], multilevel programming interfaces, file

systems, among other more specialized APIs such as

NVP NBAPI [7], [112] and SDMN API [222]. Section IV-E

is devoted to a more detailed discussion on the evolving

layer of northbound APIs. A second kind of northbound

interfaces are those stemming out of SDN programming

languages such as Frenetic [204], Nettle [223], NetCore

[205], Procera [224], Pyretic [225], NetKAT [226], and
other query-based languages [227]. Section IV-G gives a

more detailed overview of the several existing program-

ming languages for SDN.

8) Wrapping Up Remarks and Platforms Comparison:
Table 6 shows a summary of some of the existing con-

trollers with their respective architectures and character-

istics. As can be observed, most controllers are centralized

and multithreaded. Curiously, the northbound API is very

diverse. In particular, five controllers (Onix, Floodlight,

MuL, Meridian, and SDN Unified Controller) pay a bit

more attention to this interface, as a statement of its im-

portance. Consistency models and fault tolerance are only

present in Onix, HyperFlow, HP VAN SDN, ONOS, and
SMaRtLight. Last, when it comes to the OpenFlow stan-

dard as southbound API, only Ryu supports its three major

versions (v1.0, v1.2, and v1.3).

To conclude, it is important to emphasize that the

control platform is one of the critical points for the success

of SDN [234]. One of the main issues that needs to be

addressed in this respect is interoperability. This is rather

interesting, as it was the very first problem that south-
bound APIs (such as OpenFlow) tried to solve. For

instance, while WiFi and long-term evolution (LTE) net-

works [235] need specialized control platforms such as

MobileFlow [222] or SoftRAN [236], data center networks

have different requirements that can be met with plat-

forms such as Onix [7] or OpenDaylight [13]. For this

reason, in environments where diversity of networking

Table 6 Controllers Classification
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infrastructures is a reality, coordination and cooperation
between different controllers is crucial. Standardized APIs

for multicontroller and multidomain deployments are

therefore seen as an important step to achieve this goal.

E. Layer V: Northbound Interfaces
The northbound and southbound interfaces are two key

abstractions of the SDN ecosystem. The southbound inter-

face has already a widely accepted proposal (OpenFlow),
but a common northbound interface is still an open issue.

At this moment it may still be a bit too early to define a

standard northbound interface, as use cases are still being

worked out [237]. Anyway, it is to be expected a common

(or a de facto) northbound interface to arise as SDN evolves.

An abstraction that would allow network applications not

to depend on specific implementations is important to

explore the full potential of SDN.
The northbound interface is mostly a software eco-

system, not a hardware one, as is the case of the south-

bound APIs.

In these ecosystems, the implementation is commonly

the forefront driver, while standards emerge later and are

essentially driven by wide adoption [238]. Nevertheless, an

initial and minimal standard for northbound interfaces can

still play an important role for the future of SDN. Discussions
about this issue have already begun [237]–[244], and a

common consensus is that northbound APIs are indeed

important but that it is indeed too early to define a single

standard right now. The experience from the development

of different controllers will certainly be the basis for

coming up with a common application level interface.

Open and standard northbound interfaces are crucial to

promote application portability and interoperability among
the different control platforms. A northbound API can be

compared to the POSIX standard [245] in operating sys-

tems, representing an abstraction that guarantees program-

ming language and controller independence. NOSIX [246]

is one of the first examples of an effort in this direction. It

tries to define portable low-level (e.g., flow model) appli-

cation interfaces, making southbound APIs such as Open-

Flow look like ‘‘device drivers.’’ However, NOSIX is not
exactly a general purpose northbound interface, but rather

a higher level abstraction for southbound interfaces. In-

deed, it could be part of the common abstraction layer in a

control platform as the one described in Section IV-D.

Existing controllers such as Floodlight, Trema, NOX,

Onix, and OpenDaylight propose and define their own

northbound APIs [239], [247]. However, each of them has

its own specific definitions. Programming languages such
as Frenetic [204], Nettle [223], NetCore [205], Procera

[224], Pyretic [248], and NetKAT [226] also abstract the

inner details of the controller functions and data plane

behavior from the application developers. Moreover, as we

explain in Section IV-G, programming languages can pro-

vide a wide range of powerful abstractions and mechan-

isms such as application composition, transparent data

plane fault tolerance, and a variety of basic building blocks
to ease software module and application development.

SFNet [249] is another example of a northbound inter-

face. It is a high-level API that translates application re-

quirements into lower level service requests. However,

SFNet has a limited scope, targeting queries to request the

congestion state of the network and services such as band-

width reservation and multicast.

Other proposals use different approaches to allow ap-
plications to interact with controllers. The yanc control

platform [196] explores this idea by proposing a general

control platform based on Linux and abstractions such as

the virtual file system (VFS). This approach simplifies the

development of SDN applications as programmers are able

to use a traditional concept (files) to communicate with

lower level devices and subsystems.

Eventually, it is unlikely that a single northbound in-
terface emerges as the winner, as the requirements for

different network applications are quite different. APIs for

security applications are likely to be different from those

for routing or financial applications. One possible path of

evolution for northbound APIs are vertically oriented pro-

posals, before any type of standardization occurs, a chal-

lenge the ONF has started to undertake in the NBI WG in

parallel to open-source SDN developments [50]. The ONF
architectural work [218] includes the possibility of north-

bound APIs providing resources to enable dynamic and

granular control of the network resources from customer

applications, eventually across different business and orga-

nizational boundaries.

There are also other kinds of APIs, such as those pro-

vided by the PANE controller [197]. Designed to be suit-

able for the concept of participatory networking, PANE
allows network administrators to define module-specific

quotas and access control policies on network resources.

The controller provides an API that allows end-host appli-

cations to dynamically and autonomously request network

resources. For example, audio (e.g., VoIP) and video ap-

plications can easily be modified to use the PANE API to

reserve bandwidth for certain quality guarantees during

the communication session. PANE includes a compiler and
verification engine to ensure that bandwidth requests do

not exceed the limits set by the administrator and to avoid

starvation, i.e., other applications will not be impaired by

new resource requests.

F. Layer VI: Language-Based Virtualization
Two essential characteristics of virtualization solutions

are the capability of expressing modularity and of allowing
different levels of abstractions while still guaranteeing de-

sired properties such as protection. For instance, virtua-

lization techniques can allow different views of a single

physical infrastructure. As an example, one virtual ‘‘big

switch’’ could represent a combination of several underly-

ing forwarding devices. This intrinsically simplifies the

task of application developers as they do not need to think
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about the sequence of switches where forwarding rules
have to be installed, but rather see the network as a simple

‘‘big switch.’’ Such kind of abstraction significantly simpli-

fies the development and deployment of complex network

applications, such as advanced security related services.

Pyretic [248] is an interesting example of a program-

ming language that offers this type of high-level abstrac-

tion of network topology. It incorporates this concept of

abstraction by introducing network objects. These objects
consist of an abstract network topology and the sets of

policies applied to it. Network objects simultaneously hide

information and offer the required services.

Another form of language-based virtualization is static

slicing. This a scheme where the network is sliced by a

compiler, based on application layer definitions. The out-

put of the compiler is a monolithic control program that

has already slicing definitions and configuration com-
mands for the network. In such a case, there is no need for

a hypervisor to dynamically manage the network slices.

Static slicing can be valuable for deployments with specific

requirements, in particular those where higher perfor-

mance and simple isolation guarantees are preferable to

dynamic slicing.

One example of static slicing approach is the Splendid

isolation [250]. In this solution, the network slices are
made of three components: 1) topology, consisting of

switches, ports, and links; 2) mapping of slice-level

switches, ports, and links on the network infrastructure;

and 3) predicates on packets, where each port of the slice’s

edge switches has an associated predicate. The topology is a

simple graph of the sliced nodes, ports, and links. Mapping

will translate the abstract topology elements into the

corresponding physical ones. The predicates are used to
indicate whether a packet is permitted to enter a specific

slice. Different applications can be associated to each slice.

The compiler takes the combination of slices (topology,

mapping, and predicates) and respective programs to gen-

erate a global configuration for the entire network. It also

ensures that properties such as isolation are enforced
among slices, i.e., no packets of slice A can traverse to

slice B unless explicitly allowed.

Other solutions, such as libNetVirt [251], try to integ-

rate heterogeneous technologies for creating static net-

work slices. libNetVirt is a library designed to provide a

flexible way to create and manage virtual networks in dif-

ferent computing environments. Its main idea is similar to

the OpenStack Quantum project [252]. While Quantum is
designed for OpenStack (cloud environments), libNetVirt

is a more general purpose library which can be used in

different environments. Additionally, it goes one step be-

yond OpenStack Quantum by enabling QoS capabilities in

virtual networks [251]. The libNetVirt library has two

layers: a generic network interface and technology specific

device drivers (e.g., VPN, MPLS, OpenFlow). On top of

the layers are the network applications and virtual network
descriptions. The OpenFlow driver uses a NOX controller

to manage the underlying infrastructure, using OpenFlow

rule-based flow tables to create isolated virtual networks.

By supporting different technologies, it can be used as a

bridging component in heterogeneous networks.

Table 7 summarizes the hypervisor- and nonhypervisor-

based virtualization technologies. As can be observed, only

libNetVirt supports heterogeneous technologies, not re-
stricting its application to OpenFlow-enabled networks.

FlowVisor, AutoSlice, and OpenVirteX allow multiple con-

trollers, one per network slice. FlowN provides a container-

based approach where multiple applications from different

users can coexist on a single controller. FlowVisor allows

QoS provisioning guarantees by using VLAN PCP bits for

priority queues. SDN VE and NVP also provide their own

provisioning methods for guaranteeing QoS.

G. Layer VII: Programming Languages
Programming languages have been proliferating for

decades. Both academia and industry have evolved from

low-level hardware-specific machine languages, such as

Table 7 Virtualization Solutions

Kreutz et al. : Software-Defined Networking: A Comprehensive Survey

Vol. 103, No. 1, January 2015 | Proceedings of the IEEE 35
Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 15:24:02 UTC from IEEE Xplore.  Restrictions apply. 



assembly for x86 architectures, to high-level and powerful
programming languages such as Java and Python. The ad-

vancements toward more portable and reusable code

have driven a significant shift on the computer industry

[254], [255].

Similarly, programmability in networks is starting to

move from low-level machine languages such as OpenFlow

(‘‘assembly’’) to high-level programming languages [112],

[203]–[205], [223]–[225]. Assembly-like machine lan-
guages, such as OpenFlow [9] and POF [31], [120], essen-

tially mimic the behavior of forwarding devices, forcing

developers to spend too much time on low-level details

rather than on the problem solve. Raw OpenFlow programs

have to deal with hardware behavior details such as over-

lapping rules, the priority ordering of rules, and data plane

inconsistencies that arise from in-flight packets whose flow

rules are under installation [204], [205], [256]. The use of
these low-level languages makes it difficult to reuse soft-

ware, to create modular and extensive code, and leads to a

more error-prone development process [225], [257], [258].

Abstractions provided by high-level programming

languages can significantly help address many of the chal-

lenges of these lower level instruction sets [203]–[205],

[223]–[225]. In SDNs, high-level programming languages

can be designed and used to:
1) create higher level abstractions for simplifying the

task of programming forwarding devices;

2) enable more productive and problem-focused en-

vironments for network software programmers,

speeding up development and innovation;

3) promote software modularization and code reus-

ability in the network control plane;

4) foster the development of network virtualization.
Several challenges can be better addressed by program-

ming languages in SDNs. For instance, in pure OpenFlow-

based SDNs, it is hard to ensure that multiple tasks of a

single application (e.g., routing, monitoring, access con-

trol) do not interfere with each other. For example, rules

generated for one task should not override the function-

ality of another task [204], [256]. Another example is

when multiple applications run on a single controller
[201], [225], [256], [259], [260]. Typically, each applica-

tion generates rules based on its own needs and policies

without further knowledge about the rules generated by

other applications. As a consequence, conflicting rules can

be generated and installed in forwarding devices, which

can create problems for network operation. Programming

languages and runtime systems can help to solve these

problems that would be otherwise hard to prevent.
Important software design techniques such as code

modularity and reusability are very hard to achieve using

low-level programming models [225]. Applications thus

built are monolithic and consist of building blocks that

cannot be reused in other applications. The end result is

a very time-consuming and error-prone development

process.

Another interesting feature that programming lan-
guage abstractions provide is the capability of creating and

writing programs for virtual network topologies [248],

[250]. This concept is similar to object-oriented prog-

ramming, where objects abstract both data and specific

functions for application developers, making it easier to

focus on solving a particular problem without worrying

about data structures and their management. For instance,

in an SDN context, instead of generating and installing
rules in each forwarding device, one can think of creating

simplified virtual network topologies that represent the

entire network, or a subset of it. For example, the appli-

cation developer should be able to abstract the network as

an atomic big switch, rather than a combination of sev-

eral underlying physical devices. The programming

languages or runtime systems should be responsible for

generating and installing the lower level instructions
required at each forwarding device to enforce the user

policy across the network. With such kind of abstractions,

developing a routing application becomes a straightfor-

ward process. Similarly, a single physical switch could be

represented as a set of virtual switches, each of them

belonging to a different virtual network. These two exam-

ples of abstract network topologies would be much harder

to implement with low-level instruction sets. In contrast,
a programming language or runtime system can more

easily provide abstractions for virtual network topologies,

as has already been demonstrated by languages such as

Pyretic [248].

1) High-Level SDN Programming Languages: High-level

programming languages can be powerful tools as a mean

for implementing and providing abstractions for different
important properties and functions of SDN such as

network-wide structures, distributed updates, modular

composition, virtualization, and formal verification [29].

Low-level instruction sets suffer from several pro-

blems. To address some of these challenges, higher level

programming languages have been proposed, with diverse

goals, such as:

• avoiding low-level and device-specific configura-
tions and dependencies spread across the network,

as happens in traditional network configuration

approaches;

• providing abstractions that allow different man-

agement tasks to be accomplished through easy to

understand and maintain network policies;

• decoupling of multiple tasks (e.g., routing, access

control, traffic engineering);
• implementing higher level programming interfaces

to avoid low-level instruction sets;

• solving forwarding rules problems, e.g., conflicting

or incomplete rules that can prevent a switch event

to be triggered, in an automated way;

• addressing different race condition issues which

are inherent to distributed systems;
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• enhancing conflict-resolution techniques on envi-

ronments with distributed decision makers;

• providing native fault-tolerance capabilities on

data plane path setup;

• reducing the latency in the processing of new
flows;

• easing the creation of stateful applications (e.g.,

stateful firewall).

Programming languages can also provide specialized

abstractions to cope with other management require-

ments, such as monitoring [204], [224], [227], [261]. For

instance, the runtime system of a programming language

can do all the ‘‘laundry work’’ of installing rules, polling
the counters, receiving the responses, combining the re-

sults as needed, and composing monitoring queries in

conjunction with other policies. Consequently, application

developers can take advantage of the simplicity and power

of higher level query instructions to easily implement mo-

nitoring modules or applications.

Another aspect of paramount importance is the

portability of the programming language, necessary so
that developers do not need to re-implement applications

for different control platforms. The portability of a prog-

ramming language can be considered as a significant added

value to the control plane ecosystem. Mechanisms such as

decoupled back–ends could be key architectural ingredi-

ents to enable platform portability. Similarly to the Java

virtual machine, a portable northbound interface will

easily allow applications to run on different controllers

without requiring any modification. As an example, the

Pyretic language requires only a standard socket interface

and a simple OpenFlow client on the target controller

platform [225].
Several programming languages have been proposed

for SDNs, as summarized in Table 8. The great majority

propose abstractions for OpenFlow-enabled networks. The

predominant programming paradigm is the declarative

one, with a single exception, Pyretic, which is an impera-

tive language. Most declarative languages are functional,

but there are instances of the logic and reactive types. The

purposeVi.e., the specific problems they intend to solveV
and the expressiveness power vary from language to lan-

guage, while the end goal is almost always the same: to

provide higher level abstractions to facilitate the develop-

ment of network control logic.

Programming languages such as FML [203], Nettle

[223], and Procera [224] are functional and reactive. Poli-

cies and applications written in these languages are based

on reactive actions triggered by events (e.g., a new host
connected to the network, or the current network load).

Such languages allow users to declaratively express differ-

ent network configuration rules such as access control lists

(ACLs), virtual LANs (VLANs), and many others. Rules are

essentially expressed as allow-or-deny policies, which are

applied to the forwarding elements to ensure the desired

network behavior.

Table 8 Programming Languages
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Other SDN programming languages, such as Frenetic
[204], hierarchical flow tables (HFTs) [256], NetCore

[205], and Pyretic [225], were designed with the simul-

taneous goal of efficiently expressing packet-forwarding

policies and dealing with overlapping rules of different

applications, offering advanced operators for parallel and

sequential composition of software modules. To avoid

overlapping conflicts, Frenetic disambiguates rules with

overlapping patterns by assigning different integer prior-
ities, while HFT uses hierarchical policies with enhanced

conflict-resolution operators.

See-every-packet abstractions and race-free semantics

also represent interesting features provided by program-

ming languages (such as Frenetic [204]). The former en-

sures that all control packets will be available for analysis,

sooner or later, while the latter provides the mechanisms

for suppressing unimportant packets. As an example,
packets that arise from a network race condition, such as

due to a concurrent flow rule installation on switches, can

be simply discarded by the runtime system.

Advanced operators for parallel and sequential com-

position help bind (through internal workflow operators)

the key characteristics of programming languages such as

Pyretic [225]. Parallel composition makes it possible to

operate multiple policies on the same set of packets, while
sequential composition facilitates the definition of a se-

quential workflow of policies to be processed on a set of

packets. Sequential policy processing allows multiple

modules (e.g., access control and routing) to operate in a

cooperative way. By using sequential composition complex

applications can be built out of a combination of different

modules (in a similar way as pipes can be used to build

sophisticated Unix applications).
Further advanced features are provided by other SDN

programming languages. FatTire [262] is an example of a

declarative language that heavily relies on regular expres-

sions to allow programmers to describe network paths with

fault-tolerance requirements. For instance, each flow can

have its own alternative paths for dealing with failure of

the primary paths. Interestingly, this feature is provided in

a very programmer-friendly way, with the application
programmer having only to use regular expressions with

special characters, such as an asterisk. In the particular

case of FatTire, an asterisk will produce the same behavior

as a traditional regular expression, but translated into

alternative traversing paths.

Programming languages such as FlowLog [257] and

Flog [258] bring different features, such as model check-

ing, dynamic verification, and stateful middleboxes. For
instance, using a programming language such as Flog, it is

possible to build a stateful firewall application with only

five lines of code [258].

Merlin [264] is one of the first examples of unified

framework for controlling different network components,

such as forwarding devices, middleboxes, and end-hosts.

An important advantage is backward compatibility with

existing systems. To achieve this goal, Merlin generates
specific code for each type of component. Taking a policy

definition as input, Merlin’s compiler determines forward-

ing paths, transformation placement, and bandwidth

allocation. The compiled outputs are sets of component-

specific low-level instructions to be installed in the devices.

Merlin’s policy language also allows operators to delegate

the control of a subnetwork to tenants, while ensuring iso-

lation. This delegated control is expressed by means of
policies that can be further refined by each tenant owner,

allowing them to customize policies for their particular

needs.

Other recent initiatives (e.g., systems programming

languages [265]) target problems such as detecting ano-

malies to improve the security of network protocols (e.g.,

Open-Flow), and optimizing horizontal scalability for

achieving high throughput in applications running on
multicore architectures [263]. Nevertheless, there is still

scope for further investigation and development on prog-

ramming languages. For instance, one recent research has

revealed that current policy compilers generate unneces-

sary (redundant) rule updates, most of which modify only

the priority field [266].

Most of the value of SDN will come from the network

managements applications built on top of the infrastruc-
ture. Advances in high-level programming languages are a

fundamental component to the success of a prolific SDN

application development ecosystem. To this end, efforts

are undergoing to shape forthcoming standard interfaces

(cf. [267]) and toward the realization of integrated devel-

opment environments (e.g., NetIDE [268]) with the goal

of fostering the development of a myriad of SDN applica-

tions. We discuss these next.

H. Layer VIII: Network Applications
Network applications can be seen as the ‘‘network

brains.’’ They implement the control logic that will be

translated into commands to be installed in the data plane,

dictating the behavior of the forwarding devices. Take a

simple application as routing as an example. The logic of

this application is to define the path through which packets
will flow from point A to point B. To achieve this goal, a

routing application has to, based on the topology input,

decide on the path to use and instruct the controller to

install the respective forwarding rules in all forwarding

devices on the chosen path, from A to B.

SDNs can be deployed on any traditional network en-

vironment, from home and enterprise networks to data

centers and Internet exchange points. Such variety of en-
vironments has led to a wide array of network applications.

Existing network applications perform traditional func-

tionality such as routing, load balancing, and security po-

licy enforcement, but also explore novel approaches, such

as reducing power consumption. Other examples include

fail-over and reliability functionalities to the data plane,

end-to-end QoS enforcement, network virtualization,
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mobility management in wireless networks, among many
others. The variety of network applications, combined with

real use case deployments, is expected to be one of the

major forces on fostering a broad adoption of SDN [269].

Despite the wide variety of use cases, most SDN appli-

cations can be grouped in one of five categories: traffic

engineering, mobility and wireless, measurement and mo-

nitoring, security and dependability and data center net-

working. Tables 9 and 10 summarize several applications
categorized as such, stating their main purpose, controller

where it was implemented/evaluated, and southbound

API used.

1) Traffic Engineering: Several traffic engineering appli-

cations have been proposed, including ElasticTree [274],

Hedera [276], OpenFlow-based server load balancing

[338], Plug-n-Serve [285] and Aster*x [273], In-packet
Bloom filter [277], SIM–PLE [292], QNOX [287], QoS

framework [289], QoS for SDN [288], ALTO [270],

ViAggre SDN [293], ProCel [282], FlowQoS [275], and

Middlepipes [27]. In addition to these, recent proposals

include optimization of rules placement [339], the use of

MAC as a universal label for efficient routing in data cen-

ters [340], among other techniques for flow management,

fault tolerance, topology update, and traffic characteriza-
tion [341]. The main goal of most applications is to engineer

traffic with the aim of minimizing power consumption,

maximizing aggregate network utilization, providing opti-

mized load balancing, and other generic traffic optimiza-

tion techniques.

Load balancing was one of the first applications envi-

sioned for SDN/OpenFlow. Different algorithms and tech-

niques have been proposed for this purpose [338], [273],
[285]. One particular concern is the scalability of these

solutions. A technique to allow this type of applications to

scale is to use wildcard-based rules to perform proactive

load balancing [338]. Wildcards can be utilized for aggre-

gating client requests based on the ranges of IP prefixes,

for instance, allowing the distribution and directing of

large groups of client requests without requiring controller

intervention for every new flow. In tandem, operation in
reactive mode may still be used when traffic bursts are

detected. The controller application needs to monitor the

network traffic and use some sort of threshold in the flow

counters to redistribute clients among the servers when

bottlenecks are likely to happen.

SDN load balancing also simplifies the placement of

network services in the network [285]. Every time a new

server is installed, the load balancing service can take the
appropriate actions to seamlessly distribute the traffic

among the available servers, taking into consideration both

the network load and the available computing capacity of

the respective servers. This simplifies network manage-

ment and provides more flexibility to network operators.

Existing southbound interfaces can be used for actively

monitoring the data plane load. This information can be

leveraged to optimize the energy consumption of the net-
work [274]. By using specialized optimization algorithms

and diversified configuration options, it is possible to meet

the infrastructure goals of latency, performance, and fault

tolerance, for instance, while reducing power consump-

tion. With the use of simple techniques, such as shutting

down links and devices intelligently in response to traffic

load dynamics, data center operators can save up to 50% of

the network energy in normal traffic conditions [274].
One of the important goals of data center networks is to

avoid or mitigate the effect of network bottlenecks on the

operation of the computing services offered. Linear bisec-

tion bandwidth is a technique that can be adopted for

traffic patterns that stress the network by exploring path

diversity in a data center topology. Such technique has

been proposed in an SDN setting, allowing the maximiza-

tion of aggregated network utilization with minimal sched-
uling overhead [276]. SDN can also be used to provide a

fully automated system for controlling the configuration of

routers. This can be particularly useful in scenarios that

apply virtual aggregation [342]. This technique allows net-

work operators to reduce the data replicated on routing

tables, which is one of the causes of routing tables’ growth

[343]. A specialized routing application [293] can calculate,

divide, and configure the routing tables of the different rout-
ing devices through a southbound API such as OpenFlow.

Traffic optimization is another interesting application

for large-scale service providers, where dynamic scale-out

is required. For instance, the dynamic and scalable provi-

sioning of VPNs in cloud infrastructures, using protocolols

such as ALTO [272], can be simplified through an SDN-

based approach [270]. Recent work has also shown that

optimizing rules placement can increase network effi-
ciency [339]. Solutions such as ProCel [282], designed for

cellular core networks, are capable of reducing the signal-

ing traffic up to 70%, which represents a significant

achievement.

Other applications that perform routing and traffic en-

gineering include application-aware networking for video

and data streaming [344], [345] and improved QoS by

employing multiple packet schedulers [290] and other
techniques [279], [287], [289], [346]. As traffic engineer-

ing is a crucial issue in all kinds of networks, upcoming

methods, techniques, and innovations can be expected in

the context of SDNs.

2) Mobility and Wireless: The current distributed control

plane of wireless networks is suboptimal for managing the

limited spectrum, allocating radio resources, implement-
ing handover mechanisms, managing interference, and

performing efficient load balancing between cells. SDN-

based approaches represent an opportunity for making it

easier to deploy and manage different types of wireless

networks, such as WLANs and cellular networks [236],

[296], [300], [302], [347], [348]. Traditionally hard-to-

implement but desired features are indeed becoming a

Kreutz et al. : Software-Defined Networking: A Comprehensive Survey

Vol. 103, No. 1, January 2015 | Proceedings of the IEEE 39
Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 15:24:02 UTC from IEEE Xplore.  Restrictions apply. 



Table 9 Network Applications

Kreutz et al.: Software-Defined Networking: A Comprehensive Survey

40 Proceedings of the IEEE | Vol. 103, No. 1, January 2015
Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 15:24:02 UTC from IEEE Xplore.  Restrictions apply. 



reality with the SDN-based wireless networks. These in-
clude seamless mobility through efficient handovers [300],

[347], [349], load balancing [236], [300], creation of on-

demand virtual access points (VAPs) [297], [300], down-

link scheduling (e.g., an OpenFlow switch can do a rate

shaping or time division) [297], dynamic spectrum usage

[297], enhanced intercell interference coordination [297],

[347], device-to-device offloading (i.e., decide when and

how LTE transmissions should be offloaded to users adopt-
ing the device to device paradigm [296]) [350], per client

and/or base station resource block allocations (i.e., time

and frequency slots in LTE/orthogonal frequency-division

multiple access (OFDMA) networks, which are known as

resource blocks) [236], [296], [348], control and assign

transmission and power parameters in devices or in a

group basis (e.g., algorithms to optimize the transmission

and power parameters of WLAN devices define and assign
transmission power values to each resource block, at each

base station, in LTE/OFDMA networks) [236], [296], sim-

plified administration [236], [300], [302], easy manage-

ment of heterogeneous network technologies [236], [302],

[351], interoperability between different networks [348],

[351], shared wireless infrastructures [351], seamless sub-

scriber mobility and cellular networks [347], QoS and ac-

cess control policies made feasible and easier [347], [348],
and easy deployment of new applications [236], [300], [351].

One of the first steps toward realizing these features in

wireless networks is to provide programmable and flexible

stack layers for wireless networks [236], [352]. One of the

first examples is OpenRadio [352], which proposes a soft-

ware abstraction layer for decoupling the wireless protocol
definition from the hardware, allowing shared MAC layers

across different protocols using commodity multicore plat-

forms. OpenRadio can be seen as the ‘‘OpenFlow for wire-

less networks.’’ Similarly, SoftRAN [236] proposes to

rethink the radio access layer of current LTE infrastruc-

tures. Its main goal is to allow operators to improve and

optimize algorithms for better handovers, fine-grained

control of transmit powers, resource block allocation,
among other management tasks.

Light virtual access points (LVAPs) is another interest-

ing way of improving the management capabilities of wire-

less networks, as proposed by the Odin framework [300].

Differently from OpenRadio, it works with existing

wireless hardware and does not impose any change on

IEEE 802.11 standards. An LVAP is implemented as a

unique basic service set identification associated with a
specific client, which means that there is a one-to-one

mapping between LVAPs and clients. This per-client access

point (AP) abstraction simplifies the handling of client

associations, authentication, handovers, and unified slicing

of both wired and wireless portions of the network. Odin

achieves control logic isolation between slices, since LVAPs

are the primitive type upon which applications make

control decisions, and applications do not have visibility of
LVAPs from outside their slice. This empowers infrastruc-

ture operators to provide services through Odin applica-

tions, such as a mobility manager, client-based load

balancer, channel selection algorithm, and wireless trou-

bleshooting application within different network slices. For
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instance, when a user moves from one AP to another, the
network mobility management application can automati-

cally and proactively act and move the client LVAP from

one AP to the other. In this way, a wireless client will not

even notice that it started to use a different AP because

there is no perceptive handoff delay, as it would be the case

in traditional wireless networks.

Very dense heterogeneous wireless networks have also

been a target for SDN. These DenseNets have limitations
due to constraints such as radio access network bottle-

necks, control overhead, and high operational costs [296].

A dynamic two-tier SDN controller hierarchy can be

adapted to address some of these constraints [296]. Local

controllers can be used to take fast and fine-grained deci-

sions, while regional (or ‘‘global’’) controllers can have a

broader, coarser grained scope, i.e., that take slower but

more global decisions. In such a way, designing a single
integrated architecture that encompasses LTE (macro/pico/

femto) and WiFi cells, while challenging, seems feasible.

3) Measurement and Monitoring: Measurement and mo-

nitoring solutions can be divided into two classes: first,

applications that provide new functionality for other net-

working services; and second, proposals that target to im-

prove features of OpenFlow-based SDNs, such as to reduce
control plane overload due to the collection of statistics.

An example of the first class of applications is improving

the visibility of broadband performance [6], [353]. An

SDN-based broadband home connection can simplify the

addition of new functions in measurement systems such as

BISmark [353], allowing the system to react to changing

conditions in the home network [6]. As an example, a home

gateway can perform reactive traffic shaping considering
the current measurement results of the home network.

The second class of solutions typically involve different

kinds of sampling and estimation techniques to be applied,

in order to reduce the burden of the control plane with

respect to the collection of data plane statistics. Different

techniques have been applied to achieve this goal, such as

stochastic and deterministic packet sampling techniques

[354], traffic matrix estimation [261], fine-grained moni-
toring of wildcard rules [355], two-stage Bloom filters [356]

to represent monitoring rules and provide high measure-

ment accuracy without incurring in extra memory or con-

trol plane traffic overhead [304], and special monitoring

functions (extensions to OpenFlow) in forwarding devices

to reduce traffic and processing load on the control plane

[357]. Point-to-point traffic matrix estimation, in partic-

ular, can help in network design and operational tasks
such as load balancing, anomaly detection, capacity plan-

ning, and network provisioning. With information on the

set of active flows in the network, routing information

(e.g., from the routing application), flow paths, and flow

counters in the switches, it is possible to construct a traffic

matrix using diverse aggregation levels for sources and

destinations [261].

Other initiatives of this second class propose a stronger
decoupling between basic primitives (e.g., matching and

counting) and heavier traffic analysis functions such as the

detection of anomaly conditions attacks [358]. A stronger

separation favors portability and flexibility. For instance, a

functionality to detect abnormal flows should not be con-

strained by the basic primitives or the specific hardware

implementation. Put in another way, developers should be

empowered with streaming abstractions and higher level
programming capabilities.

In that vein, some data and control plane abstractions

have been specifically designed for measurement purposes.

OpenSketch [311] is a special-purpose southbound API

designed to provide flexibility for network measurements.

For instance, by allowing multiple measurement tasks to

execute concurrently without impairing accuracy. The in-

ternal design of an OpenSketch switch can be thought of as
a pipeline with three stages (hashing, classification, and

counting). Input packets first pass through a hashing func-

tion. Then, they are classified according to a matching

rule. Finally, the match rule identifies a counting index,

which is used to calculate the counter location in the

counting stage. While a TCAM with few entries is enough

for the classification stage, the flexible counters are stored

in SRAM. This makes the OpenSketch’s operation efficient
(fast matching) and cost-effective (cheaper SRAMs to store

counters).

Other monitoring frameworks, such as OpenSample

[309] and PayLess [313], propose different mechanisms for

delivering real-time, low-latency, and flexible monitoring

capabilities to SDN without impairing the load and perfor-

mance of the control plane. The proposed solutions take

advantage of sampling technologies like sFlow [310] to
monitor high-speed networks, and flexible collections of

loosely coupled (plug-and-play) components to provide ab-

stract network views yielding high-performance and effi-

cient network monitoring approaches [309], [313], [355].

4) Security and Dependability: An already diverse set of

security and dependability proposals is emerging in the

context of SDNs. Most take advantage of SDN for improv-
ing services required to secure systems and networks, such

as policy enforcement (e.g., access control, firewalling,

middleboxes as middlepipes [27]) [27], [100], [326], [328],

[337], DoS attacks detection and mitigation [325], [336],

random host mutation [326] (i.e., randomly and frequently

mutate the IP addresses of end-hosts to break the attackers’

assumption about static IPs, which is the common case)

[331], monitoring of cloud infrastructures for fine-grained
security inspections (i.e., automatically analyze and detour

suspected traffic to be further inspected by specialized

network security appliances, such as deep packet inspec-

tion systems) [323], traffic anomaly detection [325], [336],

[354], fine-grained flow-based network access control

[327], fine-grained policy enforcement for personal mobile

applications [329], and so on [100], [323], [325], [326],
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[328], [331], [337], [354]. Others address OpenFlow-based
networks issues, such as flow rule prioritization, security

services composition, protection against traffic overload,

and protection against malicious administrators [199],

[201], [259], [322], [330].

There are essentially two approaches, one involves

using SDNs to improve network security, and another for

improving the security of the SDN itself. The focus has

been, thus far, in the latter.

5) Using SDN to Improve the Security of Current Networks:
Probably the first instance of SDN was an application for

security policies enforcement [100]. An SDN allows the

enforcement to be done on the first entry point to the

network (e.g., the Ethernet switch to which the user is

connected to). Alternatively, in a hybrid environment,

security policy enforcement can be made on a wider net-
work perimeter through programmable devices (without

the need to migrate the entire infrastructure to OpenFlow)

[328]. With either application, malicious actions are

blocked before entering the critical regions of the network.

SDN has been successfully applied for other purposes,

namely for the detection (and reaction) against distributed

denial of service (DDoS) flooding attacks [325], and active

security [321]. OpenFlow forwarding devices make it
easier to collect a variety of information from the network,

in a timely manner, which is very handy for algorithms

specialized in detecting DDoS flooding attacks.

The capabilities offered by SDNs in increasing the ability

to collect statistics data from the network and of allowing

applications to actively program the forwarding devices, are

powerful for proactive and smart security policy enforcement

techniques such as Active security [321]. This novel security
methodology proposes a novel feedback loop to improve the

control of defense mechanisms of a networked infrastruc-

ture, and is centered around five core capabilities: protect,

sense, adjust, collect, and counter. In this perspective, active

security provides a centralized programming interface that

simplifies the integration of mechanisms for detecting

attacks by: 1) collecting data from different sources (to

identify attacks); 2) converging to a consistent configuration
for the security appliances; and 3) enforcing counter-

measures to block or minimize the effect of attacks.

6) Improving the Security of SDN Itself: There are already

some research efforts in identifying the critical security

threats of SDNs and in augmenting its security and depen-

dability [201], [259], [359]. Early approaches try to apply

simple techniques, such as classifying applications and
using rule prioritization, to ensure that rules generated by

security applications will not be overwritten by lower

priority applications [201]. Other proposals try to go a step

further by providing a framework for developing security-

related applications in SDNs [259]. However, there is still

a long way to go in the development of secure and

dependable SDN infrastructures [359]. An in-deep over-

view of SDN security issues and challenges can be found in
Section V-F.

7) Data Center Networking: From small enterprises to

large-scale cloud providers, most of the existing IT systems

and services are strongly dependent on highly scalable and

efficient data centers. Yet, these infrastructures still pose

significant challenges regarding computing, storage, and

networking. Concerning the latter, data centers should be
designed and deployed in such a way as to offer high and

flexible cross-section bandwidth and low latency, QoS

based on the application requirements, high levels of resi-

lience, intelligent resource utilization to reduce energy

consumption and improve overall efficiency, agility in

provisioning network resources, for example by means of

network virtualization and orchestration with computing

and storage, and so forth [360]–[362]. Not surprisingly,
many of these issues remain open due to the complexity

and inflexibility of traditional network architectures.

The emergence of SDN is expected to change the cur-

rent state of affairs. Early research efforts have indeed

showed that data center networking can significantly be-

nefit from SDN in solving different problems such as live

network migration [318], improved network management

[317], [318], eminent failure avoidance [317], [318], rapid
deployment from development to production networks

[318], troubleshooting [318], [319], optimization of net-

work utilization [314], [316], [317], [319], dynamic and

elastic provisioning of middleboxes-as-a-service [27], and

minimization of flow setup latency and reduction of con-

troller operating costs [363]. SDN can also offer network-

ing primitives for cloud applications, solutions to predict

network transfers of applications [314], [316], mechanisms
for fast reaction to operation problems, network-aware VM

placement [315], [319], QoS support [315], [319], real-time

network monitoring and problem detection [316], [317],

[319], security policy enforcement services and mechan-

isms [315], [319], and enable programmatic adaptation of

transport protocols [314], [320].

SDN can help infrastructure providers to expose more

networking primitives to their customers by allowing vir-
tual network isolation, custom addressing, and the place-

ment of middleboxes and virtual desktop cloud applications

[315], [364]. To fully explore the potential of virtual net-

works in clouds, an essential feature is virtual network

migration. Similarly to traditional virtual machine migra-

tion, a virtual network may need to be migrated when its

virtual machines move from one place to another. Integ-

rating live migration of virtual machines and virtual net-
works is one of the forefront challenges [318]. To achieve

this goal, it is necessary to dynamically reconfigure all

affected networking devices (physical or virtual). This was

shown to be possible with SDN platforms, such as NVP [112].

Another potential application of SDN in data centers is

in detecting abnormal behaviors in network operation

[317]. By using different behavioral models and collecting
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the necessary information from elements involved in the
operation of a data center (infrastructure, operators, appli-

cations), it is possible to continuously build signatures for

applications by passively capturing control traffic. Then,

the signature history can be used to identify differences in

behavior. Every time a difference is detected, operators

can reactively or proactively take corrective measures. This

can help to isolate abnormal components and avoid further

damage to the infrastructure.

8) Toward SDN App Stores: As can be observed in

Tables 9 and 10, most SDN applications rely on NOX and

OpenFlow. NOX was the first controller available for

general use, making it a natural choice for most use cases

so far. As indicated by the sheer number of security-related

applications, security is probably one of the killer appli-

cations for SDNs. Curiously, while most use cases rely on
OpenFlow, new solutions such as SoftRAN are considering

different APIs, as is the case of the Femto API [253], [303].

This diversity of applications and APIs will most probably

keep growing in SDN.

There are other kinds of network applications that do

not easily fit in our taxonomy, such as Avior [365], OESS

[366], and SDN App Store [367], [368]. Avior and OESS

are graphical interfaces and sets of software tools that
make it easier to configure and manage controllers (e.g.,

Floodlight) and OpenFlow-enabled switches, respectively.

By leveraging their graphical functions it is possible to

program OpenFlow enabled devices without coding in a

particular programming language.

The SDN App Store [367], [368], owned by HP, is

probably the first SDN application market store. Custo-

mers using HP’s OpenFlow controller have access to the
online SDN App Store and are able to select applications to

be dynamically downloaded and installed in the controller.

The idea is similar to the Android Market or the Apple

Store, making it easier for developers to provide new

applications and for customers to obtain them.

I. Cross-Layer Issues
In this section, we look at cross-layer problems such as

debugging and troubleshooting, testing, verification, simula-

tion, and emulation. A summary of the existing tools for

dealing with these cross-layer issues can be found on Table 11.

1) Debugging and Troubleshooting: Debugging and trou-

bleshooting have been important subjects in computing

infrastructures, parallel and distributed systems, embed-

ded systems, and desktop applications [369]–[375]. The
two predominant strategies applied to debug and trouble-

shoot are runtime debugging (e.g., gdb-like tools) and

post-mortem analysis (e.g., tracing, replay, and visualiza-

tion). Despite the constant evolution and the emergence of

new techniques to improve debugging and troubleshoot-

ing, there are still several open avenues and research

questions [370].

Debugging and troubleshooting in networking is at a
very primitive stage. In traditional networks, engineers

and developers have to use tools such as ping,

traceroute, tcpdump, nmap, netflow, and

SNMP statistics for debugging and troubleshooting.

Debugging a complex network with such primitive tools

is very hard. Even when one considers frameworks such as

XTrace [374], Netreplay [376], and NetCheck [377], which

improve debugging capabilities in networks, it is still diffi-
cult to troubleshoot networking infrastructures. For in-

stance, these frameworks require a huge effort in terms of

network instrumentation. The additional complexity intro-

duced by different types of devices, technologies, and

vendor-specific components and features makes matters

worse. As a consequence, these solutions may find it hard to

be widely implemented and deployed in current networks.

SDN offers some hope in this respect. The hardware-
agnostic software-based control capabilities and the use of

open standards for control communication can potentially

make debugging and troubleshooting easier. The flexibility

and programmability introduced by SDN is indeed opening

new avenues for developing better tools to debug, trouble-

shoot, verify, and test networks [378]–[385].

Early debugging tools for OpenFlow-enabled networks,

such as ndb [378], OFRewind [379], and NetSight [386],
make it easier to discover the source of network problems

such as faulty device firmware [378], inconsistent or non-

existing flow rules [378], [379], lack of reachability [378],

[379], and faulty routing [378], [379]. Similarly to the

well-known gdb software debugger, ndb provides basic

debugging actions such as breakpoint, watch, backtrace,

single step, and continue. These primitives help applica-

tion developers to debug networks in a similar way to
traditional software. By using ndb’s postcards (i.e., a

unique packet identifier composed of a truncated copy of

the packet’s header, the matching flow entry, the switch,

and the output port), for instance, a programmer is able to

quickly identify and isolate a buggy OpenFlow switch with

hardware or software problems. If the switch is presenting

abnormal behavior such as corrupting parts of the packet

header, by analyzing the problematic flow sequences with
a debugging tool, one can find (in a matter of few seconds)

where the packets of a flow are being corrupted, and take

the necessary actions to solve the problem.

The OFRewind [379] tool works differently. The idea is

to record and replay network events, in particular control

messages. These usually account for less than 1% of the

data traffic and are responsible for 95%–99% of the bugs

[385]. This tool allows operators to perform fine-grained
tracing of network behavior, being able to decide which

subsets of the network will be recorded and, afterwards,

select specific parts of the traces to be replayed. These

replays provide valuable information to find the root cause

of the network misbehavior. Likewise, NetRevert [387]

also records the state of OpenFlow networks. However,

the primary goal is not to reproduce network behavior, but
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Table 11 Debugging, Verification, and Simulation
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rather to provide rollback recovery in case of failures,
which is a common approach used in distributed systems

for eliminating transient errors in nodes [388], [389].

Despite the availability of these debugging and verifi-

cation tools, it is still difficult to answer questions such as:

What is happening to my packets that are flowing from

point A to point B? What path do they follow? What header

modifications do they undergo on the way? To answer

some of these questions one could recur to the history of
the packets. A packet’s history corresponds to the paths it

uses to traverse the network, and the header modifications

in each hop of the path. NetSight [386] is a platform whose

primary goal is to allow applications that use the history of

the packets to be built, in order to find out problems in a

network. This platform is composed of three essential ele-

ments: 1) NetSight, with its dedicated servers that receive

and process the postcards for building the packet history;
2) the NetSigh-SwitchAssist, which can be used in

switches to reduce the processing burden on the dedicated

servers; and 3) the NetSight-HostAssist to generate and

process postcards on end hosts (e.g., in the hypervisor on a

virtualized infrastructure).

netwatch [386], netshark [386], and nprof
[386] are three examples of tools built over NetSight. The

first one is a live network invariant monitor. For instance,
an alarm can be triggered every time a packet violates any

invariant (e.g., no loops). The second one, netshark,

enables users to define and execute filters on the entire

history of packets. With this tool, a network operator can

view a complete list of properties of packets at each hop,

such as input port, output port, and packet header values.

Finally, nprof can be used to profile sets of network links

to provide data for analyzing traffic patterns and routing
decisions that might be contributing to link load.

2) Testing and Verification: Verification and testing tools

can complement debugging and troubleshooting. Recent

research [380], [382]–[385], [390], [391] has shown that

verification techniques can be applied to detect and avoid

problems in SDN, such as forwarding loops and black

holes. Verification can be done at different layers (at the
controllers, network applications, or network devices).

Additionally, there are different network propertiesV
mostly topology specificVthat can be formally verified,

provided a network model is available. Examples of such

properties are connectivity, loop freedom, and access con-

trol [29]. A number of tools have also been proposed to

evaluate the performance of OpenFlow controllers by

emulating the load of large-scale networks (e.g., Cbench
[392], OFCBenchmark [393], PktBlaster [394]). Similarly,

benchmarking tools for OpenFlow switches are also

available (e.g., OFLOPS [381] and FLOPS-Turbo [395]).

Tools such as NICE [380] generate sets of diverse

streams of packets to test as many events as possible, ex-

posing corner cases such as race conditions. Similarly,

OFLOPS [381] provides a set of features and functions that

allow the development and execution of a rich set of tests
on OpenFlow-enabled devices. Its ultimate goal is to mea-

sure the processing capacity and bottlenecks of control

applications and forwarding devices. With this tool, users

are able to observe and evaluate forwarding table consis-

tency, flow setup latency, flow space granularity, packet

modification types, and traffic monitoring capabilities

(e.g., counters).

FlowChecker [382], OFTEN [384], and VeriFlow [383]
are three examples of tools to verify correctness properties

violations on the system. While the former two are based

on offline analysis, the latter is capable of online checking

of network invariants. Verification constraints include

security and reachability issues, configuration updates on

the network, loops, black holes, etc.

Other formal modeling techniques, such as Alloy, can

be applied to SDNs to identify unexpected behavior [390].
For instance, a protocol specification can be weak when it

under-specifies some aspects of the protocol or due to a

very specific sequence of events. In such situations, model

checking techniques such as Alloy can help to find and

correct unexpected behaviors.

Tools such as FLOWGUARD [396] are specifically de-

signed to detect and resolve security policy violations in

OpenFlow-enabled networks. FLOWGUARD is able to
examine on-the-fly network policy updates, check indirect

security violations (e.g., OpenFlow’s Set-Field actions

modification) and perform stateful monitoring. The frame-

work uses five resolution strategies for real-time security

policy violation resolution, flow rejecting, dependency

breaking, update rejecting, flow removing, and packet

blocking [396]. These resolutions are applied over diverse

update situations in OpenFlow-enabled networks.
More recently, tools such as VeriCon [397] have been

designed to verify the correctness of SDN applications in a

large range of network topologies and by analyzing a broad

range of sequences of network events. In particular,

VeriCon confirms, or not, the correct execution of the

SDN program.

One of the challenges in testing and verification is to

verify forwarding tables in very large networks to find
routing errors, which can cause traffic losses and security

breaches, as quickly as possible. In large-scale networks, it

is not possible to assume that the network snapshot, at any

point, is consistent, due to the frequent changes in routing

state. Therefore, solutions such as HSA [398], Anteater

[399], NetPlumber [400], Veri-Flow [383], and assertion

languages [401] are not suited for this kind of environ-

ment. Another important issue is related on how fast the
verification process is done, especially in modern data

centers that have very tight timing requirements. Libra

[391] represents one of the first attempts to address these

particular challenges of large-scale networks. This tool

provides the means for capturing stable and consistent

snapshots of large-scale network deployments, while also

applying long prefix matching techniques to increase the
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scalability of the system. By using MapReduce computa-
tions, Libra is capable of verifying the correctness of a

network with up to 10 000 nodes within one minute.

Anteater [399] is a tool that analyzes the data plane state

of network devices by encoding switch configurations as

boolean satisfiability problem (SAT) instances, allowing to

use a SAT solver to analyze the network state. The tool is

capable of verifying violations of invariants such as loop-free

forwarding, connectivity, and consistency. These invariants
usually indicate a bug in the network, i.e., their detection

helps to increase the reliability of the network data plane.

3) Simulation and Emulation: Simulation and emulation

software is of particular importance for fast prototyping and

testing without the need for expensive physical devices.

Mininet [110] is the first system that provides a quick and

easy way to prototype and evaluate SDN protocols and
applications. One of the key properties of Mininet is its use

of software-based OpenFlow switches in virtualized con-

tainers, providing the exact same semantics of hardware-

based OpenFlow switches. This means that controllers or

applications developed and tested in the emulated envi-

ronment can be (in theory) deployed in an OpenFlow-

enabled network without any modification. Users can easily

emulate an OpenFlow network with hundreds of nodes and
dozens of switches by using a single personal computer.

Mininet-HiFi [402] is an evolution of Mininet that en-

hances the container-based (lightweight) virtualization

with mechanisms to enforce performance isolation, re-

source provisioning, and accurate monitoring for perfor-

mance fidelity. One of the main goals of Mininet-HiFi is to

improve the reproducibility of networking research.

Mininet CE [403] and SDN Cloud DC [404] are exten-
sions to Mininet for enabling large-scale simulations. Mini-

net CE combines groups of Mininet instances into one

cluster of simulator instances to model global-scale net-

works. SDN Cloud DC enhances Mininet and POX to

emulate an SDN-based intra-DC network by implementing

new software modules such as data center topology discovery

and network traffic generation. Recent emulation platform

proposals that enable large-scale experiments following a
distributed approach include Max-iNet [405], DOT [406],

and CityFlow [407]. The latter is a project with the main goal

of building an emulated control plane for a city of one million

inhabitants. Such initiatives are a starting point to provide

experimental insights for large-scale SDN deployments.

The capability of simulating OpenFlow devices has also

been added to the popular ns-3 simulator [408]. Another

simulator is fs-sdn, which extends the fs simulation engine
[409] by incorporating a controller and switching compo-

nents with OpenFlow support. Its main goal is to provide a

more realistic and scalable simulation platform as com-

pared to Mininet. Finally, STS [410] is a simulator de-

signed to allow developers to specify and apply a variety of

test cases, while allowing them to interactively examine

the state of the network.

V. ONGOING RESEARCH EFFORTS
AND CHALLENGES

The research developments we have surveyed so far seek to
overcome the challenges of realizing the vision and fulfilling

the promises of SDN. While Section IV provided a per-

spective structured across the layers of the ‘‘SDN stack,’’ this

section highlights research efforts we consider of particular

importance for unleashing the full potential of SDN, and that

therefore deserves a specific coverage in this survey.

A. Switch Designs
Currently available OpenFlow switches are very di-

verse and exhibit notable differences in terms of feature

set (e.g., flow table size, optional actions), performance

(e.g., fast versus slow path, control channel latency/

throughput), interpretation and adherence to the protocol
specification (e.g., BARRIER command), and architecture

(e.g., hardware versus software designs).

1) Heterogeneous Implementations: Implementation

choices have a fundamental impact on the behavior, accu-

racy, and performance of switches, ranging from differ-

ences in flow counter behavior [418] to a number of other

performance metrics [381]. One approach to accommodate
such heterogeneity is through NOSIX, a portable API that

separates the application expectations from the switch

heterogeneity [246]. To do so, NOSIX provides a pipeline

of multiple virtual flow tables and switch drivers. Virtual

flow tables are intended to meet the expectations of appli-

cations and are ultimately translated by the drivers into

actual switch flow tables. Toward taming the complexity of

multiple OpenFlow protocol versions with different sets of
required and optional capabilities, a roadblock for SDN

practitioners, tinyNBI [419], has been proposed as a simple

API providing a unifying set of core abstractions of five

OpenFlow protocol versions (from 1.0 to 1.4). Ongoing

efforts to introduce a new HAL for non-OpenFlow capable

devices [420] include the development of open source

artifacts like Revised OpenFlow Library (ROFL) and the

eXtensible DataPath daemon (xDPd), a framework for
creating new OpenFlow data path implementations based

on a diverse set of hardware and software platforms. A

related open source effort to develop a common library to

implement OpenFlow 1.0 and 1.3 protocol endpoints

(switch agents and controllers) is libfluid [421], winner of

the OpenFlow driver competition organized by the ONF.

Within the ONF, the Forwarding Abstraction Working

Group (FAWG) is pursuing another solution to the hetero-
geneity problem, through table type patterns (TTPs) [121].

A TTP is a standards-based and negotiated switch-level

behavioral abstraction. It consists of the relationships

between tables forming a graph structure, the types of

tables in the graph, a set of the parameterized table pro-

perties for each table in the graph, the legal flow-mod
and table-mod commands for each flow table, and the
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metadata mask that can be passed between each table pair
in the graph.

2) Flow Table Capacity: Flow matching rules are stored

in flow tables inside network devices. One practical chal-

lenge is to provide switches with large and efficient flow

tables to store the rules [422]. TCAMs are a common choice

to hold flow tables. While flexible and efficient in terms of

matching capabilities, TCAMs are costly and usually small
(from 4000 to 32 000 entries). Some TCAM chips today

integrate 18 million-bit (configured as 500 000 entries �
36 bit per entry) into a single chip working at 133 MHz

[423], i.e., capable of 133 million lookups per second.

However, these chips are expensive and have a high-power

consumption [424], representing a major power drain in a

switching device [425]. These are some of the reasons why

currently available OpenFlow devices have TCAMs with
roughly 8000 entries, where the actual capacity in terms of

OpenFlow table size has a nontrivial relationship to the

type of flow entries being used [426], [427]. OpenFlow

version 1.1 introduced multiple tables, thereby adding

extra flexibility and scalability. Indeed, OpenFlow 1.0

implied state explosion due to its flat table model [121].

However, supporting multiple tables in hardware is

challenging and limitedVyet another motivation for the
ongoing ONF FAWG work on TTPs [121].

Some efforts focus on compression techniques to re-

duce the number of flow entries in TCAMs [428]–[430].

The Espresso heuristic [430] can be used to compress wild

cards of OpenFlow-based interdomain routing tables, re-

ducing the forwarding information base (FIB) by 17% and,

consequently, saving up to 40 000 flow table entries [428].

Shadow MACs [429] propose label switching for solving
two problems, consistent updates and rule space exhaus-

tion, by using opaque values (similar to MPLS labels) to

encode fine-grained paths as labels. A major benefit of

fixed-size labels is relying on exact-math lookups which

can be easily and cost-effectively implemented by simple

hardware tables instead of requiring rules to be encoded in

expensive TCAM tables.

3) Performance: Today, the throughput of commercial

OpenFlow switches varies from 38 to 1000 flow-mod
per second, with most devices achieving a throughput

lower than 500 flow-mod per second [431], [432]. This

is clearly a limiting factor that will be addressed in the

switch design processVsupport of OpenFlow in existing

product lines has been more a retrofitting activity than a

clean feature planning and implementation activity. De-
ployment experiences [433] have pointed to a series of

challenges stemming from the limited embedded CPU

power of current commercial OpenFlow switches. One

approach to handle the problem consists of adding more

powerful CPUs into the switches, as proposed in [434].

Others have proposed to rethink the distribution of control

actions between external controllers and the OpenFlow

agent inside the switch [418]. Our current understanding
indicates that an effective way forward is a native design of

SDN switches consistent with the evolution of the south-

bound API standardization activities [121], [435].

4) Evolving Switch Designs and Hardware Enhancements:
As in any software/hardware innovation cycle, a number of

advancements are to be expected from the hardware per-

spective to improve SDN capabilities and performance.
New SDN switch designs are appearing in a myriad of

hardware combinations to efficiently work together with

TCAMs, such as static random-access memory (SRAM),

dynamic random-access memory (DRAM), reduced-

latency DRAM, graphics processing unit (GPU), field-

programmable gate array (FPGA), network processors,

CPUs, among other specialized network processors

[436]–[441]. These early works suggest the need for
additional efforts into new hardware architectures for

future SDN switching devices. For instance, some pro-

posals target technologies such as GPUs that have demon-

strated 20 gigabits per second (Gb/s) with flow tables of

up to 1 million exact match entries and up to 1000

wildcard entries [438]. Alternatives to TCAM-based de-

signs include new hardware architectures and com-

ponents, as well as new and more scalable forwarding
planes, such as the one proposed by the Rain Man firm-

ware [442]. Other design solutions, such as parallel lookup

models [443], can also be applied to SDN to reduce costs in

switching and routing devices. Recent proposals on cache-

like OpenFlow switch arrangements [444] shed some light

on overcoming the practical limitations of flow table sizes

with clever switching designs. Additionally, counters re-

present another practical challenge in SDN hardware im-
plementations. Many counters already exist, and they

could lead to significant control plane monitoring over-

head [418]. Software-defined counters (SDCs) [434] have

been proposed to provide both scalability and flexibility.

Application-aware SDN architectures are being pro-

posed to generalize the standard OpenFlow forwarding

abstractions by including stateful actions to allow process-

ing information from layers 4 to 7 [445]. To this end,
application flow tables are proposed as data plane applica-

tion modules that require only local state, i.e., do not

depend on a global view of the network. Those tiny appli-

cation modules run inside the forwarding devices (and can

be installed on demand), alleviating the overhead on the

control plane and augmenting the efficiency of certain

tasks, which can be kept in the data plane. Similarly, other

initiatives propose solutions based on preinstalled state
machines. Flow-level State Transition (FAST) [446] allows

controllers to proactively program state transitions in for-

warding devices, allowing switches to run dynamic actions

that require only local information.

Other approaches toward evolving switch designs in-

clude CAching in Buckets (CAB), a reactive wildcard

caching proposal that uses a geometric representation of
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the rule set, which is divided into small logical structures
(buckets) [447]. Through this technique, CAB is able to

solve the rule dependency problem and achieve efficient

usage of control plane resources, namely bandwidth, con-

troller processing load, and flow setup latency.

New programmable Ethernet switch chips, such as

XPliant Ethernet [448], are emerging into this new market

of programmable networks. Its main aim is enabling new

protocol support and the addition of new features through
software updates, increasing flexibility. One example of

such flexibility is the support of GENEVE [39], a recent

effort toward generic network virtualization encapsulation

protocols, and OpenFlow. The throughput of the first

family of XPliant Ethernet chip varies from 880 Gb/s to

3.2 Terabits per second (Tb/s), supporting up to 64 ports of

40 GbE or 50 GbE, for instance.

Microchip companies like Intel are already shipping
processors with flexible SDN capabilities to the market

[449]. Recent advances in general-purpose CPU technol-

ogy include a data plane development kit (DPDK) [450]

that allows high-level programming of how data packets

will be processed directly within network interface cards.

Prototype implementations of Intel DPDK accelerated

switch shows the potential to deliver high-performance

SDN software switches [441]. This trend is likely to conti-
nue since high-speed and specialized hardware is needed

to boost SDN performance and scalability for large, real-

world networks. Hardware-programmable technologies

such as FPGA are widely used to reduce time and costs

of hardware-based feature implementations. NetFPGA, for

instance, has been a pioneering technology used to imple-

ment OpenFlow 1.0 switches [437], providing a commod-

ity cost-effective prototyping solution. Another line of
work on SDN data planes proposes to augment switches

with FPGA to (remotely) define the queue management

and scheduling behavior of packet switches [451]. Finally,

recent developments have shown that state-of-the-art

system-on-chip (SoC) platforms, such as the Xilinx Zynq

ZC706 board, can be used to implement OpenFlow devices

yielding 88 Gb/s throughput for 1000 flow supporting

dynamic updates [452].

5) Native SDN Switch Designs: Most of the SDN switch

(re)design efforts so far follow an evolutionary approach to

retrofit OpenFlow-specific programmable features into

existing hardware layouts, following common wisdom on

switch/router designs and consolidated technologies (e.g.,

SRAM, TCAM, FPGA). One departure from this approach

is the ongoing work on forwarding meta-morphosis [435],
a reconfigurable match table model inspired from RISC-

like pipeline architecture applied to switching chips. This

work illustrates the feasibility of realizing a minimal set of

action primitives for flexible header processing in hard-

ware, at almost no additional cost or power. Also in line

with the core SDN goals of highly flexible and program-

mable (hardware-based) data planes, POF [120] aims at

overcoming some of the limitations of OpenFlow (e.g.,
expressiveness, support of user-defined protocols, memory

efficiency), through generic flow instruction sets. Open

source prototypes are available [31] as well as evaluation

results showing the line-speed capabilities using a network

processing unit (NPU)-based [453] proof of concept imple-

mentation. In this line, we already mentioned OpenState

[155], another initiative that aims to augment the capabi-

lity and flexibility of forwarding devices. By taking advan-
tage of eXtended Finite State Machines (XFSMs) [454],

[455], OpenState proposes an abstractionVas a super set

of OpenFlow primitivesVto enable stateful handling of

OpenFlow rules inside forwarding devices.

In the same way as TTPs allow controllers to compile

the right set of low-lever instructions known to be sup-

ported by the switches, a new breed of switch referred to as

programmable, protocol-independent packet processor
(P4) [456] suggests an evolution path for OpenFlow,

based on a high-level compiler. This proposal would allow

the functionality of programmable switches (i.e., pipeline,

header parsing, field matching) to be not only specified by

the controller but also changed in the field. In this model,

programmers are able to decide how the forwarding plane

processes packets without caring about implementation

details. It is then the compiler that transforms the impera-
tive program into a control flow graph that can be mapped

to different target switches.

B. Controller Platforms
In the SDN model, the controller platform is a critical

pillar of the architecture, and, as such, efforts are being

devoted to turn SDN controllers into high-performance,

scalable, distributed, modular, and highly available
programmer-friendly software. Distributed controller plat-

forms, in particular, have to address a variety of challenges.

Deserving special consideration are the latency between

forwarding devices and controller instances, fault toler-

ance, load balancing, consistency, and synchronization,

among other issues [7], [457], [458]. Operators should

also be able to observe and understand how the combina-

tion of different functions and modules can impact their
network [459].

As the SDN community learns from the development

and operational experiences with OpenFlow controllers

(e.g., Beacon [186]), further advancements are expected in

terms of raw performance of controller implementations,

including the exploitation of hierarchical designs and

optimized buffer sizing [460]. One approach to increase

the performance of controllers is the IRIS IO engine [461],
enabling significant increases in the flow-setup rate of

SDN controllers. Another way of reducing the control

plane overhead is by keeping a compressed copy of the

flow tables in the controller’s memory [462].

1) Modularity and Flexibility: A series of ongoing re-

search efforts target the modular and flexible composition
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of controllers. RAON [463] proposes a recursive abstrac-
tion of OpenFlow controllers where each controller sees

the controllers below as OpenFlow switches. Open re-

search issues include the definition of suitable interfaces

between the different layers in such a hierarchy of con-

trollers. Other open issues to be further investigated in this

context are the east/westbound APIs, and their use in

enabling suitable hierarchical designs to achieve scalabil-

ity, modularity, and security [218]. For instance, each level
of a hierarchy of controllers can offer different abstractions

and scopes for either intradata and interdata center rout-

ing, thus increasing scalability and modularity. Similarly,

from a security perspective, each hierarchical level may

be a part of a different trust domain. Therefore, east/

westbound interfaces between the different layers of con-

trollers should be capable of enforcing both intradomain

and interdomain security policies.
Another important observation is that, currently, the

lack of modularity in most SDN controllers forces devel-

opers to re-implement basic network services from scratch

in each new application [29].

As in software engineering in general, lack of modu-

larity results in controller implementations that are

hard to build, maintain, and extendVand ultimately be-

come resistant to further innovations, resembling tradi-
tional ‘‘hardware-defined’’ networks. As surveyed in

Section IV-G, SDN programming abstractions (e.g., Pyretic

[225]) introduce modularity in SDN applications and

simplify their development altogether. Further research

efforts (e.g., Corybantic [464]) try to achieve modularity in

SDN control programs. Other contributions toward

achieving modular controllers can be expected from other

areas of computer science (e.g., principles from Operating
System [196]) and best practices of modern cloud-scale

software applications.

2) Interoperability and Application Portability: Similarly to

forwarding device vendor agnosticism that stems from

standard southbound interfaces, it is important to foster

interoperability between controllers. Early initiatives to-

ward more interoperable control platforms include porta-
ble programming languages such as Pyretic [225] and east/

westbound interfaces among controllers, such as SDNi

[209], ForCES CE–CE interface [30], [211], and ForCES

Intra-NE mechanisms [212]. However, these efforts are yet

far from fully realizing controller interoperability and ap-

plication portability.

In contrast to Pyretic [248], PANE [197], Maple [263],

and Corybantic [464], which are restricted to traffic engi-
neering applications and/or impose network state conflict

resolution at the application level (making application de-

sign and testing more complicated), Statesman [465] pro-

poses a framework to enable a variety of loosely coupled

network applications to coexist on the same control plane

without compromising network safety and performance.

This framework makes application development simpler

by automatically and transparently resolving conflicts. In
other words, Statesman allows a safe composition of unco-

ordinated or conflicting application’s actions.

Another recent approach to simplify network manage-

ment is the idea of compositional SDN hypervisors [181].

Its main feature is allowing applications written in differ-

ent languages, or on different platforms, to work together

in processing the same traffic. The key integration compo-

nent is a set of simple prioritized lists of OpenFlow rules,
which can be generated by different programming lan-

guages or applications.

3) High Availability: In production, SDN controllers

need to sustain healthy operation under the pressure of

different objectives from the applications they host. Many

advances are called for in order to deal with potential risk

vectors of controller-based solutions [359]. Certainly,
many solutions will leverage on results from the distrib-

uted systems and security communities made over the last

decade. For instance, recent efforts propose consistent,

fault-tolerant data stores for building reliable distributed

controllers [198], [213], [458].

Another possible approach toward building low laten-

cy, highly available SDN controllers is to exploit controller

locality [457], [466]. Classical models of distributed sys-
tems, such as LOCAL and CONGEST [467], can be ex-

plored to solve this problem. Those models can be used to

develop coordination protocols that enable each controller

to take independent actions over events that take place in

its local neighborhood [457].

Another core challenge relates to the fundamental

tradeoffs between the consistency model of state distribu-

tion in distributed SDN controllers, the consistency re-
quirements of control applications, and performance

[466]. To ease development, the application should ideally

not be aware of the vagaries of distributed state. This im-

plies a strong consistency model, which can be achieved

with distributed data stores as proposed recently [213].

However, keeping all control data in a consistent distri-

buted data store is unfeasible due to the inherent perfor-

mance penalties. Therefore, hybrid solutions are likely to
coexist requiring application developers to be aware of the

tradeoffs and penalties of using, or not, a strong consis-

tency model, a tenet of the distributed Onix controller [7].

High availability can also be achieved through

improved southbound APIs and controller placement heu-

ristics and formal models [468]–[470]. These aim to maxi-

mize resilience and scalability by allowing forwarding

devices to connect to multiple controllers in a cost-effec-
tive and efficient way [469]. Early efforts in this direction

have already shown that forwarding devices connecting to

two or three controllers can typically achieve high availa-

bility (up to five nines) and robustness in terms of control

plane connectivity [468], [470]. It has also been shown

that the number of required controllers is more dependent

on the topology than on network size [468]. Another
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finding worth mentioning is the fact that for most common
topologies and network sizes fewer than ten controllers

seem to be enough [468].

4) Delegation of Control: To increase operational effi-

ciency, SDN controllers can delegate control functions to

report state and attribute value changes, threshold crossing

alerts, hardware failures, and so forth. These notifications

typically follow a publish/subscribe model, i.e., controllers
and applications subscribe (on demand) to the particular

class of notifications they are interested in. In addition,

these subsystems may provide resilience and trustworthi-

ness properties [471].

Some reasons for delegating control to the data plane

include [218]:

• low latency response to a variety of network events;

• the amount of traffic that must be processed in the
data plane, in particular in large-scale networks

such as data centers;

• low-level functions such as those (byte or bit

oriented) required by repetitive synchronous di-

gital hierarchy (SDH) [472] multiplex section

overhead;

• functions well understood and standardized, such

as encryption, BIP [473], AIS [474] insertion, MAC
learning, and codec control message (CCM) [475]

exchanges;

• controller failure tolerance, i.e., essential network

functions should be able to keep a basic network

operation even when controllers are down;

• basic low-level functions usually available in data

plane silicon, such as protection switching state

machines, CCM counters, and timers;
• all those functions that do not add any value when

moved from the data to the control plane.

Strong candidates for execution in the forwarding

devices instead of being implemented in the control

platforms thus include OAM, ICMP processing, MAC

learning, neighbor discovery, defect recognition, and in-

tegration [218]. This would not only reduce the overhead

(traffic and computing) of the control plane, but also im-
prove network efficiency by keeping basic networking

functions in the data plane.

C. Resilience
Achieving resilient communication is a top purpose of

networking. As such, SDNs are expected to yield the same

levels of availability as legacy and any new alternative

technology. Split control architectures as SDN are com-
monly questioned [476] about their actual capability of

being resilient to faults that may compromise the control-

to-data plane communications and thus result in ‘‘brain-

less’’ networks. Indeed, the malfunctioning of particular

SDN elements should not result in the loss of availability.

The relocation of SDN control plane functionality, from

inside the boxes to remote, logically centralized loci, be-

comes a challenge when considering critical control plane
functions such as those related to link failure detection or

fast reaction decisions. The resilience of an OpenFlow

network depends on fault tolerance in the data plane (as in

traditional networks) but also on the high availability of

the (logically) centralized control plane functions. Hence,

the resilience of SDN is challenging due to the multiple

possible failures of the different pieces of the architecture.

As noted in [477], there is a lack of sufficient research
and experience in building and operating fault-tolerant

SDNs. Google B4 [8] may be one of the few examples that

have proven that SDN can be resilient at scale. A number

of related efforts [357], [262], [363], [478]–[483] have

started to tackle the concerns around control plane split

architectures. The distributed controller architectures sur-

veyed in Section IV-D are examples of approaches toward

resilient SDN controller platforms with different tradeoffs
in terms of consistency, durability, and scalability.

On a detailed discussion on whether the CAP theorem

[484] applies to networks, Panda et al. [479] argue that the

tradeoffs in building consistent, available, and partition-

tolerant distributed databases (i.e., CAP theorem) are ap-

plicable to SDN. The CAP theorem demonstrates that it is

impossible for data store systems to simultaneously

achieve strong consistency, availability, and partition
tolerance. While availability and partition tolerance pro-

blems are similar in both distributed databases and net-

works, the problem of consistency in SDN relates to the

consistent application of policies.

Considering an OpenFlow network, when a switch

detects a link failure (port-down event), a notification

is sent to the controller, which then takes the required

actions (reroute computation, precomputed backup path
lookup) and installs updated flow entries in the required

switches to redirect the affected traffic. Such reactive

strategies imply high restoration time due to the necessary

interaction with the controller and additional load on the

control channel. One experimental work on OpenFlow for

carrier-grade networks investigated the restoration process

and measured a restoration times in the order of 100 ms

[478]. The delay introduced by the controller may, in some
cases, be prohibitive.

In order to meet carrier grade requirements (e.g.,

50 ms of recovery time), protection schemes are required

to mitigate the effects of a separate control plane. Suitable

protection mechanisms (e.g., installation of preestablished

backup paths in the forwarding devices) can be imple-

mented by means of OpenFlow group table entries using

‘‘fast-fail-over’’ actions. An OpenFlow fault management
approach [357] similar to MPLS global path protection

could also be a viable solution, provided that OpenFlow

switches are extended with end-to-end path monitoring

capabilities similarly to those specified by bidirectional

forwarding detection (BFD) [485]. Such protection

schemes are a critical design choice for larger scale net-

works and may also require considerable additional flow
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space. By using primary and secondary path pairs prog-
rammed as OpenFlow fast fail-over group table entries, a

path restoration time of 3.3 ms has been reported [486]

using BFD sessions to quickly detect link failures.

On a related line of data plane resilience, SlickFlow

[482] leverages the idea of using packet header space to

carry alternative path information to implement resilient

source routing in OpenFlow networks. Under the presence

of failures along a primary path, packets can be rerouted to
alternative paths by the switches themselves without in-

volving the controller. Another recent proposal that uses

in-packet information is INFLEX [483], an SDN-based

architecture for cross-layer network resilience which pro-

vides on-demand path fail-over by having endpoints tag

packets with virtual routing plane information that can be

used by egress routers to reroute by changing tags upon

failure detection.
Similarly to SlickFlow, OSP [280] proposes a protec-

tion approach for data plane resilience. It is based on

protecting individual segments of a path avoiding the in-

tervention of the controller upon failure. The recovery

time depends on the failure detection time, i.e., a few tens

of milliseconds in the proposed scenarios. In the same

direction, other proposals are starting to appear for ena-

bling fast-fail-over mechanisms for link protection and
restoration in OpenFlow-based networks [487].

Language-based solutions to the data plane fault-

tolerance problem have also been proposed [262]. In this

work, the authors propose a language that compiles regular

expressions into OpenFlow rules to express what network

paths packets may take and what degree of (link level) fault

tolerance is required. Such abstractions around fault to-

lerance allow developers to build fault recovery capabilities
into applications without huge coding efforts.

D. Scalability
Scalability has been one of the major concerns of SDNs

from the outset. This is a problem that needs to be

addressed in any systemVe.g., in traditional networksV
and is obviously also a matter of much discussion in the
context of SDN [11]. Most of the scalability concerns in

SDNs are related to the decoupling of the control and data

planes. Of particular relevance are reactive network con-

figurations where the first packet of a new flow is sent by

the first forwarding element to the controller. The addi-

tional control plane traffic increases network load and

makes the control plane a potential bottleneck. Addition-

ally, as the flow tables of switches are configured in real
time by an outside entity, there is also the extra latency

introduced by the flow setup process. In large-scale net-

works, controllers will need to be able to process millions

of flows per second [488] without compromising the

quality of its service. Therefore, these overheads on the

control plane and on flow setup latency are (arguably) two

of the major scaling concerns in SDN.

As a result, several efforts have been devoted to tackle
the SDN scaling concerns, including DevoFlow [418],

SDCs [434], DIFANE [489], Onix [7], HyperFlow [195],

Kandoo [229], Maestro [188], NOX–MT [187], and Maple

[263]. Still related to scalability, the notion of elasticity in

SDN controllers is also being pursued [228], [363], [481].

Elastic approaches include dynamically changing the

number of controllers and their locations under different

conditions [490].
Most of the research efforts addressing scaling limi-

tations of SDN can be classified in three categories: data

plane, control plane, and hybrid. While targeting the data

plane, proposals such as DevoFlow [418] and SDCs [434]

actually reduce the overhead of the control plane by dele-

gating some work to the forwarding devices. For instance,

instead of requesting a decision from the controller for

every flow, switches can selectively identify the flows (e.g.,
elephant flows) that may need higher level decisions from

the control plane applications. Another example is to in-

troduce more powerful general purpose CPUs in the for-

warding devices to enable SDCs. A general purpose CPU

and SDCs offer new possibilities for reducing the control

plane overhead by allowing software-based implementa-

tions of functions for data aggregation and compression,

for instance.
Maestro [188], NOX–MT [187], Kandoo [229], Beacon

[186], and Maple [263] are examples of the effort on

designing and deploying high-performance controllers,

i.e., trying to increase the performance of the control

plane. These controllers mainly explore well-known tech-

niques from networking, computer architectures, and

high-performance computing, such as buffering, pipelin-

ing, and parallelism, to increase the throughput of the
control platform.

The hybrid category is composed of solutions that try to

split the control logic functions between specialized data

plane devices and controllers. In this category, DIFANE

[489] proposes authoritative (intermediate) switches to

keep all traffic in the data plane, targeting a more scalable

and efficient control plane. Authoritative switches are re-

sponsible for installing rules on the remaining switches,
while the controller is still responsible for generating all

the rules required by the logic of applications. By dividing

the controller work with these special switches, the overall

system scales better.

Table 12 provides a nonexhaustive list of proposals

addressing scalability issues of SDN. We characterize these

issues by application domain (control or data plane), their

purpose, the throughput in terms of number of flows per
second (when the results of the experiments are reported),

and the strategies used. As can be observed, the vast ma-

jority are control plane solutions that try to increase scala-

bility by using distributed and multicore architectures.

Some figures are relatively impressive, with some solu-

tions achieving up to 20 million flows/s. However, we

should caution the reader that current evaluations
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consider only simple applications and count basically the

number of packet-in and packet-out messages to
measure throughput. The actual performance of control-

lers will be affected by other factors, such as the number

and complexity of the applications running on the

controller and security mechanisms implemented. For

example, a routing algorithm consumes more computing

resources and needs more time to execute than a simple

learning switch application. Also, current evaluations are

done using plain TCP connections. The performance is
very likely to change when basic security mechanisms are

put in place, such as TLS, or more advanced mechanisms

to avoid eavesdropping, man-in-the-middle and DoS

attacks on the control plane.

Another important issue concerning scalability is data

distribution among controller replicas in distributed archi-

tectures. Distributed control platforms rely on data distri-

bution mechanisms to achieve their goals. For instance,
controllers such as Onix, HyperFlow, and ONOS need

mechanisms to keep a consistent state in the distributed

control platform. Recently, experimental evaluations have

shown that high-performance distributed and fault-toler-

ant data stores can be used to tackle such challenges [213].

Nevertheless, further work is necessary to properly under-

stand state distribution tradeoffs [466].

E. Performance Evaluation
As introduced in Section IV-A, there are already several

OpenFlow implementations from hardware and software

vendors being deployed in different types of networks,

from small enterprise to large-scale data centers. There-

fore, a growing number of experiments over SDN-enabled

networks is expected in the near future. This will naturally

create new challenges, as questions regarding SDN perfor-

mance and scalability have not yet been properly inves-

tigated. Understanding the performance and limitation of
the SDN concept is a requirement for its implementation

in production networks. There are very few performance

evaluation studies of OpenFlow and SDN architecture.

Although simulation studies and experimentation are

among the most widely used performance evaluation tech-

niques, analytical modeling has its own benefits as well. A

closed-form description of a networking architecture paves

the way for network designers to have a quick (and
approximate) estimate of the performance of their design,

without the need to spend considerable time for simula-

tion studies or expensive experimental setup [433].

Some work has investigated ways to improve the per-

formance of switching capabilities in SDN. These mainly

consist of observing the performance of OpenFlow-

enabled networks regarding different aspects, such as

Table 12 Summary and Characterization of Scalability Proposals for SDNs
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lookup performance [492], hardware acceleration [439],
the influence of types of rules and packet sizes [493], per-

formance bottlenecks of current OpenFlow implementa-

tions [418], how reactive settings impact the performance

on data center networks [494], and the impact of configu-

ration on OpenFlow switches [392].

Design choices can have a significant impact on the

lookup performance of OpenFlow switching in Linux

operating system using standard commodity network
interface cards [492]. Just by using commodity network

hardware the packet switching throughput can be im-

proved by up to 25% when compared to one based on soft

OpenFlow switching [492]. Similarly, hardware accel-

eration based on network processors can also be applied

to perform OpenFlow switching. In such cases, early re-

ports indicate that performance, in terms of packet delay,

can be improved by 20% when compared to conventional
designs [439].

By utilizing Intel’s DPDK library [450], it has been

shown that it is possible to provide flexible traffic steering

capability at the hypervisor level (e.g., KVM) without the

performance limitations imposed by traditional hardware

switching techniques [495], such as SR–IOV [496]. This is

particularly relevant since most of the current enterprise

deployments of SDN are in virtualized data center infra-
structures, as in VMware’s NVP solution [112].

Current OpenFlow switch implementations can lead to

performance bottlenecks with respect to the CPU load

[418]. Yet, modifications on the protocol specification can

help reduce the occurrence of these bottlenecks. Further

investigations provide measurements regarding the per-

formance of the OpenFlow switch for different types of

rules and packet sizes [493].
In data centers, a reactive setting of flow rules can lead

to an unacceptable performance when only eight switches

are handled by one OpenFlow controller [494]. This

means that large-scale SDN deployments should probably

not rely on a purely reactive ‘‘modus operandi,’’ but rather

on a combination of proactive and reactive flow setup.

To foster the evaluation of different performance as-

pects of OpenFlow devices, frameworks such as OFLOPS
[381], OFLOPS-Turbo [395], Cbench [187], and OFC-

Benchmark [393] have been proposed. They provide a set

of tools to analyze the performance of OpenFlow switches

and controllers. Cbench [187], [392] is a benchmark tool

developed to evaluate the performance of OpenFlow con-

trollers. By taking advantage of the Cbench, it is possible

to identify performance improvements for OpenFlow con-

trollers based on different environment and system con-
figurations, such as the number of forwarding devices,

network topology, overall network workload, type of

equipments, forwarding complexity, and overhead of the

applications being executed on top of controllers [187].

Therefore, such tools can help system designers make

better decisions regarding the performance of devices and

the network, while also allowing end users to measure the

device performance and better decide which one is best
suited for the target network infrastructure.

Surprisingly, despite being designed to evaluate the

performance of controllers, Cbench is currently a single-

threaded tool. Therefore, multiple instances have to be

started to utilize multiple CPUs. It also only establishes

one controller connection for all emulated switches. Un-

fortunately, this means little can be derived from the

results in terms of controller performance and behavior or
estimation of different bounds at the moment. For in-

stance, aggregated statistics are gathered for all switches

but not for each individual switch. As a result, it is not

possible to identify whether all responses of the controller

are for a single switch, or whether the capacity of the

controller is actually shared among the switches. Flexible

OpenFlow controller benchmarks are available though.

OFCBenchmark [393] is one of the recent developments.
It creates a set of message-generating virtual switches,

which can be configured independently from each other to

emulate a specific scenario and to maintain their own

statistics.

Another interesting question to pose when evaluating

the performance of SDN architectures is what is the re-

quired number of controllers for a given network topology

and where to place the controllers [469], [497]. By analyz-
ing the performance of controllers in different network

topologies, it is possible to conclude that one controller is

often enough to keep the latency at a reasonable rate [497].

Moreover, as observed in the same experiments, in the

general case adding k controllers to the network can re-

duce the latency by a factor of k. However, there are cases,

such as large-scale networks and WANs, where more con-

trollers should be deployed to achieve high reliability and
low control plane latency.

Recent studies also show that the SDN control plane

cannot be fully physically centralized due to responsive-

ness, reliability, and scalability metrics [466], [469].

Therefore, distributed controllers are the natural choice

for creating a logically centralized control plane, while be-

ing capable of coping with the demands of large-scale

networks. However, distributed controllers bring addition-
al challenges, such as the consistency of the global network

view, which can significantly affect the performance of the

network if not carefully engineered. Taking two applica-

tions as examples, one that ignores inconsistencies and

another that takes inconsistency into consideration, it is

possible to observe that optimality is significantly affected

when inconsistencies are not considered and that the

robustness of an application is increased when the con-
troller is aware of the network state distribution [466].

Most of these initiatives toward identifying the limita-

tions and bottlenecks of SDN architectures can take a lot of

time and effort to produce consistent outputs due to the

practical development and experimentation requirements.

As mentioned before, analytic models can quickly pro-

vide performance indicators and potential scalability
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bottlenecks for an OpenFlow switch-controller system be-
fore detailed data are available. While simulation can pro-

vide detailed insight into a certain configuration, the

analytical model greatly simplifies a conceptual deploy-

ment decision. For instance, a Network calculus-based

model can be used to evaluate the performance of an SDN

switch and the interaction of SDN switches and controllers

[498]. The proposed SDN switch model captured the

closed form of the packet delay and buffer length inside the
SDN switch according to the parameters of a cumulative

arrival process. Using recent measurements, the authors

have reproduced the packet processing delay of two va-

riants of OpenFlow switches and computed the buffer re-

quirements of an OpenFlow controller. Analytic models

based on queuing theory for the forwarding speed and

blocking probability of current OpenFlow switches can also

be used to estimate the performance of the network [492].

F. Security and Dependability
Cyber attacks against financial institutions, energy fa-

cilities, government units, and research institutions are

becoming one of the top concerns of governments and

agencies around the globe [499]–[504]. Different inci-

dents, such as Stuxnet [503], have already shown the per-

sistence of threat vectors [505]. Put another way, these
attacks are capable of damaging a nation’s wide infrastruc-

ture, which represent a significant and concerning issue.

As expected, one of the most common means of executing

those attacks is through the network, either the Internet or

the local area network. It can be used as a simple transport

infrastructure for the attack or as a potentialized weapon

to amplify the impact of the attack. For instance, high

capacity networks can be used to launch large-scale at-
tacks, even though the attacker has only a low capacity

network connection at his premises.

Due to the danger of cyber attacks and the current

landscape of digital threats, security and dependability are

top priorities in SDN. While research and experimen-

tation on SDNs is being conducted by some commercial

players (e.g., Google, Yahoo!, Rackspace, Microsoft),

commercial adoption is still in its early stage. Industry
experts believe that security and dependability are issues

that need to be addressed and further investigated in SDN

[359], [506], [507].

Additionally, from the dependability perspective, avail-

ability of Internet routers is today a major concern with the

widespread of clouds and their strong expectations about

the network [508]. It is, therefore, crucial to achieve high

levels of availability on SDN control platforms if they
are to become the main pillars of networked applica-

tions [468].

Different threat vectors have already been identified in

SDN architectures [359], as well as several security issues

and weaknesses in OpenFlow-based networks [194], [201],

[509]–[514]. While some threat vectors are common to

existing networks, others are more specific to SDN, such as

attacks on control plane communication and logically cen-

tralized controllers. It is worth mentioning that most

threats vectors are independent of the technology or the

protocol (e.g., OpenFlow, POF, and ForCES), because they
represent threats on conceptual and architectural layers of

SDN itself.

As shown in Fig. 10 and Table 13, there are at least

seven identified threats vector in SDN architectures. The

first threat vector consists of forged or faked traffic flows in

the data plane, which can be used to attack forwarding

devices and controllers. The second allows an attacker to

exploit vulnerabilities of forwarding devices and conse-
quently wreak havoc with the network. Threat vectors

three, four, and five are the most dangerous ones, since

they can compromise the network operation. Attacks on

the control plane, controllers, and applications can easily

grant an attacker the control of the network. For instance,

a faulty or malicious controller or application could be

used to reprogram the entire network for data theft pur-

poses, e.g., in a data center. The sixth threat vector is
linked to attacks on and vulnerabilities in administrative

stations. A compromised critical computer, directly con-

nected to the control network will empower the attacker

Fig. 10. Main threat vectors of SDN architectures.

Table 13 SDN Specific Versus Nonspecific Threats
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with resources to launch more easily an attack to the con-

troller, for instance. Last, threat vector number seven re-

presents the lack of trusted resources for forensics and

remediation, which can compromise investigations (e.g.,

forensics analysis) and preclude fast and secure recovery
modes for bringing the network back into a safe operation

condition.

As can be observed in Table 13, threat vectors 3 to 5 are

specific to SDN as they stem from the separation of the

control and data planes and the consequent introduction of

a new entity in these networksVthe logically centralized

controller. The other vectors were already present in tra-

ditional networks. However, the impact of these threats
could be larger than todayVor at least it may be expressed

differentlyVand as a consequence it may need to be dealt

with differently.

OpenFlow networks are subject to a variety of security

and dependability problems such as spoofing [509], tam-

pering [509], repudiation [509], information disclosure

[509], denial of service [509], [511], [512], elevation of

privileges [509], and the assumption that all applications
are benign and will not affect SDN operation [194]. The

lack of isolation, protection, access control, and stronger

security recommendations [194], [201], [510]–[512] are

some of the reasons for these vulnerabilities. We will ex-

plore these next.

1) OpenFlow Security Assessment: There is already a

number of identified security issues in OpenFlow-enabled
networks. Starting from a STRIDE methodology [515], it is

possible to identify different attacks to OpenFlow-enabled

networks. Table 14 summarizes these attacks (based on

[509]). For instance, information disclosure can be

achieved through side channel attacks targeting the flow

rule setup process. When reactive flow setup is in place,

obtaining information about network operation is rela-

tively easy. An attacker that measures the delay experi-
enced by the first packet of a flow and the subsequent can

easily infer that the target network is a reactive SDN, and

proceed with a specialized attack. This attackVknown as

fingerprinting [511]Vmay be the first step to launch a DoS

attack intended to exhaust the resources of the network,

for example. If the SDN is proactive, guessing its forward-

ing rule policies is harder, but still feasible [509]. Inter-

estingly, all reported threats and attacks affect all versions

(1.0 to 1.3.1) of the OpenFlow specification. It is also

worth emphasizing that some attacks, such as spoofing, are

not specific to SDN. However, these attacks can have a

larger impact in SDNs. For instance, by spoofing the ad-
dress of the network controller, the attacker (using a fake

controller) could take over the control of the entire net-

work. A smart attack could persist for only a few seconds,

i.e., just the time needed to install special rules on all

forwarding devices for its malicious purposes (e.g., traffic

cloning). Such attack could be very hard to detect.

Taking counter falsification as another example, an

attacker can try to guess installed flow rules and, subse-
quently, forge packets to artificially increase the counter.

Such attack would be specially critical for billing and load

balancing systems, for instance. A customer could be

charged for more traffic than she, in fact used, while a load

balancing algorithm may take nonoptimal decisions due to

forged counters.

Flow networks include the lack of strong security re-

commendations for developers, the lack of TLS and access
control support on most switch and controller implemen-

tations [510], the belief that TCP is enough because links

are ‘‘physically secure’’ [510], [512], the fact that many

switches have listener mode activated by default (allowing

the establishment of malicious TCP connections, for in-

stance) [512] or that flow table verification capabilities are

harder to implement when TLS is not in use [260], [510].

In addition, the high denial of service risk posed to cen-
tralized controllers is worth mentioning [260], [511], as

well as the vulnerabilities in the controllers themselves

[260], [359], bugs and vulnerabilities in applications [516],

targeted flooding attacks [16], insecure northbound inter-

faces that can lead to security breaches [16], and the risk of

resource depletion attacks [511], [512]. For instance, it has

been shown that an attacker can easily compromise control

plane communications through DoS attacks and launch a
resource depletion attack on control platforms by exploiting

a single application such as a learning switch [511], [512].

Another point of concern is the fact that current con-

trollers, such as Floodlight, OpenDaylight, POX, and

Beacon, have several security and resiliency issues [194].

Common application development problems (bugs), such

as the sudden exit of an application or the continuous

Table 14 Attacks to OpenFlow Networks
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allocation of memory space, are enough to crash existing

controllers. On the security perspective, a simple mali-

cious action such as changing the value of a data structure
in memory can also directly affect the operation and relia-

bility of current controllers. These examples are illustra-

tive that, from a security and dependability perspective,

there is still a long way to go.

2) Countermeasures for OpenFlow-Based SDNs: Several

countermeasures can be put in place to mitigate the secu-

rity threats in SDNs. Table 15 summarizes a number of
countermeasures that can be applied to different elements

of an SDN/OpenFlow-enabled network. Some of these

measures, namely rate limiting, event filtering, packet

dropping, shorter timeouts, and flow aggregation, are al-

ready recommended in the most recent versions of the

OpenFlow specification (version 1.3.1 and later). How-

ever, most of them are not yet supported or implemented

in SDN deployments.
Traditional techniques such as access control, attack

detection mechanisms, event filtering (e.g., controller de-

cides which asynchronous messages he is not going to

accept), firewalls, and intrusion detection systems can be

used to mitigate the impact of or to avoid attacks. They can

be implemented in different devices, such as controllers,

forwarding devices, middleboxes, and so forth. Middle-

boxes can be a good option for enforcing security policies
in an enterprise because they are (in general) more robust

and special purpose (high-performance) devices. Such a

strategy also reduces the potential overhead cause by im-

plementing these countermeasures directly on controllers

or forwarding devices. However, middleboxes can add

extra complexity to the network management, i.e., in-

crease the OPEX at the cost of better performance.

Rate limiting, packet dropping, shorter timeouts, and
flow aggregations are techniques that can be applied on

controllers and forwarding devices to mitigate different

types of attacks, such as denial of service and information

disclosure. For instance, reduced timeouts can be used to

mitigate the effect of an attack exploring the reactive ope-

ration mode of the network to make the controller install

rules that divert traffic to a malicious machine. With re-

duced timeouts, the attacker would be forced to constantly
generate a number of forged packets to avoid timeout

expiration, making the attack more likely to be detected.

Rate limiting and packet dropping can be applied to avoid

DoS attacks on the control plane or stop ongoing attacks

directly on the data plane by installing specific rules on the

devices where the attacks is being originated.

Forensics and remediation encompass mechanisms

such as secure logging, event correlation, and consistent
reporting. If anything wrong happens with the network,

operators should be able to safely figure out the root cause

of the problem and put the network to work on a secure

operation mode as fast as possible. Additionally, tech-

niques to tolerate faults and intrusions, such as state ma-

chine replication [517], proactive–reactive recovery [518],

and diversity [210], can be added to control platforms for

increasing the robustness and security properties by auto-
matically masking and removing faults. Put differently,

SDN controllers should be able to resist against different

types of events (e.g., power outages, network disruption,

communication failures, network partitioning) and attacks

(e.g., DDoS, resource exhaustion) [213], [359]. One of the

most traditional ways of achieving high availability is

through replication. Yet, proactive–reactive recovery and

diversity are two examples of crucial techniques that add
value to the system for resisting against different kinds of

attacks and failures (e.g., those exploring common vul-

nerabilities or caused by software aging problems).

Other countermeasures to address different threats and

issues of SDN include enhancing the security and depen-

dability of controllers, protection, and isolation of applica-

tions [194], [201], [359], [506], trust management

between controllers and forwarding devices [359], integ-
rity checks of controllers and applications [359], forensics

and remediation [359], [506], verification frameworks

[201], [519], [520], and resilient control planes [359],

[506], [521], [520]. Protection and isolation mechanisms

should be part of any controller. Applications should be

isolated from each other and from the controller.

Different techniques such as security domains (e.g.,

kernel, security, and user level) and data access protection
mechanisms should be put in place in order to avoid

security threats from network applications.

Implementing trust between controllers and forward-

ing is another requirement for ensuring that malicious

elements cannot harm the network without being

detected. An attacker can try to spoof the IP address of

the controller and make switches connect to its own

Table 15 Countermeasures for Security Threats in OpenFlow Networks
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controller. This is currently the case since most controllers
and switches only establish insecure TCP connections.

Complementary, integrity checks on controller and appli-

cation software can help to ensure that safe code is being

bootstrapped, which eliminates harmful software from be-

ing started once the system restarts. Besides integrity

checks, other things such as highly specialized malware

detection systems should be developed for SDN. Third-

party network applications should always be scanned for
bad code and vulnerabilities because a malicious applica-

tion represents a significant security threat to the network.

It is worth mentioning that there are also other ap-

proaches for mitigating security threats in SDN, such as

declarative languages to eliminate network protocol vul-

nerabilities [265]. This kind of descriptive languages can

specify semantic constraints, structural constraints, and

safe access properties of OpenFlow messages. Then, a
compiler can use these inputs to find programmers’ imple-

mentation mistakes on message operations. In other words,

such languages can help find and eliminate implementation

vulnerabilities of southbound specifications.

Proposals providing basic security properties such as

authentication [522] and access control [523] are starting

to appear. C–BAS [522] is a certificate-based authentica-

tion, authorization, and accounting (AAA) architecture for
improving the security control on SDN experimental faci-

lities. Solutions in the spirit of C–BAS can be made highly

secure and dependable through hybrid system architec-

tures, which combine different technologies and tech-

niques from distributed systems, security, and fault and

intrusion tolerance [524]–[526].

G. Migration and Hybrid Deployments
The promises by SDN to deliver easier design, opera-

tion, and management of computer networks are endan-

gered by challenges regarding incremental deployability,

robustness, and scalability. A prime SDN adoption chal-

lenge relates to organizational barriers that may arise due

to the first (and second) order effects of SDN automation

capabilities and ‘‘layer/domain blurring.’’ Some level of

human resistance is to be expected and may affect the
decision and deployment processes of SDN, especially by

those that may regard the control refactorization of SDN as

a risk to the current chain of control and command, or

even to their job security. This complex social challenge is

similar (and potentially larger) to known issues between

the transport and IP network divisions of service providers,

or the system administrator, storage, networking, and sec-

urity teams of enterprise organizations. Such a challenge is
observable on today’s virtualized data centers, through the

shift in role and decision power between the networking

and server people. Similarly, the development and opera-

tions (DevOps) movement has caused a shift in the locus of

influence, not only on the network architecture but also on

purchasing, and this is an effect that SDN may exacerbate.

These changes in role and power causes a second-order

effect on the sales division of vendors that are required to
adapt accordingly.

Pioneering SDN operational deployments have been

mainly greenfield scenarios and/or tightly controlled sin-

gle administrative domains. Initial rollout strategies are

mainly based on virtual switch overlay models or Open-

Flow-only network-wide controls. However, a broader

adoption of SDN beyond data center silosVand between

themselvesVrequires considering the interaction and
integration with legacy control planes providing traditional

switching; routing; and operation, administration, and

management (OAM) functions. Certainly, rip-and-replace

is not a viable strategy for the broad adoption of new net-

working technologies.

Hybrid networking in SDN should allow deploying

OpenFlow for a subset of all flows only, enable OpenFlow

on a subset of devices and/or ports only, and provide op-
tions to interact with existing OAM protocols, legacy de-

vices, and neighboring domains. As in any technology

transition period where forklift upgrades may not be a

choice for many, migration paths are critical for adoption.

Hybrid networking in SDN spans several levels. The

Migration Working Group of the ONF is tackling the sce-

nario where hybrid switch architectures and hybrid

(OpenFlow and non-OpenFlow) devices coexist. Hybrid
switches can be configured to behave as a legacy switch or

as an OpenFlow switch and, in some cases, as both simul-

taneously. This can be achieved, for example, by partition-

ing the set of ports of a switch, where one subset is devoted

to OpenFlow-controlled networks, and the other subset to

legacy networks. For these subsets to be active at the same

time, each one having its own data plane, multitable sup-

port at the forwarding engine (e.g., via TCAM partition-
ing) is required. Besides port-based partitioning, it is also

possible to rely on VLAN-based (prior to entering the

OpenFlow pipeline) or flow-based partitioning using

OpenFlow matching and the LOCAL and/or NORMAL ac-

tions to redirect packets to the legacy pipeline or the

switch’s local networking stack and its management stack.

Flow-based partitioning is the most flexible option, as it

allows each packet entering a switch to be classified by an
OpenFlow flow description and treated by the appropriate

data plane (OpenFlow or legacy).

There are diverse controllers, such as OpenDaylight

[13], HP VAN SDN [184], and OpenContrail [183], that

have been designed to integrate current non-SDN technol-

ogies (e.g., SNMP, PCEP, BGP, and NETCONF) with SDN

interfaces such as OpenFlow and OVSDB. Nonetheless,

controllers such as ClosedFlow [219] have been recently
proposed with the aim of introducing SDN-like program-

ming capabilities in traditional network infrastructures,

making the integration of legacy and SDN-enabled

networks a reality without side effects in terms of prog-

rammability and global network control. ClosedFlow is

designed to control legacy Ethernet devices (e.g., Cisco

3550 switches with a minimum IOS of 12.2 SE) in a similar
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way as OpenFlow controller allows administrators to con-
trol OpenFlow-enabled devices. More importantly, Clo-

sedFlow does not impose any change on the forwarding

devices. It only takes advantage of the existing hardware

and firmware capabilities to mimic an SDN control over

the network, i.e., allow dynamic and flexible programma-

bility in the data plane. The next step could be the integ-

ration of controllers like ClosedFlow- and OpenFlow-based

controllers, promoting interoperability among controllers
and a smooth transition from legacy infrastructures to

SDN-enabled infrastructure with nearly all the capabilities

of a clean-slate SDN-enabled infrastructure.

Furthermore, controllers may have to be separated into

distinct peer domains for different reasons, such as scala-

bility, technology, controllers from different vendors, con-

trollers with different service functionality, and diversity

of administrative domains [218]. Controllers from differ-
ent domains, or with distinct purposes, are also required

to be backward compatible either by retrofitting or ex-

tending existing multidomain protocols (e.g., BGP) or by

proposing new SDN-to-SDN protocols (also known as

east/westbound APIs).

Some efforts have been already devoted to the chal-

lenges of migration and hybrid SDNs. RouteFlow [527]

implements an IP level control plane on top of an Open-
Flow network, allowing the underlying devices to act as IP

routers under different possible arrangements. The

Cardigan project [50], [528] has deployed RouteFlow at

a live Internet eXchange now for over a year. LegacyFlow

[529] extends the OpenFlow-based controlled network to

embrace non-OpenFlow nodes. There are also some other

early use cases on integrating complex legacy system such

as DOCSIS [161], Gigabit Ethernet passive optical network,
and DWDM reconfigurable optical add/drop multiplexer

(ROADM) [157], [158]. The common grounds of these

pieces of work are: 1) considering hybrid as the coexistence

of traditional environments of closed vendor’s routers and

switches with new OpenFlow-enabled devices; 2) targeting

the interconnection of both control and data planes of le-

gacy and new network elements; and 3) taking a controller-

centric approach, drawing the hybrid line outside of any
device itself, but into the controller application space.

Panopticon [530] defines an architecture and method-

ology to consistently implement SDN inside enterprise

legacy networks through network orchestration under

strict budget constraints. The proposed architecture in-

cludes policy configurations, troubleshooting, and main-

tenance tasks establishing transitional networks (SDN and

legacy) in structures called solitary confinement trees
(SCTs), where VLAN IDs are efficiently used by orches-

tration algorithms to build paths in order to steer traffic

through SDN switches. Defying the partial SDN imple-

mentation concept, they confirm that this could be a long-

term operational strategy solution for enterprise networks.

HybNET [531] presents a network management frame-

work for hybrid OpenFlow-legacy networks. It provides a

common centralized configuration interface to build vir-
tual networks using VLANs. An abstraction of the physical

network topology is taken into account by a centralized

controller that applies a path finder mechanism, in order

to calculate network paths and program the OpenFlow

switches via REST interfaces and legacy devices using

NETCONF [44].

More recently, frameworks such as ESCAPE [532] and

its extensions have been proposed to provide multilayer
service orchestration in multidomains. Such frameworks

combine different tools and technologies such as Click

[533], POX [231], OpenDaylight [13], and NETCONF [44].

In other words, those frameworks integrate different SDN

solutions with traditional ones. Therefore, they might be

useful tools on the process of integrating or migrating le-

gacy networking infrastructure to SDN.

Other hybrid solutions starting to emerge include open
source hybrid IP/SDN (OSHI) [534]. OSHI combines

Quagga for open shortest path first routing and SDN

capable switching devices (e.g., Open vSwitch) on Linux to

provide backward compatibility for supporting incremen-

tal SDN deployments, i.e., enabling interoperability with

non-OF forwarding devices in carrier-grade networks.

While full SDN deployments are straightforward only

in some green field deployments such as data center net-
works or by means of an overlay model approach, hybrid

SDN approaches represent a very likely deployment model

that can be pursued by different means, including the

following [535].

• Topology-based hybrid SDN: Based on a topological

separation of the nodes controlled by traditional

and SDN paradigms. The network is partitioned

in different zones and each node belongs to only
one zone.

• Service-based hybrid SDN: Conventional networks

and SDN provide different services, where overlap-

ping nodes, controlling a different portion of the

FIB (or generalized flow table) of each node. Ex-

amples include network-wide services like for-

warding that can be based on legacy distributed

control, while SDN provides edge-to-edge services
such as enforcement of traffic engineering and ac-

cess policies, or services requiring full traffic visi-

bility (e.g., monitoring).

• Class-based hybrid SDN: Based on the partition

of traffic in classes, some controlled by SDN and

the remaining by legacy protocols. While each

paradigm controls a disjoint set of node for-

warding entries, each paradigm is responsible for
all network services for the assigned traffic

classes.

• Integrated hybrid SDN: A model where SDN is

responsible for all the network services and uses

traditional protocols (e.g., BGP) as an interface to

node FIBs. For example, it can control forwarding

paths by injecting carefully selected routes into a
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routing system or adjusting protocol settings (e.g.,
IGP weights). Past efforts on RCPs [85] and the

ongoing efforts within ODL [13] can be considered

examples of this hybrid model.

In general, benefits of hybrid approaches include ena-

bling flexibility (e.g., easy match on packet fields for mid-

dleboxing) and SDN-specific features (e.g., declarative

management interface) while partially keeping the in-

herited characteristics of conventional networking such as
robustness, scalability, technology maturity, and low de-

ployment costs. On the negative side, the drawbacks of

hybridization include the need for ensuring profitable

interactions between the networking paradigms (SDN and

traditional) while dealing with the heterogeneity that

largely depends on the model.

Initial tradeoff analyses [535] suggest that the combi-

nation of centralized and distributed paradigms may pro-
vide mutual benefits. However, future work is required to

devise techniques and interaction mechanisms that maxi-

mize such benefits while limiting the added complexity of

the paradigm coexistence.

H. Meeting Carrier-Grade and Cloud Requirements
A number of carrier-grade infrastructure providers

(e.g., NTT, AT&T, Verizon, Deutsche Telekom) are at the
core of the SDN community with the ultimate goal of

solving their long standing networking problems. In the

telecom world, NTT can be considered one of the forefront

runners in terms of investing in the adoption and deploy-

ment of SDN in all kinds of network infrastructures, from

backbone, data center, to edge customers [269]. In 2013,

NTT launched an SDN-based, on-demand elastic provi-

sioning platform of network resources (e.g., bandwidth)
for HD video broadcasters [536]. Similarly, as a global

cloud provider with data centers spread across the globe

[537], the same company launched a similar service for its

cloud customers, who are now capable of taking advantage

of dynamic networking provisioning intradata and inter-

data centers [538]. AT&T is another telecom company that

is investing heavily in new services, such as user-defined

network clouds, that take advantage of recent develop-
ments in NFV and SDN [539]. As we mentioned before,

SDN and NFV are complementary technologies that can be

applicable to different types of networks, from local net-

works and data centers to transport networks [540]–[545].

Recently, several research initiatives have worked toward

combining SDN and NFV through Intel’s DPDK, a set of

libraries and drivers that facilitates the development of

network-intensive applications and allows the implemen-
tation of fine-grained network functions [546]. Early work

toward service chaining has been proposed by combining

SDN and NFV technologies [27], [547]–[550], and studies

around the ForCES’s [30] applicability to SDN-enhanced

NFV have also come to light [540]. These are some of the

early examples of the opportunities SDNs seem to bring to

telecom and cloud providers.

Carrier networks are using the SDN paradigm as the
technology means for solving a number of long standing

problems. Some of these efforts include new architectures

for a smooth migration from the current mobile core in-

frastructure to SDN [222], and techno-economic models

for virtualization of these networks [551], [552]; carrier-

grade OpenFlow virtualization schemes [112], [553], in-

cluding virtualized broadband access infrastructures [554],

techniques that are allowing the offer of network-as-a-
service [555]; programmable GEPON and DWDM

ROADM [157]–[160]; large-scale interautonomous sys-

tems (ASs) SDN-enabled deployments [556]; flexible con-

trol of network resources [557], including offering MPLS

services using an SDN approach [558]; and the investiga-

tion of novel network architectures, from proposals to se-

parate the network edge from the core [559], [560], with

the latter forming the fabric that transports packets as
defined by an intelligent edge, to software-defined Inter-

net exchange points [528], [561].

Use case analysis [562] of management functions re-

quired by carrier networks have identified a set of require-

ments and existing limitations in the SDN protocol toolbox.

For instance, it has been pinpointed that OF-Config [54]

needs a few extensions in order to meet the carrier require-

ments, such as physical resource discovery, logical link
configuration, logical switch instantiation, and device and

link OAM configuration [562]. Similarly, OpenFlow exten-

sions have also been proposed to realize packet-optical

integration with SDN [563]. In order to support SDN con-

cepts in large-scale wide area networks, different exten-

sions and mechanisms are required, both technology

specific (e.g., MPLS BFD) and technology agnostic, such

as: resiliency mechanisms for surviving link failures [486],
failures of controller or forwarding elements; solutions for

integrating residential customer services in different forms

(i.e., support also current technologies); new energy-

efficient networking approaches; QoS properties for packet

classification, metering, coloring, policing, shaping, and

scheduling; and multilayer aspects outlining different

stages of packet-optical integration [563]–[565].

SDN technology also brings new possibilities for cloud
providers. By taking advantage of the logically centralized

control of network resources [8], [566], it is possible to

simplify and optimize network management of data cen-

ters and achieve: 1) efficient intradata-center networking,

including fast recovery mechanisms for the data and con-

trol planes [478], [567], [568], adaptive traffic engineering

with minimal modifications to DC networks [278], simpli-

fied fault-tolerant routing [569], performance isolation
[570], and easy and efficient resource migration (e.g., of

VMs and virtual networks) [478]; 2) improved interdata-

center communication, including the ability to fully utilize

the expensive high-bandwidth links without impairing

quality of service [8], [571]; 3) higher levels of reliability

(with novel fault management mechanisms, etc.) [478],

[486], [567], [569]; and 4) cost reduction by replacing
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complex, expensive hardware by simple and cheaper for-

warding devices [8], [572].

Table 16 summarizes some of the carrier-grade net-

work and cloud infrastructure providers’ requirements. In
this table, we show the current challenges and what is to

be expected with SDN. As we saw before, some of the

expectations are already becoming a reality, but many are

still open issues. What seems to be clear is that SDN re-

presents an opportunity for telecom and cloud providers,

in providing flexibility, cost effectiveness, and easier man-

agement of their networks.

I. SDN: The Missing Piece Toward
Software-Defined Environments

The convergence of different technologies is enabling

the emergence of fully programmable IT infrastructures. It

is already possible to dynamically and automatically con-

figure or reconfigure the entire IT stack, from the network

infrastructure up to the applications, to better respond to

workload changes. Recent advances makes on-demand

provisioning of resources possible, at nearly all infrastruc-

tural layers. The fully automated provisioning and orches-

tration of IT infrastructures as been recently named
software-defined environments (SDEs) [171], [172], by

IBM. This is a novel approach that is expected to have

significant potential in simplifying IT management, opti-

mizing the use of the infrastructure, reduce costs, and

reduce the time to market of new ideas and products. In

an SDE, workloads can be easily and automatically assigned

to the appropriate IT resources based on application

characteristics, security and service level policies, and the
best-available resources to deliver continuous, dynamic

optimization and reconfiguration to address infrastructure

issues in a rapid and responsive manner. Table 17 sum-

marizes the traditional approaches and some of the key

features being enabled by SDEs [577], [578].

In an SDE, the workloads are managed independently

of the systems and underlying infrastructure, i.e., are not

Table 16 Carrier-Grade and Cloud Provider Expectations and Challenges
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tied to a specific technology or vendor [171], [172]. Anoth-

er characteristic of this new approach is to offer a prog-

rammatic access to the environment as a whole, selecting

the best available resources based on the current status of
the infrastructure, and enforcing the policies defined. In

this sense, it shares much of the philosophy of SDN.

Interestingly, one of the missing key pieces of an SDE was,

until now, SDN.

The four essential building blocks of an SDE [171],

[172], [578] are:

• SDNs [579], [580];

• software-defined storage (SDS) [577];
• software-defined compute (SDC) [171];

• software-defined management (SDM) [581].

In the last decade, the advances in virtualization of

compute and storage, together with the availability of so-

phisticated cloud orchestration tools have enabled SDS,

SDC, and SDM. These architectural components have

been widely used by cloud providers and for building IT

infrastructures in different enterprise environments.
However, the lack of programmable network control has

so far hindered the realization of a complete SDE. SDN is

seen as the technology that may fill this gap, as attested by

the emergence of cloud-scale network virtualization plat-

forms based on this new paradigm [112].

The IBM SmartCloud Orchestrator is one of the first

examples of an SDE [171], [172]. It integrates compute,

storage, management, and networking in a structured way.

Fig. 11 gives a simplified overview of an SDE, by taking the

approach developed by IBM as its basis. The main idea of

an SDE-based infrastructure is that the business needs that

define the workloads trigger the reconfiguration of the
global IT infrastructure (compute, storage, network). This

is an important step toward a more customizable IT in-

frastructure that focuses on the business requirements

rather than on the limitations of the infrastructure itself.

VI. CONCLUSION

Traditional networks are complex and hard to manage.

One of the reasons is that the control and data planes are
vertically integrated and vendor specific. Another, con-

curring reason, is that typical networking devices are also

tightly tied to line products and versions. In other words,

each line of product may have its own particular config-

uration and management interfaces, implying long cycles

for producing product updates (e.g., new firmware) or

upgrades (e.g., new versions of the devices). All this has

given rise to vendor lock-in problems for network infra-
structure owners, as well as posing severe restrictions to

change and innovation.

SDN created an opportunity for solving these long-

standing problems. Some of the key ideas of SDN are the

introduction of dynamic programmability in forwarding

devices through open southbound interfaces, the decoupl-

ing of the control and data plane, and the global view of the

Table 17 SDE Pushing IT to the Next Frontier

Fig. 11. Overview of an IT infrastructure based on an SDE.
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network by logical centralization of the ‘‘network brain.’’
While data plane elements became dumb, but highly effi-

cient and programmable packet forwarding devices, the

control plane elements are now represented by a single

entity, the controller or NOS. Applications implementing

the network logic run on top of the controller and are

much easier to develop and deploy when compared to

traditional networks. Given the global view, consistency of

policies is straightforward to enforce. SDN represents a
major paradigm shift in the development and evolution of

networks, introducing a new pace of innovation in net-

working infrastructure.

In spite of recent and interesting attempts to survey

this new chapter in the history of networks [14]–[16], the

literature was still lacking, to the best of our knowledge,

a single extensive and comprehensive overview of the

building blocks, concepts, and challenges of SDNs. Try-
ing to address this gap, this paper used a layered ap-

proach to methodically dissect the state of the art in

terms of concepts, ideas, and components of SDN, cover-

ing a broad range of existing solutions, as well as future

directions.

We started by comparing this new paradigm with tradi-

tional networks and discussing how academy and industry

helped shape SDN. Following a bottom-up approach, we
provided an in-depth overview of what we consider the

eight fundamental facets of the SDN problem: 1) hardware

infrastructure; 2) southbound interfaces; 3) network vir-

tualization (hypervisor layer between the forwarding de-

vices and the NOSs); 4) NOSs (SDN controllers and control

platforms); 5) northbound interfaces (common prog-

ramming abstractions offered to network applications);

6) virtualization using slicing techniques provided by spe-
cial purpose libraries and/or programming languages and

compilers; 7) network programming languages; and finally,

8) network applications.

SDN has successfully managed to pave the way toward
a next-generation networking, spawning an innovative re-

search and development environment, promoting advances

in several areas: switch and controller platform design,

evolution of scalability and performance of devices and

architectures, promotion of security and dependability.

We will continue to witness extensive activity around

SDN in the near future. Emerging topics requiring further

research are, for example: the migration path to SDN, ex-
tending SDN toward carrier transport networks, realization

of the network-as-a-service cloud computing paradigm, or

SDEs. As such, we would like to receive feedback from the

networking/SDN community as this novel paradigm evolves,

to make this a ‘‘living document’’ that gets updated and

improved based on the community feedback. We have set up

a github repository (https://github.com/SDN-Survey/latex/

wiki) for this purpose, and we invite our readers to join us in
this communal effort. Additionally, new releases of the

survey will be available at http://arxiv.org/abs/1406.0440. h
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