
Quick Intro to Linux

CS - UTSA

Terminal Commands

Linux has a very powerful command-line interface, which is invoked by typing commands
into a terminal or xterm window directly (like the DOS/CMD window in Windows). This
small note can help you get started learning some of these commands; remember that much
more detailed descriptions are available online, in particular:

http://www.redhat.com/docs/manuals/linux/RHL-6.2-Manual/getting-started-guide/ch-doslinux.html

http://www.hscripts.com/tutorials/linux-commands/

Log onto one of the Linux machines in the CS Main lab, SB 3.02.04. Make sure you
are in Linux mode. If computer is in Windows, ask lab assistant to reboot to Linux. Log
into your Linux account. You will also be able to connect from any machine on the internet
by ssh’ing to one of the machines in the CS Main lab. The machines permanently on linux
are elk01, . . . elk08. You can also do your work on your home machine if you install linux.
But, you need to make sure that your programs will compile and run on Linux machines in
the CS Labs, because TAs will check your programs on those machines.

Once you log onto a Linux machine in the labs, click on Applications->accessories->terminal
to open up the terminal window which gives you access to the command prompt.

Here are some common commands:

• ls : list. Prints out what files are available in the present working directory. Important
flags include ‘-A’, which says to list hidden files as well as normal files, and ‘-l’ which
says to list with long format (providing more information about all files.

• pwd: print working directory. Shows where you are in the file system (i.e. are you at
your top directory, or deep in nested folders)? For instance, right after I log in, if I
type ‘pwd’, I get:

main205>pwd

/home/korkmaz

• mkdir: make directory (a directory is often called a folder in windows). A directory is
a special file on the storage device that can contain other files. For instance, ‘mkdir
cs2213’ will create the directory/folder cs2213 in the present working directory.

• cd : change directory. This is the way to move around in the filesystem. For instance,
if I type cd cs2213 then I will change into the subdirectory (a subdirectory is a folder
which is contained within another folder) cs2213.

⇒ There are two special directory handles that you use when issuing command like
cd. These are:

1

1. ‘./’: the current directory the command prompt is in. For example ‘./xc2f’
runs the program xc2f which can be found in the present working directory.

2. ‘../’: the directory immediately above the current one. Can be repeated as often
as you like. For instance ‘../../xc2f’ runs the program xc2f which is found in
the directory two levels above the current one.

⇒ When you provide where the file is to be found, this is called the path. So for
‘../../xc2f’, ‘../../’ is the relative path (because the path is relative to the current
working directory), and ‘xc2f’ is the file name. A fully qualified path or absolute path
is one that is not dependent on the directory where you currently are. For instance
‘/home/korkmaz/cs2213’ is a fully qualified path.

• vi filename : an editor. ESC: go to command mode, i: go to insert mode, ZZ: save
and quit, x: delete (more later).

• cat : prints. Prints out the content of files on the screen.

• cp: copy. Copy a file to another file. For instance ‘cp c2f.c f2c.c’ will copy the file
c2f.c so that the same data exists as the file f2c.c in the same directory.

– Linux filename commands have the special character ‘.’, which means “Using the
same filename” when given as a target for commands like cp or mv. For instance
‘cp c2f.c ../.’ will duplicate the file c2f.c into the directory above this one,
using the filename c2f.c.

• mv: move. Copy a file to a new file/path, and delete the original file. For instance,
‘mv c2f.c celc2fair.c’ will result in replicating the file c2f.c as celc2fair.c, and
then deleting the original filename (c2f.c).

• rm: remove. Delete the provided file(s). For instance ‘rm c2f.o’ will permanently
delete the file c2f.o. Use this command with care, since you can delete every file
you own if you are not careful. I recommend that you always use the -i flag, which
will cause rm to ask you if you really want to delete. You can ensure this by typing
‘alias rm rm -i’ before ever using rm.

• rmdir: remove directory. Delete the specified directory. This command only works if
the directory is empty.

• history: print a listing of most recent commands the user has entered. You can then
repeat a command using the !. For instance !110 will repeat the command with the
label 110 from the history listing.

→ For most shells, hitting the up arrow will take you one command back in your
history, the down arrow will take you one command forward in your history,
and the left and right arrows allow you to move around in these remembered
commands so that you can edit them.

• man : manual. Print man page of provided command. For instance, ‘man ls’ provides
the system help on using the command ls.

2

• pine: a simple non-graphical e-mail client

• gcc : invoke the C compiler. (more information is in the next page)

3

Creating Files & Compiling C Programs

• To create a file with the name of program.c, we need a text editor:

1. Text editors that work within a terminal window include pico, vi, vim, and emacs.
To use these simply issue a command like: pico program.c in the terminal
window.
Editing with vi: Change to the ∼/tmp directory, execute vimtutor and follow
directions in order to get an introduction to the vi editor. (The vi editor that
you will be using is really vim) This will take a while but will save considerable
time later. You can also use the cheat sheet provided at the class web page.

2. You can also use a graphical text editor similar to Notepad by
Applications->accessories->text editor or simply issue a command like:
gedit program.c. If you use this, make sure the directory of your terminal
window matches where you save the file to (in the terminal window, pwd will
display your present working directory [i.e, where you are in the filesystem]).

• Once you are in a text editor, you can type any text and save it. Here is a famous C
program that worths typing and saving:

#include <stdio.h>

int main()

{

printf("Hello, world.\n");

return 0;

}

• To compile the program that has been saved to the filename program.c in the present
working directory, and place the executable in the filename program in the same
directory (under windows, a .exe file extension will be automatically added to the
filename, but this is not true for linux):

gcc program.c -o program

gcc -o program program.c

(where of course program is replaced by the names of your new programs).

– To get the compiler to give you a bunch of warnings about sloppy programming,
add the -DWall flag to your compilation. i.e., type:

gcc -Wall program.c -o program

• To execute the program, simply type ./program.

• To print the program, issue lpr program.c in a terminal window.

• To print results of a run of your program, redirect the output to a file, and then simply
print that file, as in:

4

./program > output.txt

lpr output.txt

Make a directory hierarchy for this class

1. Log onto one of the Linux machines in the CS labs., You will also be able to connect
from any machine on the internet by ssh’ing to one of the machines in the CS Main
lab. The machines permanently on linux are elk01, . . . elk08.

2. Make the directory courses under your home directory with the command mkdir

courses

3. Change directories to your courses directory with the command cd courses

4. Make the directory cs under your courses directory.

5. Change directories to your cs directory.

6. Make the directory 2213 under your cs directory.

7. Change directories to your 2213 directory.

8. Change to your home directory using cd. Notice that a cd with no argument changes
to your home directory.

9. Make an alias to change directories to your newly created directory, ∼/courses/cs/2213,
with the command cs2213, i.e.
alias cs2213 cd ∼/courses/cs/2213
Notice that this only works in the shell in which it was executed, not in any other
shell (window).

10. Define a cdpath to your cs directory with the command
set cdpath=(∼/courses/cs ∼)

11. Print the working directory using the command pwd.

12. Jump back and forth between your home directory and your cs2213 directory using
the two commands cd 2213 and cs2213. The command cd 2213 uses the cdpath in
the following way: it first checks for a 2213 subdirectory in the current directory and,
upon not finding one, looks for a 2213 subdirectory in each directory in the cdpath,
changing to the first one found. After each change of directory print your current
working directory.

13. Change to your home directory and make subdirectories called tmp, bin, src, etc.
(if they don’t already exist)

5

A sample session

The following is an actual screen dump of a terminal session showing how one can use
some of the outlined commands (I have added some blank lines to make it slightly easier to
follow). I log into the machine main201.cs.utsa.edu in the CS Main lab.

In this session, as defined above, I create a directory hierarchy for all of my cs 2213 files.
Subdirectories will allow us to easily find files later. Note that the sentences prefaced with
were not typed in by me or printed out by the terminal: they are comments that I have
added to explain what I was doing during the session.

The prompt is where you type the commands in the terminal window. Different users
have different prompts (and you can change them if you know how). My prompt is
machine name>. So, on main201 it will be ‘main201>’. Your prompt may differ.

The machines elk01 through elk05 should be available for remote login to linux 24
hours day. Other machines are available or not depending on if they have been booted into
Linux or Windows. These machines include ant00 – ant34, bat00 – bat55, cat00 – cat32,
dog00 – dog62.

Remember that if you type the first few letters of a file name and then hit the Tab key,
the shell will usually autocomplete the file name!

main201>pwd # shows current directory

/home/korkmaz

main201>mkdir courses # create courses dir in home area

main201>cd courses # go to courses subdir

main201>ls # no files in subdir yet

main201>ls -a # -a shows hidden/virtual files

./ ../

main201>pwd # shows current directory

/home/korkmaz/courses

main201>mkdir cs # create cs dir in courses

main201>cd cs # go to cs subdir under courses

main201>mkdir 2213; cd 2213

main201>pico program.c #gedit program.c & # create a file, edit/save as above

main201>cp program.c prog.c # copy program.c to prog.c

main201>gcc -Wall -o prog prog.c # compile prog.c

main201>ls # see what files I have now

program.c prog.c prog

main201>rm *.exe x* prog prog.c~ # get rid of unneeded files

main201>ls

program.c prog.c prog

main201>mv prog.c helloworld.c # get better name for program

main201>ls

program.c helloworld.c

6

main201>gcc -Wall -g -o hello helloworld.c # compile program: -g for debug

main201>mkdir ex1 # create directory for 1st example

main201>mv *.c ex1/. # put c files into it

main201>ls

hello ex1/

main201>ls ex1/ # make sure they are there

program.c helloworld.c

Let’s create an another program under ex1 to convert Centigrade to Fahrenheit:

main201>cd ex1 # go to ex1 directory

main201>mv program.c c2f.c # move program.c to a new file named c2f.c

main201>pico c2f.c # gedit c2f.c & # open the file with an editor

In the editor, modify the content so that you will have the followings

/*

* Include C header files

*/

#include <stdio.h>

#include <stdlib.h>

int main(int nargs, char **args)

{

double temp_c, /* temperature in Centigrade */

temp_f; /* temperature in Fahrenheit */

/*

* Prompt for centigrade temperature

*/

printf("What is the temperature in Centigrade? ");

scanf("%lf", &temp_c);

/*

* Convert it to Fahrenheit

*/

temp_f = 9.0*temp_c/5.0 + 32.0;

printf("%.2f degrees Centigrade is %.2f degrees in Fahrenheit\n",

temp_c, temp_f);

return 0; /* signal normal end of program */

}

Now let’s compile, run, and debug it.

main201>gcc -Wall -g -o c2f c2f.c # compile program: -g for debug

main201>ls # see if executable is there

c2f.c c2f* helloworld.c

main201>./c2f # run program

7

What is the temperature in Centigrade? 100

100.0000 degrees Centigrade is 212.0000 degrees in Fahrenheit

main201> gdb c2f # debug the program

main201> ddd c2f # debug the program with a better interface

Another Example of Compiling, Executing, and Debugging

1. Type in the following C program into the file fact.c:

#include <stdio.h>

#include <stdlib.h>

int factorial(int number);

int main(int argc, char *argv[]) {

char input[1024];

int num, fact;

printf("Enter a nonnegative number: ");

while (gets(input) != NULL) {

num = atoi(input);

if (num >= 0) {

fact = factorial(num);

printf("\n\n %d! = %d\n\n",num,fact);

}

printf("Enter a nonnegative number: ");

}

exit(0);

}

2. Type in the following C function into the file factsub.c:

int factorial(int number) {

if (number <= 0) {

return(1);

} else {

return(number*factorial(number-1));

}

}

3. Compile the program in the two files fact.c and factsub.c calling the executable fac.
Use the command

gcc -g -Wall fact.c factsub.c -o fac

8

This will compile both c modules, creating object modules for each and then link
together the modules to create the executable. The object modules will not be written
to the disk in this case. The end of input is indicated by a ctl-D (D̂).

4. It should be noted that there are serious problems with this program. It uses gets()
which creates a buffer overflow hazard (a security concern). The input is not carefully
checked for valid user input.

5. Compile the program and look at its execution in an X-based debugger. On the suns
and linux machines you can use the X front end for gdb, the Gnu debugger, ddd.

(a) Compile your program so that it contains debugging information (-g switch):

gcc -Wall -g fact.c factsub.c -o fac

Now execute fac in the debugger:

ddd fac

You will see the ddd screen and in the source window you will see your main
program. You can set a breakpoint anywhere in the program by merely clicking
on a line and then clicking on the break button. When the program executes, it
will stop at the breaks allowing you to see what values are in the variables.

There should be breakpoint set at the first line of the program so if you click on
the run button, ddd will stop the execution of your program on the first line. Do
so!

Now set a breakpoint on the first printf in the while loop by clicking on the line
and clicking on the break button. You should see a little red stop sign appear to
the left of the line.

Now click on the cont (continue) button. In the bottom box you will see the
output asking for a nonnegative number. You need to input your number, say 4,
and then the program will continue to the breakpoint.

Any time that ddd has control (at a breakpoint, etc), you can look at any of the
variable values. So to see the current value of num, click on the variable in the
program window, anywhere in the code, and then click on the print button. You
will see the value in the bottom window. If you want to see the string read into
the input array, you can click on the print button then you will see all of the
character values for the entire array. The string ends at the first ’\000’. Now
look at the value of the fact variable.

You can also step through a program, either stepping across functions or stepping
into functions. The step button will step into functions while next will step across
functions. If you single step using next until the pointer points at the factorial
call and then click on the step button. You will see the source code from the
factsub.c file and your current location. Keep using the step button to go deeper
into the recursive calls, looking at the value of number each time that you make
a call.

What happens if you compute the factorial of 17? Of 34? What is the reason
for this behavior?

9

