
1

CS 2123 Data Structures

Spring 2016 – Final Exam – May 9, 2016 Monday 03:15 pm - 05:45 pm

You have 150 min. + 5 min for the survey. Good luck.

This exam has 10 questions in 12 pages and an exit survey in page 13

You can use the 2-page C reference card posted in the class web page.

Name:……………………..............… Score: ……./100 +(2pt bonus credit for the survey)

1. (10pt) Fill the diagram to show the contents of

memory after each line of the following code:

int v1[] = {10,15}, v2 = 25;

int *p1 = v1 + 1, **p2 = &p1;

*p1-- = 60;

**p2 = 70;

v2 = *p1 + **p2;

2. (10pt) Implement char *ExpandedString(char *s, char ch); which creates a

new string by inserting the given character ch after each char in the given string s. If there is

no memory, it returns NULL.

For example, ExpandedString("ABC", '-'); returns a new string as "A-B-C-"

 char *ExpandedString(char *s, char ch);

 { /* Assume standard libraries stdlib.h, stdio.h, string.h are included */

Var Addr content

v1 [0] 1004

v1[1] 1008

v2 1012

p1 1016

p2 1020

2

3. (10pt) A color image is a 2D array of pixels where each pixel is represented by three integers

showing Red, Green, Blue (RGB) components. Suppose we store a color image in a text file

using a very simple format as follows: First two integers in the file represent the numbers of

rows and columns. Then the file contains that many rows and columns of pixels, where each

pixel has three integers to represent RGB components. For example a 3x4 color image would

be saved in a file as follows:

3 4

1 2 3 1 2 3 1 2 3 1 2 3

3 6 5 3 34 43 51 43 5 4 8 4

6 45 34 53 5 4 8 4 66 86 12 43

Complete the following program which takes the file name from the command line and reads

the pixel values into a dynamically create 2D array of pixelT structure defined below. So we

can access the colors of each pixel using img[i][j].r, img[i][j].g, img[i][j].b

/* suppose all standard libraries and our book libs are included here */

typedef struct pixel {

 int r, g, b;

} pixelT;

int main(int argc, int *argv[])

{

 FILE *fp;

 int row, col, i, j;

 pixelT **img;

 if (argc<2) {

 printf("Usage: prog filename\n");

 exit(-1);

 }

 if((fp=fopen(argv[1], "r"))==NULL){

 printf("File cannot be opened\n");

 exit(-1);

 }

 fscanf(fp,"%d %d", &row, &col);

Name:....................

3

 /* dynamically create 2D array of pixelT (5pt) */

/* read the RGB values of each pixel into the 2D array (3pt) */

/* Free the dynamically allocated memory (2pt)*/

4

4. (10pt) Suppose we store student IDs and their names in a single linked list. In addition to ID,

name and next fields, each cell in this list contains a pointer (say courses) to access another

single linked list where we store some information about the courses taken by each student.

Suppose we store only course code (cs2123), letter grade, and next fields. Specifically, we

use the following structures to store students and their courses.

typedef struct course_cell {

 char code[7]; // "cs2123"

 char letter_grade;

 struct course_cell *next;

} courseT;

typedef struct student_cell {

 int ID;

 char name[20];

 struct student_cell *next;

 courseT *courses;

} studentT;

Suppose somehow we created the below data structure using the above structures.

Now implement void DisplayClass(studentT *start, char *code); which

lists the students' ID, name and grade in the given course. For example, it generates the

below table when we call it as DisplayClass(start, "cs2123");

"cs2123"

'C'

NULL

23

"T.K."

start

28

"Z.Y."

NULL

30

"P.M."

NULL

"cs1143"

'B'

"cs2123"

'A'

NULL

Course name: cs2123

ID Name Grade

-- ---- ------

23 T.K. A

30 P.M. C

Note: Don't worry about the format and

spaces too much, just generate the list and

make sure that you have the header as

shown and one student in each line!

Also standard libraries are included!

5

Name:………………….

void DisplayClass(studentT *start, char *code)

{

6

5. (10pt) Recall the buffer ADT, buffer.h and suppose we consider its implementation based on

the circular double link list (CDLL) representation. For A | B C, it can be visualized as follows

You are asked to implement the following function which removes the character before the cursor if

the cursor is not at the beginning. After calling it for the above case, the buffer will have: | B C.

/* CDLL-imp-buf.c */

#include "buffer.h"

typedef struct Dcell {

 char ch;

 struct Dcell *prev;

 struct Dcell *next;

} DcellT;

struct bufferCDT {

 DcellT *start;

 DcellT *cursor;

};

bufferADT NewBuffer(void)

{

 bufferADT buffer;

 DcellT *dummy;

 buffer = New(bufferADT);

 dummy = New(DcellT *);

 buffer->start =

 buffer->cursor =

 buffer->start->prev =

 buffer->start->next = dummy;

 return (buffer);

}

/* implementations of other functions */

void DeleteCharBeforeCursor(bufferADT buffer)

{
 DcellT *cp;

7

6. (10pt) Span of a binary search tree (BST) is defined as the difference between the largest

and smallest elements in the BST. Write a function int BST_span() which returns the

span of a binary search tree. Basically find the maximum and minimum in BST and return

their difference. You don't need RECURSION! Node declaration of the tree is given below.

typedef struct node {

 int key;

 struct node *left, *right;

} nodeT, *treeT;

 int BST_span(nodeT *t)

{

8

7. (10pt) Consider the below binary tree. Suppose we would like to perform left rotation as in

AVL insert algorithm. First draw the tree after left rotation on N1-N2 edge, then complete

the function to accomplish the left rotation. It will be called as LeftRotation(&t);

 First draw the tree after LEFT rotation on

 N1--N2 edge? (4pt.)

 t

LeftRotation(nodeT **tptr) {

 nodeT *parent, *child;

 parent = *tptr; // N1

 child = parent->rigtht; // N2

 /* Write the piece of code to the above LEFT

 rotation (you can use temporary pointers) 6pt */

Name:....................

9

8. (10pt) Using the below graph, show how shortest path algorithm (known as Dijkstra’s

algorithm) finds the shortest paths starting from NODE 1 to every other node. Don't just

inspect the graph and give solutions! Instead follow the Dijkstra's algorithm by showing all

the changes in distance and parent labels, as we did in class. Then use solid arrows to show

parent-children relationship.

Here is another copy. If you make too many mistakes in the above one, you can use this one…..

10

9. (10pt) Recall that we used the following structures to represent a graph using adjacency list.

#define MAXV 6

typedef struct edgenode {

 int y;

 int w;

 struct edgenode *next;

} edgenodeT;

typedef struct {

 edgenodeT *edges[MAXV+1];

 int degree[MAXV+1];

 int nvertices;

 int nedges;

 bool directed;

} graphT;

graphT *g;

One of the disadvantages of the above representation is that the maximum number of nodes is fixed to

MAXV. So we waste some spaces when we don't have that many nodes or we cannot use this program if

we have more nodes than MAXV. Accordingly, we want to remove fixed size array and use a link list to

dynamically store nodes, their IDs, degrees etc. So we need to modify graphT and define a new cell

structure (say nodeT) to store nodes in a linked list. We like to keep edgenodeT as is.

We give the new form of graphT and nodeT structures in the next page such that we can conceptually

represent the above same graph as follows:

16

16

11

typedef struct node {

 int x; // vertex id

 int degree;

 struct node *next;

 edgenodeT *edges;

} nodeT;

typedef struct {

 nodeT *vertex;

 int nvertices;

 int nedges;

 bool directed;

} graphT;

NOW you are asked to implement print_total_link_w_per_node(graphT *g); based on

the new representations/structures defined above. It basically prints each node ID and the total weight

of the links that are incidents to that node. For the above graph, your program should print:

Node 1 --> total link W = 9

Node 2 --> total link W = 9

....

print_total_link_w_per_node(graphT *g)

{

 edgenodeT *pe;

 nodeT *pn;

12

10. (10pt) You are given the following heap array of integers, which is not a MAX HEAP yet.
 0 1 2 3 4 5 6 7 8 9

heap 11 13 12 16 10 14 19 18 15 17

a. (7pt) You are asked to visualize it as a tree structure and make the necessary changes to

build a valid MAX heap (i.e., the value of every node is greater than or equal to the values of

its children). You don't need to re-draw the tree everytime, just cross the previous values and

put the new values on the same tree as you build the heap upwards. We need to see changes!

b. (3pt) Give the new version of the heap array, after the heap is built.

 0 1 2 3 4 5 6 7 8 9

heap

13

Exit Survey (2pt bonus credit)

1. Did you attend the last class on 4/28 when we did a general review for the final exam?

[1] Yes [2] No

2. If Yes, do you think that the review session helped you in this final exam?

[1] Definitely not. [2] Not really. [3] Somewhat. [4] Definitely.

--

3. Did you solve the sample exam problems provided in the class web page?

[1] No, None. [2] Yes, Some. [3] Yes, Most. [4] Yes, All of them.

4. If Yes, do you think these sample problems helped you in this final exam?

[1] Definitely not. [2] Not really. [3] Somewhat. [4] Definitely.

--

As mentioned in the class, The Department had Common TAs available in the Main CS lab
(NPB 2.118) almost all the time (from 9am to 5pm on the week days) to help all students.

5. Throughout the semester, how many times did you get any help from the common TAs
other than our own course TA (Mahmoud Abdelsalam)?

[1] None. [2] 5 times or less. [3] 10 times or less. [4] More than 10 times.

--

 Answer the following questions
if you get any help from common TAs other than our own course TA (Mahmoud Abdelsalam).

6. What type of help did you get from other common TAs in the main CS lab? (e.g, Help with

programming assignments, solving sample exam questions, system problems such as login etc.)

...

7. How easy did you find it to meet with other common TAs in the main CS lab?

 [1] Not at all easy [2] Slightly ... [3] Moderately ... [4] Quite easy

8. How knowledgeable were other common TAs about the subject matter of the course?

[1] Not at all knowledgeable [2] Slightly... [3] Moderately ... [4] Quite knowledgeable

9. How clearly did other common TAs present material?

 [1] Not at all clearly [2] Slightly ... [3] Moderately ... [4] Quite clearly

10. Overall, how would you rate the usefulness of other common TAs in your learning the
subject matter and passing this course?

 [1] Not at all useful [2] Slightly ... [3] Moderately ... [4] Quite useful

Please use the back of this page if you like to provide more feedback about Common TA

system (e.g., its weaknesses, strengths, how to make it more effective etc.) Thanks!

