
1 
 

CS 2123 Data Structures 

Fall 2016 – Final Exam – Saturday, Dec 10th (07:00am - 09:30am) 

You have 150 min. + 5 min for the survey.      Good luck. 

This exam has 10  questions in 12 pages and an exit survey in page 13 

You can use the 2-page C reference card posted in the class web page.  

Name:……………………..............…   Section:............           Score: ……./100 +( 2pt bonus credit for survey)   

1. (10pt)  [Pointers] Trace the following code and show the changes in memory: 

main() { 

int v1[] = {20, 30, 40}, *ptr;  

myfunc(&v1[1],  &ptr); 

} 

myfunc(int *p1, int **p2){  

*p2 = p1++; 

*p1-- = 80;  

**p2 = 60; 

} 

2. (10pt) [Strings] Implement char *makeHTMLtag(char *s); which creates a new 

string by adding '<' in the beginning and  '>' in the end of s. If no memory, return NULL.  

For example, makeHTMLtag("abc xyz"); returns a new string as "<abc xyz>"  

   char * makeHTMLtag(char *s) 

   {     /* Assume standard libraries stdlib.h, stdio.h, string.h are included */ 

                  

 

Var Addr content 

v1 [0]           1004  

v1[1] 1008  

v1[2]            1012  

ptr    1016  

 1020  

p1 1024  

p2 1028  

 



2 
 

3. (10pt)  [Dynamic Memory Allocation] Suppose somehow we have already created the below 

data structure. Now you are asked to write a function that can create a copy of such a given 

structure. Make sure your copy function deals with different number of employees as well as 

different number of days of each employee.  

 

empList  

 

ID days hours 

11 4  

13 10  

25 7  

 

#include <stdio.h> 

#include <stdlib.h> 

typedef struct employee { 

    int ID; 

    int days; 

    int *hours; 

} employeeT; 

int main(void) 

{ 

  employeeT  *empList, *newEmpList ; 

  int numEmp;        

 

 

  numEmp = 3; 

  empList =  CreateInitialEmpList(numEmp);  

 /* suppose this function has been implemented for you and  

     it has created the data structure shown above */  
 

 

  newEmpList = CopyEmpList(empList, numEmp);  

 /* You are asked to just implement this function in the next page */ 
 

}  

5 8 2 7 

 2 4 4 3 5 4 3 5 2 4 

 
3 4 5 2 3 4 5 
 



3 
 

employeeT *CopyEmpList(employeeT *oldList, int numEmp) 

{ 

  employeeT *newList; 

  

 
  



4 
 

4.  (10pt) [Files and Stacks] Suppose you are given the stack.h and its implementation stack.c. So 

you will just use it in your application (client) program below. Here are the important things in 

stack.h 

#ifndef _stack_h   

#define _stack_h 

#include "genlib.h" 

 

typedef void *stackElementT; 

typedef struct stackCDT *stackADT; 

 

stackADT     NewStack(void); 

void      FreeStack(stackADT stack); 

void      Push(stackADT stack, stackElementT element); 

stackElementT Pop(stackADT stack); 

int       StackIsEmpty(stackADT stack); 

#endif 

Please note that the stackElementT  is void *, so to store your data (e.g., int), you 

need to first allocate memory for your data (e.g., int), save your data at that address, and  push 

that address onto stack. When you pop, you will get the address of your data. By dereferencing 

it, you can access your data.  

Now you are asked to complete the application (client) program in the next page. This program 

simply reads the integer numbers in each line from an input file, AND  prints the same 

numbers from each line into another file while reversing their order.  Using stack library 

will make this reversing task easy! 

For example, 

     input.txt              output.txt 

4  23  45  2  56 -1      56  2  45  23  4  -1 

3  51  34  -1       34  51  3 -1 

-1         -1 

3  4 -1        4  3 -1 

As seen in the above example, each line ends with a special value (-1) to indicate the end of 

line. After printing the numbers before -1 in reverse order,  you should also print -1 and '\n' 

to indicate the end of each line in output file, too.   

Make sure you check and release dynamic allocations and structures. Also close files... 

  

Your 

Program 



5 
 

#include <stdio.h>  

#include <stdlib.h>  

#include "stack.h"  

int main()  

{ 

  FILE *infp, *oufp; 

  StackADT stack;      

  int num, *ptr; 

 

  if((infp =  fopen("input.txt", "r"))==NULL) exit(0);  

  if((outfp = fopen("outut.txt", "w"))==NULL){ flose(infp); exit(0); } 

 

     

/* if needed, you can define other variables here */ 

 

 

 



6 
 

5.  (10pt) Recall the buffer ADT,  buffer.h and suppose we consider its implementation based on 

the circular double link list (CDLL) representation. For A | B C, it can be visualized as follows 

 
You are asked to implement the following function which  removes the character AFTER the cursor 

if the cursor is not at the end. After calling it for the above case, the buffer will have:  A | C.  

/* CDLL-imp-buf.c  */ 

#include "buffer.h" 

 

typedef struct Dcell { 

    char ch; 

    struct Dcell *prev; 

    struct Dcell *next; 

} DcellT; 

  

struct bufferCDT { 

    DcellT *start; 

    DcellT *cursor; 

};  

 

bufferADT NewBuffer(void) 

{ 

 bufferADT buffer; 

 DcellT *dummy; 

 buffer = New(bufferADT); 

 dummy = New(DcellT *); 

 

 buffer->start = 

 buffer->cursor = 

 buffer->start->prev = 

 buffer->start->next = dummy; 

 return (buffer); 

} 

 

/* implementations of  other functions */ 

 

void DeleteCharAfterCursor(bufferADT buffer) 

{                      
     DcellT *cp; 
 

         



7 
 

6.  (10pt) [Binary Trees] Suppose we added a new field (called numC) into the binary tree 

structure, as shown below. The new field represents the number of children in each node. So 

it will be 0, 1, or 2. But, our current insert function does not set this field correctly.  

 

So, you are asked to write a function void SetNumberOfChildren(nodeT *t); 

which sets the this field correctly for every node in a given binary tree.  

 

typedef struct node  { 

   int key; 

   int numOfChildren; 

   struct node *left,  *right; 

}  nodeT, *treeT;  

 

void SetNumberOfChildren(nodeT *t); 

{    

     



8 
 

7. (10pt) [Balanced Binary Search Tree (BST) and AVL] Suppose you get the following 

numbers one at a time and insert into the BST using AVL balancing algorithm.  

 

   5  10  30  17  24 4   3  

 

Show how the tree grows as you insert each number. If there is no rotation, keep inserting the 

new node into the existing tree. But if there is a rotation, please re-draw the tree after each 

rotation so that we can clearly see the type of rotation(s) you did.   

t  

 

 

   
5 



9 
 

8. (10pt)  Using the below graph, show how shortest path algorithm (known as Dijkstra’s 

algorithm) finds the shortest paths starting from NODE  1 to every other node. Don't just 

inspect the graph and give solutions! Instead follow the Dijkstra's algorithm by showing all 

the changes in distance and parent labels, as we did in class. Then use solid arrows to show 

parent-children relationship.   

 
Here is another copy. If you make too many mistakes in the above one, you can use this one….. 

 



10 
 

9. (10pt) Recall that we used the following structures to represent a graph using adjacency list.  

#define MAXV 6 

typedef struct edgenode { 

   int y;    

   int w; 

   struct edgenode *next; 

} edgenodeT; 

typedef struct { 

   edgenodeT *edges[MAXV+1]; 

   int degree[MAXV+1]; 

   int nvertices; 

   int nedges; 

   bool directed; 

} graphT; 

graphT *g;  

 

One of the disadvantages of the above representation is that the maximum number of nodes is fixed to 

MAXV. So we waste some spaces when we don't have that many nodes or we cannot use this program if 

we have more nodes than MAXV. Accordingly, we want to remove fixed size array and use a link list to 

dynamically store nodes, their  IDs, degrees etc. So we need to modify graphT  and define a new cell 

structure (say nodeT)  to store nodes in a linked list. We like to keep edgenodeT as is.  

We give the new form of graphT and nodeT structures in the next page such that we can conceptually 

represent the above same graph as follows: 

 

 

 

 

 

 

 

 

 

 

 

16 

16 



11 
 

NOW you are asked to implement  int delete_link(graphT *g, int i, int j); based 

on the new representations/structures defined above. It basically deletes the edge (i, j) from the graph 

and returns 1. If link (i,j) does not exist, the function simply returns 0. 

int  delete_link(graphT *g, int i, int j);              

{ 

   edgenodeT *pe, *prev; 

   nodeT *pn;  

        

typedef  struct  node {   

   int x; // vertex id   

   int degree; 

   struct  node  *next; 

   edgenodeT *edges; 

} nodeT; 

typedef struct {    

   nodeT *vertex; 

   int nvertices; 

   int nedges; 

   bool directed; 

} graphT; 



12 
 

10.  (10pt) [Heaps] You are given the following MAX HEAP and its visualization as a tree 

strucutre with the current number of elements n = 10. 

 0 1 2 3 4 5 6 7 8 9 10 11 

heap 19 18 14 16 17 11 12 13 15 3   

 
 

 

 

 

 

 

 

 

b. (1pt) Then give the final version of the heap array, basically map the numbers from the 

above tree structure to the heap array. 
 0 1 2 3 4 5 6 7 8 9 10 11 

heap             

 

c. (5pt) Complete the missing part of the following siftup function.   
 

void siftup(int heap[], int r, int n) { 

  int parent, tmp;  

  parent = PARENT(r,n); 

  while(parent >= 0){  

        

 

 

 

 

 
 

 

 

    parent = PARENT(r,n); 

  } // end of while 

} 

  

19 

11 17 16 

3 15 13 

12 

18 
14 

a. (4pt) Insert 24 and  20 (one at a time) into the 

heap and show how the values change on the  

tree structure as the new value sifts up.  

 

(You don't need to re-draw  

the tree everytime, just cross  

the previous values and  

put the new values on  

the same tree as you do  

the necessary exchanges.)  

 

We need to see these  

changes!  



13 
 

Exit Survey (2pt bonus credit) [if applicable, Circle just one option per question] 

1. Did you solve the sample final exam problems provided at the class web page? 

[1] No, None.  [2] Yes,  Some .  [3] Yes,  Most.          [4] Yes, All of them 

2. If Yes, did you solve them with Tutor, TAs, both, or by yourself? 

[1]  Myself only [2] Tutor only   [3] TAs only           [4] Tutor, TAs, myself   

As you know, The Department had provided Tutor and Common TAs to help you. Please 
answer the following questions based on your experience with Tutor and common TAs. 

Please answer the followings IF you attended any tutoring sessions and got some help 
from our Tutor (Javier),  

3. How knowledgeable was the Tutor about the subject matter of the course?  

[1] Not at all knowledgeable  [2] Slightly...     [3] Moderately ...  [4] Quite knowledgeable 

4. How clearly did the Tutor present material? 

  [1] Not at all clearly   [2] Slightly ...      [3] Moderately ...  [4] Quite clearly 

5. Overall, how would you rate the usefulness of tutoring in your learning the subjects?   

  [1] Not at all useful   [2] Slightly ...      [3] Moderately ...  [4] Quite useful 

6. Throughout the semester, how many times did you get any help from the other 
common TAs?  [Consider TAs other than our own course TAs (Maryam or Kavita)] 

[1] None. [2]  5 times or less.     [3] 10 times or less.       [4]  More than 10 times.   

7. What type of help did you get the most from other common TAs in the main CS lab?  

 [1] Help with Programming assignments,   

 [2] Help with Solving sample exam questions,  

 [3] Help with System problems such as Login, using Linux, VDI, SSH etc.  

8. How easy did you find it to meet with other common TAs in the main CS lab?  

 [1] Not at all easy   [2] Slightly ...      [3] Moderately ...  [4] Quite easy   

9. How knowledgeable were other common TAs about the subject matter of the course?  

[1] Not at all knowledgeable  [2] Slightly...     [3] Moderately ...  [4] Quite knowledgeable 

10. How clearly did other common TAs present material? 

  [1] Not at all clearly   [2] Slightly ...      [3] Moderately ...  [4] Quite clearly 

11. Overall, how would you rate the usefulness of other common TAs in your learning the 
subject matter and passing this course?   

  [1] Not at all useful   [2] Slightly ...      [3] Moderately ...  [4] Quite useful 

Please use the next page if you like to provide more feedback about Tutoring or Common 

TAs (e.g., its weaknesses, strengths, how to make it more effective etc.)  


