
CS2123 Data Structures

Recall the stack ADT and its improved implementation using dynamic array with initial size of 100

elements. It was doubling the size of the dynamic array by calling Expand(stack) in Push(stack,

element) function when the current stack is full.

Suppose we want to implement a similar (but an opposite) function Shrink(stack) that will be called in

Pop(stack) when the number of elements in stack is less than the quarter of the current size of the array

and the size of the array is larger than 200. Below are some of the original declarations in stack.h and

stack.c files, and the modified Pop(stack) function.

/**** stack.h ****/

typedef double

 stackElementT;

typedef struct stackCDT

 *stackADT;

/* exported functions */

#define InitialStackSize100 /**** improved stack.c ****/

struct stackCDT{

 stackElementT *elements;

 int count;

 int size;

};

stackElementT Pop(stackADT stack)

{

 if (StackIsEmpty(stack)) Error("Pop of an empty stack");

 if(stack->count < stack->size / 4 && stack->size >= 200) Shrink(stack);

 return (stack->elements[--stack->count]);

}

So, you will just implement Shrink(stackADT stack) function, which should allocate a new

array with the half size of the current array, copy the existing elements from old array into new

array, free the old array, and update the necessary fields in the stackCDT pointed by stack.

static void Shrink(stackADT stack)

{

Name:…………………… Q11

