

1

Name / ID (please PRINT) Sequence #:_____ Seat Number:____

___________________________ __________________________________

CS 2123 Data Structures

Fall 2018 – Midterm 2

November 1, 2018

You have 75 min. Good luck.

 This is a closed book/note examination. But You can use the reference card(s) given to you.

 This exam has 5 questions in 10 pages. Please read each question carefully and answer all the

questions, which have 100 points in total. Feel free to ask questions if you have any doubts.

 Partial credit will be given, so do not leave questions blank.
__

Question

Topic

Possible

Points

Student's

Received

Score

1
Review: struct-pointer, big-O analysis,

recursive function, BST traversal
20

2
Linked List - remove common elements from

two linked lists
25

3 bufferADT using double linked list 20

4 queueADT and driver 25

5 Binary Search Trees (recursive function) 10

Total 100

2

1. (20pt) Review Questions

a. (5pt) Suppose one of your friends is struggling with the following code. While the

declarations on the left column are OK and compile correctly, the statements in the

right column give compiler errors. Fix (re-write) each statement so there will be no

compiler error.

typedef struct emp_data {

 char *name;

 char ssn[12];

 int age;

} emp_dataT;

typedef struct magic {

 emp_dataT *staff[10];

 emp_dataT faculty[5];

 int count;

} magicT;

magicT p, *q;

q = p; //1pt

.....................................

p->staff[2].name = "Abcd"; //2pt

.....................................

q->faculty[3]->age = 45; //2pt

.....................................

b. (8pt) In the following loops, first count/find exactly how many lines will be printed

out when N is 32. Then give the computational complexity using big-O notation for

any value of N. (justify your answers)

int i, j, N=32;

Number of lines

printed when N=32

big-O notation

for(i=1; i <= N; i++)

 for(j=2; j <= N; j = j*2)

 printf(" line1\n");

for(i=2; i <= N*N; i = i*2)

 for(j=1; j <= N; j++)

 printf(" line2\n");

3

c. (5pt) We can easily write an iterative function that takes a positive even integer (int

n) as a parameter and calculates/returns the sum of the even numbers from 2 to n

(i.e., it finds 2+4+6+...+n), as follows:

int SumEven_Iter(int n) /* iterative version */

{

 int sum = 0;

 for(i=2; i <= n; i=i+2){

 sum += i;

 }

 return sum;

}

Now you are asked to solve the same problem using a recursive function

SumEven_Rec(int n) which takes a positive even integer (must be greater than

or equal to 2), and finds/returns the sum of the even numbers from 2 to n (i.e., again

find/return 2+4+6+...+n).

int SumEven_Rec(int n) /* MUST be recursive */

{

d. (2pt) If you print the values from the following binary search tree in PRE-ORDER,

what will be the output?

5

7 3

6 9

4

2. (25pt) We use the following cell structure to store the IDs and names of some students in a

single linked list data structure

typedef struct cell {

 int ID;

 char name[20];

 struct cell *next;

} cellT;

Suppose somehow we have already created the following two single linked lists, namely M and

S, to store the IDs and names of the students who are taking Math and Science, respectively.

Both lists are sorted with respect to (w.r.t.) IDs.

M

S

 Now you are asked to write a function that removes/eliminates the common students from both lists

such that each list will only contain the students who are not in the other list. After calling your

function, the resulting lists M and S should be as follows (still sorted w.r.t. IDs).

M

S

Implement void remove_common_students(cellT **ptrM, cellT **ptrS), which can

be called as follows to remove/eliminate the common students from both lists .

 cellT *M, *S;

 /* somehow the lists pointed by M and S are created */

 remove_common_students(&M, &S);

After your function, M and S should be changed as you need to remove the common cells from M and S!

“T. K.”

2

“A. Z.”

 5

"P. T.”

 9

NULL

“N. K.”

 1

“T. K.”

 2

“Z. E.”

 8

“P.T.”

 9

“W. A.”

 14

NULL

use the next page to answer question 2.

“A. Z.”

 5

“N. K.”

 1

“Z. E.”

 8

“W.A.”

 14

NULL

5

void remove_common_students (cellT **ptrM, cellT **ptrS)

{

 cellT *M, *S, *prevM=NULL, *prevS=NULL, *tmp;

6

3. (20pt) Recall the bufferADT which had the same interface buffer.h with four different

implementations (i.e., array, stack, single linked list and circular double linked list).

Suppose we include a new function into buffer.h that moves the cursor to a position just before

the beginning of the next word after the cursor. Suppose words are separated by at least one space

char, which is ' '. If there is no new word after the cursor, leave the cursor at the original place.

For Example:

Suppose buffer has A | B C

Here is how the buffer conceptually looks like:

After we call GoToNextWordBuffer(buffer);

The buffer should still have : A | B C

because there is no new word after the cursor

Example 2:

Suppose buffer has A | B C K L M X Y Z

After we call GoToNextWordBuffer(buffer);

The buffer should have : A B C | K L M X Y Z

If we call GoToNextWordBuffer(buffer); again

The buffer should have : A B C K L M | X Y Z

Now implement this function under circular double linked list representation, which is shown above.

You need to see at least one space char ' ' before the next word. If you have more space characters,

skip all them and make sure the cursor is placed just before the first char of the next word, as in the above

examples.

use the next page to answer question 3.

7

/* doublelinkedlistbuf.c */

#include "buffer.h"

typedef struct DcellT {

 char ch;

 struct DcellT *prev;

 struct DcellT *link;

} DcellT;

struct bufferCDT {

 DcellT *start;

 DcellT *cursor;

};

bufferADT NewBuffer(void)

{

 bufferADT buffer;

 DcellT *dummy;

 buffer = New(bufferADT);

 dummy = New(DcellT *);

 buffer->start = dummy;

 buffer->cursor = dummy;

 dummy->link = dummy;

 dummy->prev = dummy;

 return (buffer);

}

/* implementations of other functions */

void GoToNextWordBuffer(bufferADT buffer)

{

 DcellT *cp;

8

4. (25pt) Recall queueADT structure which had the following queue.h interface:

/* queue.h */

#ifndef _queue_h

#define _queue_h

#include "genlib.h“

typedef void *queueElementT;

typedef struct queueCDT *queueADT;

queueADT NewQueue(void);

void FreeQueue(queueADT queue);

void Enqueue(queueADT queue, queueElementT element);

queueElementT Dequeue(queueADT queue);

bool QueueIsEmpty(queueADT queue);

bool QueueIsFull(queueADT queue);

int QueueLength(queueADT queue);

queueElementT GetQueueElement(queueADT queue, int index);

#endif

Suppose its implementation is available as queue.o, so you can use all the functions in

queue.h, but you cannot change their implementation.

Now you are asked to complete the driver/application program in the next page by using the

above queue.h interface and implementing the necessary piece of codes needed for your

driver/application as defined below.

The driver/application simply reads the name and salary of each employee from a text file

into a dynamically allocated empT structure and inserts (Enqueue) the address of this

structure into the queue. File name is given as a command line argument. (Anyway, this part

is already done for you, just inspect the code in the next page.)

Now you are asked to find and print the name and salary of the employee who has the largest

(maximum) salary. Do not dequeue or remove the employees from the queue yet.

Finally, before exiting from the program, make sure all the dynamically allocated memory

spaces and structures are released/freed.

9

/* driver.c */ /* assume all the necessary standard C libraries and booklibs are included here too */

#include "queue.h"

typedef struct emp {

 char name[30];

 double salary;

} empT;

int main(int argc, char *argv[])

{

 FILE *fp; queueADT myQ;

 empT *ptr, *max; double max_salary; int i;

 if(argc!=2 || (fp=fopen(argv[1],"r")) == NULL)

 { printf("not enough argument or file cannot be opened\n"); exit(0); }

 myQ = NewQueue();

 while(!feof(fp)){

 ptr = (empT *) malloc(sizeof(empT)); if(ptr==NULL) exit(-1);

 fscanf(fp, "%s %lf", ptr->name, &ptr->salary);

 Enqueue(myQ, ptr);

 }

 // [15pt] find/print the name and salary of the employee who has the

 // larges (maximum) salary in myQ. Do not dequeue employees from myQ, yet.

 // [10pt] release/free all the dynamically allocated memory spaces

}

10

5. (10pt) [Binary Search Tree (BST)] You are asked to implement the following function:

void FreeBST(nodeT *t); which frees all the nodes in a given BST.

 t ------>

After calling your function, all the nodes in a given BST should be freed. Assume that each

node was allocated using a single malloc.

void FreeBST(nodeT *t)

{

5

7 3

6 9

typedef struct node {

 int key;

 struct node *left, *right;

} nodeT, *treeT;

