

1

CS 2123 Data Structures

Spring 2016 – Midterm 2 -- March 24, 2016
You have 75 min. Good luck.

You can use the 2-page C reference card posted in the class web page.

Name:……………..………… Score: ……./100

1. (20 pt) Review Questions

a. (4pt) What will be printed out when the codes in the left and right columns are

executed?

int *p, *q, arr[4]={5,8,3,7};

p = q = arr;

*p++ = 8;

if (*p == *q)

 printf("AAA %d", arr[0]);

else

 printf("BBB %d", arr[0]);

int *p, *q, arr[4]={5,8,3,7};

p = q = arr;

*++p = 5;

if (p == q)

 printf("AAA %d", arr[1]);

else

 printf("BBB %d", arr[1]);

Output: Output:

b. (4pt) Suppose one of your friends is struggling with the following code segment

because it compiles OK, but gives a segmentation fault when executed. What is the

problem there and how would you fix it?

(2pt) The problem is: ..

char *a;

strcpy(a, "CS 2123");

/* (2pt) fixed version */

char *a;

2

c. (4pt) Write a function to check if the given beginning and ending HTML tags do

match or not. The format for beginning and ending tags will be given as

"<tag_name other attributes>" and "</tag_name>" respectively. If

tag_name part matches, it returns 1; otherwise it returns 0.

 int tag_match(char *b, char *e)

 {

d. (4pt) In the following loops, first count the number of operations (i.e., find how many

lines will be printed out) when N is 32. Then give the computational complexity

using big-O notation for any value of N. (justify your answers)

int i, j, N=32;

Number of lines printed

when N=32

big-O notation

for(i=1; i <= N; i = i + 1)

 for(j=1; j <= N; j++)

 printf(" line2\n");

for(i=1; i <= N; i = i * 2)

 for(j=1; j <= N; j++)

 printf(" line2\n");

3

e. (4pt) Suppose we want to compute the sum of the integer values in a given array using

the following function prototype: int arr_sum(int arr[], int n);

This function can easily be implemented as an iterative function. However, you are

asked to think about a recursive strategy and implement it as a recursive function.

 int arr_sum(int arr[], int n)

 { // (No credit will be given for an iterative implementation!)

4

2. (20pt) A color image is a 2D array of pixels where each pixel is represented by three integers

called red, green, blue (RGB) components. Suppose we store a color image in a text file using

a very simple format as follows:

First two integers in the file represent the numbers of rows and columns of pixels.

Then the file contains that many rows and columns of pixels, where each pixel is represented

by three integers, namely red, green, blue.

For example a 3x4 color image would be saved in a file as follows:

3 4

1 2 3 1 2 3 1 2 3 1 2 3

3 6 5 3 34 43 51 43 5 4 8 4

6 45 34 53 5 4 8 4 66 86 12 43

Complete the following program that takes the name of such a file from the command line and

reads the pixel values into a dynamically create 2D array of pixelT structure defined below.

/* suppose all standard libraries and our book libs are included here */

typedef struct pixel {

 int r, g, b;

} pixelT;

int main(int argc, int *argv[])

{

 FILE *fp;

 int row, col, i, j;

 pixelT **img;

 if (argc<2) {

 printf("Usage: prog filename\n");

 exit(-1);

 }

 if((fp=fopen(argv[1], "r"))==NULL){

 printf("File cannot be opened\n");

 exit(-1);

 }

 fscanf(fp,"%d %d", &row, &col);

5

 /* dynamically create 2D array of pixelT */

/* read the RGB values of each pixel into the allocated memory */

/* Free the dynamically allocated memory */

6

3. (20pt) We use the following cell structure to store the IDs and names of some students in a

single linked list data structure

typedef struct cell {

 int ID;

 char name[20];

 struct cell *next;

} cellT, *cellPtrT;

Suppose somehow we have created the following two single linked lists, namely M and S, to

store the IDs and names of the students who are taking Math and Science, respectively. Lists are

sorted w.r.t. IDs.

M

S

Now we are interested in creating a new list, say U, to store the IDs and names of the students

who are taking Math or Science (or both). As you may know this operation is known as union of

two sets, where each element appears only once in the new list U. So list U will look like as

follows (note that elements in list U should be sorted w.r.t. IDs, as in the original lists):

U

You are asked to implement a function, cellT *union(cellT *M, cellT *S), which

can be called as follows to find the union of the given two sets represented by single linked list.

 cellT *M, *S, *U;

 /* somehow the lists pointed by M and S are created */

 U = union(M, S);

After your function, M and S should be intact. So do not remove the cells from M or S! When

needed, create new cells for U and copy the ID and name from the cells in M or S.

“T. K.”

2

“A. Z.”

 5

“P. T.”

 9

NULL

“N. K.”

 1

“T. K.”

 2

“Z. E.”

 8

“P.T”

 9

“W. A.”

 14

NULL

“N. K.”

 1

“T. K.”

 2

use the next page to answer question 3.

“Z. E.”

 8

“W. A.”

 14

NULL

“P.T”

 9

“A. Z.”

 5

7

Name:………. Answer question 3:
cellT *union(cellT *M, cellT *S)

{

8

4. (20pt) Recall the list ADT whose interface is extended as below. Mainly we include the

following prototype into list.h: listADT CopyReverseList(listADT a);

which creates another copy of a given list but in REVERSE order, and returns the pointer to

new list. Old list should be intact. Implement it based on the structures given below.

#ifndef _list_h_

#define _list_h_

typedef struct listCDT *listADT;

listADT NewList();

void list_insert_sorted(listADT a, int val);

void list_insert_unsorted(listADT a, int val); // add val to the end

listADT CopyReverseList(listADT a);

#endif

/* list.c

 using linked list */

#include “list.h”

/* suppose standard and book

libraries are included too */

#include "list.h"

typedef struct point {

 int x;

 struct point *next;

} myDataT;

struct listCDT {

 myDataT *start;

 myDataT *end;

};

listADT NewList()

{

 listADT tmp;

 tmp = New(listADT);

 tmp->start = NULL;

 tmp->end = NULL;

 return(tmp);

}

/* implementations of other functions */

listADT CopyReverseList(listADT a)

{

9

5. (20pt) Recall the buffer ADT which had the same interface buffer.h but three different

implementations (i.e., list, array, stack). Suppose we added the following function prototype to

buffer.h: void RemoveCharacter(bufferADT buffer, char x); which

removes all the occurrences of a given character x from the buffer after the cursor. It does not change

the cursor position. You are asked to implement this function under list representation, where we used

a dummy cell so cursor were pointing to the cell immediately before the logical insertion point.

Example: suppose buffer has a b c e d | e f g e e h. Here the cursor is pointing to

the cell containing 'd'

After we call RemoveCharacter(buffer, 'e');

The buffer should have a b c e d | f g h

/* listbuf.c */

#include "buffer.h"

typedef struct cellT {

 char ch;

 struct cellT *link;

} cellT;

struct bufferCDT {

 cellT *start;

 cellT *cursor;

};

bufferADT NewBuffer(void)

{

 bufferADT buffer;

 buffer = New(bufferADT);

 buffer->start=buffer->cursor

 = New(cellT *);

 buffer->start->link = NULL;

 return (buffer);

}

/* implementations of other functions */

void RemoveCharacter(bufferADT buffer, char x)

{ cellT *curr, *prev;

