
1

Name / ID (please PRINT) Sequence #:_____ Seat Number:____

___________________________ ______________________________________

CS 2123.001 Data Structures

Spring 2018 – FINAL

 CS 2123.001 Monday 7-May 9:45 AM - 12:15 PM

 This is a closed book/note examination. But You can use the reference card(s) given to you.

 This exam has 9 questions in 12 pages. Please read each question carefully and answer all the

questions, which have 100 points in total. Feel free to ask questions if you have any doubts.

 Partial credit will be given, so do not leave questions blank.
__

Question Topic Possible

Points

Received

Score

1 Pointers (tracing a program) 10

2 String processing/manipulation 10

3 Dynamic Memory allocation 10

4
Application of ADT or addition/modification to ADT

(One of StackADT, QueueADT, BufferADT)
10

5 Trees - Recursion 10

6 Trees - AVL 10

7 Graphs - Shortest path tracing 10

8 Graphs - Coding 15

9 Heaps 15

Survey

Bonus

credits

After Final Exam, I will e-mail you a link to complete a

survey about Tutoring and zyBook. If you complete it,

you will earn 1-point bonus credit that will be added

to your overall total.

Total 100

2

1. (10pt) [Pointers] Trace the following code and show the changes in memory:

typedef struct cell {

 int x, y, z;

} cellT;

main() {

cellT v[2]={{10,20,30},{40,50,60}};

cellT *ptr;

myfunc(&v[0], &ptr);

ptr->x = 75;

ptr++;

ptr->z = 65;

}

void myfunc(cellT *p1, cellT **p2){

*p2 = p1++;

 p1->y = 85;

(*p2)->y = 95;

}

2. (10pt) [Strings] Suppose you are given a URL which has the following format:
protocol://hostname/file_info

Now you are asked to write a function that can extract the protocol and hostname parts as

dynamically created two new strings and return them. Here is the prototype for that function:

void get_protocol_hostname(char *url, char **pp, char **ph);

For example, after

 char *url = "http://www.cs.utsa.edu/~korkmaz/index.html";

char *p, *h;

get_protocol_hostname(url, &p, &h);

p points to "http" and h points to "www.cs.utsa.edu"

Assume that the given URL is a valid string and has the format as specified above. So you

don't need to check for the correctness of the URL format. But if anything else goes wrong

(e.g., no memory) in the function, make sure p and h will be NULL.

/* give your solution to this problem in the next page */

Var Addr content

v[0].x 1004 10

v[0].y 1008 20

v[0].z 1012 30

v[1].x 1016 40

v[1].y 1020 50

v[1].z 1024 60

ptr 1028

 1032

 1036

p1 1040

p2 1044

3

void get_protocol_hostname(char *url, char **pp, char **ph)

{ /* You are NOT allowed to use any standard library functions

 except strlen() and malloc() if needed */

 char *p, *h;

 int plen, hlen, i;

 *pp = NULL; *ph = NULL;

 if (url == NULL) return 0;

4

3. (10pt) [Dynamic Memory Allocation] Suppose somehow we have created the below data

structure pointed by schedule. Now you are asked to write a function that can create a

dynamic array pointed by newTable (containing course code, start time. and instructor) as

shown below. Make sure your function deals with different number of courses (numc), too!

 typedef struct courseT {

 char code[8];

 char inst[20]; // instructor

 char room[10];

} courseT;

typedef struct scheduleT {

 char start[6];

 char end[6];

 int numc; // number of courses

 courseT *courses;

} scheduleT;

typedef struct tableT {

 char tcode[8];

 char tstart[6]; --- After Your Function --

 char tinst[20]; // instructor

} tableT;

int main(void)

{

 scheduleT *schedule;

 int numOfTimeSlots = 3;

 tableT *newTable;

/* Suppose somehow we created the above data structure pointed by schedule */

/* You are asked to just implement the following function in the next page */

 newTable = Create_CSI_Table(oldSchedule, numOfTimeSlots);

/* You are allowed to use any standard library functions that you may need */

}

 schedule

start end numC courses

"9:00" "9:50" 2

"10:00" "10:50" 0 NULL

"11:00" "11:50" 3

code "CS 2123" "CS 3333"

inst "Korkmaz" "Korkmaz"

room "NPB 1.202" "BB 0.33"

"CS 4333" "CS 4433" "CS 4443"

"ABC" "KLM" "XYZ"

"NPB 1.226" "NPB 1.226" "MB 1.22"

 newTable

tcode tstart tinst

"CS 2123" "9:00" "Korkmaz"

"CS 3333" "9:00" "Korkmaz"

"CS 4333" "11:00" "ABC"

"CS 4433" "11:00" "KLM"

"CS 4443" "11:00" "XYZ"

5

tableT *Create_CSI_Table(scheduleT *sch, int numTS)

{

 tableT *newT;

6

4. (10pt) Recall the buffer ADT, buffer.h and suppose we consider its implementation based on

the circular double link list (CDLL) representation. For A | B C, it can be visualized as follows

You are asked to implement the following function which removes the consecutively repetitive

characters AFTER the cursor if they are the same as the character BEFORE the cursor. If the cursor

is at the end of the buffer or at the beginning of the buffer, then there is no action to take.

After calling this function for the above case, the buffer will still have: A | B C

But if buffer has A | A A A A B A A C then buffer will have: A | B A A C

/* CDLL-imp-buf.c */

#include "buffer.h"

typedef struct Dcell {

 char ch;

 struct Dcell *prev;

 struct Dcell *next;

} DcellT;

struct bufferCDT {

 DcellT *start;

 DcellT *cursor;

};

bufferADT NewBuffer(void)

{

 bufferADT buffer;

 DcellT *dummy;

 buffer = New(bufferADT);

 dummy = New(DcellT *);

 buffer->start =

 buffer->cursor =

 buffer->start->prev =

 buffer->start->next = dummy;

 return (buffer);

}

/* implementations of other functions */

void DeleteRepeatedChars(bufferADT buffer)

{
 DcellT *cp;

7

5. (10pt) [Binary Search Tree (BST)] You are asked to implement the following function:

int areSameBSTs(nodeT *t1, nodeT *t2); which checks if the given two BSTs

have the same values and shape.

For example, it returns 1 for (t2, t3); while it returns 0 for (t1, t2) because they have different

shapes even though they have the same values. It should also return 0 for the trees having

the same shape but different values.

t1-----> t2 ------> t3----->

typedef struct node {

 int key;

 struct node *left, *right;

} nodeT, *treeT;

int areSameBSTs(nodeT *t1, nodeT *t2);

{

6

7 3

5 9

5

7 3

6 9

5

7 3

6 9

8

6. (10pt) [BST and AVL] Insert the following values into an AVL tree one by one. Initially the

tree is empty. No need to re-draw the tree after each insertion. But after a rotation, you must

re-draw the tree.

4, 3, 6, 7, 11, 5, 8, 9

t

9

7. (10pt) Using the below graph, show how shortest path algorithm (known as Dijkstra’s

algorithm) finds the shortest paths starting from NODE 6 to every other node. Don't just

inspect the graph and give solutions! Instead follow the Dijkstra's algorithm by showing all

the changes in distance and parent labels, as we did in class. Then use solid arrows to show

parent-children relationship.

Here is another copy. If you make too many mistakes in the above one, you can use this

one…..

6

Starting point,

source node

5

6

Starting point,

source node

5

2

2

10

8. (15pt) Recall the graph structure we used in class with a fixed size array of pointers to the

adjacency list of each node. One of the disadvantages of that representation is that the

maximum number of nodes is fixed to MAXV. So either we waste some spaces when we

don't have that many nodes, OR we cannot use this program if we have more nodes than

MAXV. In response, we decided to remove the fixed size array and use a linked list to

dynamically store node information (node IDs, degree, next, edges). Accordingly, as shown

below, we modify graphT structure and define a new cell structure (say nodeT) to store

nodes in a linked list while keeping edgenodeT as is to represent adjacency lists.

Here is how the graph on right will

conceptually be represent with the

new structures above.

NOW you are asked to use the above structures and delete a directed edge (i,j) from the the graph.

[Don't worry about edge (j, i)!]

Function prototype is void delete_link(graphT *g, int i, int j);

 [10pt] If edge (i,j) is not in the graph, then there is no action to take. Otherwise, remove

it from the graph.

 [5pt] After removing edge (i,j), if the degree of node i goes to 0, then remove the node i,

too. (The same thing can be done for node j, but to simplify the implementation, don't

worry about node j and leave node j as is)

typedef struct node {

 int x; // vertex i

 int degree;

 struct node *next;

 edgenodeT *edges;

} nodeT;

typedef struct {

 nodeT *vertex;

 int nvertices;

 int nedges;

 bool directed;

} graphT;

typedef struct edgenode {

 int y; // vertex j

 int w;

 struct edgenode *next;

} edgenodeT;

16
1

11

void delete_link(graphT *g, int i, int j)

{

 nodeT *pn, *prevN = NULL;

 edgenodeT *pe, *prevE = NULL;

 if (!g) return 0;

12

9. (15pt) [Heaps] You are given the following MAX HEAP and its visualization as a tree

strucutre with the current number of elements n = 10.

 0 1 2 3 4 5 6 7 8 9 10 11

heap 24 18 17 16 8 14 12 13 10 3

b. (1pt) After removing 18, give the final version of the heap array, basically map the

numbers from the above tree structure to the heap array.
 0 1 2 3 4 5 6 7 8 9 10 11

heap

c. (8pt) You are asked to implement a function that removes a given value from the heap if

that value is in the heap. Assume that the following functions and the macros in them are

available for you to use if needed:

 void siftdown(int heap[], int r, int n); and

 void siftup(int heap[], int r, int n);

void remove_given_val(int heap[], int *n, int val) {

 int tmp, r;

 if (*n <=0) return;

 /* Hint: first search for the given value in heap array */

24

14 8

24

16

3 10 13

12

18
17

a. (6pt) Remove a given value (e.g., 18) from the

heap and show how the values change on the

tree structure to keep it as a heap.

(You don't need to re-draw

the tree everytime, just cross

the previous values and

put the new values on

the same tree as you do

the necessary exchanges.)

We need to see these

changes!

