

1

Name / ID (please PRINT) Sequence #:_____ Seat Number:____

___________________________ ______________________________________

CS 2123.001 Data Structures

Spring 2018 – Midterm1 -- Feb 8, 2018
You have 75 min. Good luck.

 This is a closed book/note examination. But You can use the reference card(s) given to you.

 This exam has 5 questions in 9 pages. Please read each question carefully and answer all the

questions, which have 100 points in total. Feel free to ask questions if you have any doubts.

 Partial credit will be given, so do not leave questions blank.
__

You can get 1pt bonus credit if you complete the boldfaced column of the following table. Please do this

after answering all the questions in the exam. You will also get 1pt bonus if the total expected score is

within 5 of total received score.

Question

Topic

Possible

Points

Student

Expects

to receive

out of

Student's

Received

Score

1 String processing/manipulation 20 /20

2 Pointers (tracing a program) 20 /20

3 2D Arrays (static size) 20 /20

4 Command Line Arguments 20 /20

5 Files, Dynamic Memory and Struct 20 /20

Bonus

If this table is completed
1

If the total expected score is

within 5 of total received score

1

 If you completed the survey on

BB Learn

3

Total 100+5

2

1. (20 pt) Implement a function char *lastname_firstname(char *FN, char *LN);

which dynamically creates a new string (ns) by merging the given "FirstName" (FN) and

"LastName" (LN) in the format of "LastName, FirstName"

For example:

char *ns;

ns = lastname_firstname("Turgay", "Korkmaz");

ns should be pointing to a dynamically created new string "Korkmaz, Turgay"

As shown below, you can use only strlen(char *s) function from the standard string.h

library. You are not allowed to use any other standard string functions like strcpy(),

strcat(), sprintf() etc.... So, your code should do all the copying, formatting etc.

char * lastname_firstname(char *FN, char *LN); {

 /* you can use either pointer or array notation */
 char *ns;

 int lenFN, lenLN, i, j;

 lenFN = strlen(FN);

 lenLN = strlen(LN);

3

2. (20 pt) Trace the following program, show how values change in memory, and give the

output.

name
Add

ress
Content/Value

z[0] 12

z[1] 16

z[2] 20

z[3] 24

z[4] 28

z[5] 32

p1 36

p2 40

f[0].x 44

f[0].y 48

f[1].x 52

f[1].y 56

 100

a 104

b 108

c 112

x 116

y 120

 124

#include <stdio.h>

typedef struct {

 int x;

 int y;

} fractionT;

main()

{

 int z[6] = {3, 4, 5, 7, 2, 9};

 int *p1, **p2;

 fractionT f[2];

 p1 = &z[3];

 p2 = &p1;

 *p1-- = 9;

 *--p1 = 8;

 printf("%d %d %d %d %d \n",

 z[0], z[1], z[2], z[3], **p2);

 z[5] = func(&f[1], &f[1].y, &p1);

 printf("%d %d %d %d \n",

z[3], z[5], f[0].y, f[1].y);

}

int func(fractionT *a, int *b, int **c)

{

 int x=5, y=24;

 *b = y / x % 3;

 a--;

 *c = &a->y;

 **c = 13;

 return *b + a->y;

}

MEMORY

OUTPUT

4

3. (20 pt) Recall the Sudoku puzzle that you studied in Assignment 1. In this question, you will

work on a similar number placement puzzle known as Magic Square (MS).

[Here is the description from the web] A magic square is an arrangement of distinct
integer numbers (i.e., each number is used once) from 1 to N2 in an NxN square grid,
where the numbers in each row, and in each column, and the numbers in the main
and secondary diagonals, all add up to the same number, which is N*(N2 + 1) /2.

For example, we can place the numbers from 1 to 9 = 3
2
 on a 3x3 MS with the same sum of 15,

and place the numbers from 1 to 25=5
2
 on a 5x5 MS with the same sum of 65, as shown in the

below figures.

Suppose we are interested in checking if a given int MS[N][N] = {{/*initial

values */}, ...}; is a valid Magic Square or not. Also suppose we have the four

helper functions in the next page that respectively check if the sum of the numbers in each

row, and in each column, and in the main and secondary diagonals are all equal to the same

sum (SS) = N*(N
2
 + 1) /2. Then we can simply check if a given MS[N][N] is a valid Magic

Square or not as follows:

/* suppose all standard C libraries are included here */

#define N 3 /* the number N can be large in an actual program */

void main()

{

 int MS[N][N] = {{2,7,6},

 {9,5,1},

 {4,3,8}};

 int SS = (N*(N*N+1)/2);

 if(allRowsOK(MS, SS) && allColumnsOK(MS, SS) &&

 mainDiagOK(MS, SS) && secondaryDiagOK(MS, SS))

 printf("YES, this is a Magic Square! \n");

 else

 printf("NO, this is NOT a Magic Square! \n");

}

/* NOW You are asked to implement the four helper functions in the next page! Actually,

one is already implemented for you as a sample! */

5

/* This function returns 1 if the sum of

every row is equal to SS;

otherwise, return 0 */ // 8pt

int allRowsOK(int MS[][N], int SS)

{

 int sum, i, j;

/* This function returns 1 if the sum of

every column is equal to SS; otherwise,

return 0 */ // 7pt

int allColumnsOK(int MS[][N], int SS)

{

 int sum, i, j;

/* This function returns 1 if the sum of

the main diagonal is equal to SS;

otherwise, return 0 */

int mainDiagOK(int MS[][N], int SS)

{

 int sum, i;

 sum=0;

 for(i=0; i < N; i++){

 sum = sum + MS[i][i];

 }

 if (sum != SS) return 0;

 return 1;

}

/* This function returns 1 if the sum of

the secondary diagonal is equal to SS;

otherwise, return 0 */ // 5pt

int secondaryDiagOK(int MS[][N], int SS)

{

 int sum, i;

6

4. (20pt) Write a program that finds the sum of the integer numbers given as command line

arguments. User may give as many numbers as she wants. If no number is given, print 0.

Also assume that user will always type numbers, so don't worry about arbitrary input.

Hint: Recall that int atoi(char *str); converts String to Integer.

Here is an examples:

> sum_prog 300 400 200

900

> sum_prog

0

a.(10pt) Conceptually draw the memory representation or snapshot when the user calls your

program as

> sum_prog 300 400 200

argc argv

[Part (b) of this problem is in the next page.]

 4

7

b. (10pt) Complete the following program to find and print the sum of the numbers given as

command line arguments.

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

8

5. (20pt) This question uses almost the same file format as in Quiz 6 that we solved in class. But

this time, instead of reading and summarizing the data from the input file, we would like to

create a dynamic data structure to store all the information about the employees in the memory

for further analysis.

Suppose the employee data file (say emp.txt) is now starting with an integer showing the

number of employees in the file. It then contains that many lines, which are formatted as in

Quiz 6. So the file has the followings in each line per employee: employee ID, how many days

he/she worked, and how many hours he/she worked in each day. All these values are integers.

Here is a sample file with 3 employees:

Complete the following program that can read emp.txt file and create the dynamic structure as

shown in the below figure. There is no output file.

E

/* suppose all standard libraries are included here */

typedef struct {

 int ID;

 int NumD;

 int *hours; /* a dynamic array to store # of hours this employee worked in each day.*/
} empT;

#include <stdio.h>

int main(void)

{

 FILE *infp;

 int NumEmp, ID, NumD, hour;

 int i, j; /* if needed you can declare other variables here */

 empT *E;

3

11 4 5 8 2 7

13 10 2 4 4 3 5 4 3 5 2 4

15 2 6 7

 ID NumD hours

E[0] 11 4

E[1] 13 10

E[2] 15 2

5 8 2 7

2 4 4 3 5 4 3 5 2 4

6 7

9

 if ((infp = fopen("emp.txt", "r"))==NULL){

 printf("Input file cannot be opened\n");

 return -1;

 }

 if(fscanf(infp, "%d", &NumEmp)!=1) exit(0);

