

1

Name / ID (please PRINT) Sequence #:_____ Seat Number:____

___________________________ ______________________________________

CS 2123.001 Data Structures

Spring 2018 – Midterm 2 -- March 22, 2018
You have 75 min. Good luck.

 This is a closed book/note examination. But You can use the reference card(s) given to you.

 This exam has 4 questions in 9 pages. Please read each question carefully and answer all the

questions, which have 100 points in total. Feel free to ask questions if you have any doubts.

 Partial credit will be given, so do not leave questions blank.
__

You can get 1pt bonus credit if you complete the boldfaced column of the following table. Please do this

after answering all the questions in the exam. You will also get 1pt bonus if the total expected score is

within 5 of total received score.

Question

Topic

Possible

Points

Student

Expects

to receive

out of

Student's

Received

Score

1
Review: pointer, string, big-O

analysis, recursive function
25 /25

2 linked list - difference of two sets 25 /25

3 bufferADT and double linked list 25 /25

4 queueADT and driver 25 /25

Bonus

If this table is completed
1

If the total expected score is

within 5 of total received score

1

Total 100+2

2

1. (25 pt) Review Questions

a. (5pt) Show how the memory content changes as the below code is executed. Keep the

old values in the table along with new values so I can see the changes.

int *p, **q;

int arr[4]={5,8,3,7};

p = arr;

q = &p;

*p++ = 9;

**q = 11;

Variable

name

Memory

Address

Memory

content

p 100

q 104

arr[0] 108

arr[1] 112

arr[2] 116

arr[3] 120

b. (5pt) Suppose one of your friends is struggling with the following code segment. It

compiles OK, but gives a segmentation fault when executed. What is the problem

there and how would you fix it if we want to keep strcpy statement as is?

 char *a = "CS 2123";

 /* ... */

 strcpy(a, "CS 4321");

 The problem is (2pt):

 Fixed version is (3pt):

3

c. (6pt) In the following loops, first count the number of operations (i.e., find exactly

how many lines will be printed out) when N is 32. Then give the computational

complexity using big-O notation for any value of N. (justify your answers)

int i, j, N=32;

Number of lines

printed when N=32

big-O notation

for(i=1; i <= N; i++)

 for(j=2; j <= N; j = j*2)

 printf(" line1\n");

for(i=1; i <= N; i++)

 for(j=2; j <= N*N; j = j*2)

 printf(" line2\n");

d. (9pt) Write a recursive function DigitMax(n) that takes a nonnegative positive

integer and returns the max digit in it. For example, calling DigitMax(1729)

should return 9 because max{1 , 7 , 2 , 9} is 9.

Hint: As in DigitSum that we did in class, think about breaking

an integer down into two components using division by 10.

For example, given the integer 1729, you can divide it into two

pieces as follows:

int DigitMax(int n) /* MUST be recursive */

{

4

2. (25pt) We use the following cell structure to store the IDs and names of some students in a

single linked list data structure

typedef struct cell {

 int ID;

 char name[20];

 struct cell *next;

} cellT;

Suppose somehow we have already created the following two single linked lists, namely M and

S, to store the IDs and names of the students who are taking Math and Science, respectively.

Both lists are sorted with respect to (w.r.t.) IDs.

M

S

Now we are interested in creating a new list, say D, to store the IDs and names of the students

who are taking Math but NOT Science. As you may know this operation is known as difference

of two sets (M - S) such that D contains the elements that appear in M but NOT in S. So list D

will look like as follows (elements in list D should be sorted w.r.t. IDs, as in the original lists):

D

You are asked to implement cellT *difference_M_S(cellT *M, cellT *S),

which can be called as follows to find the difference between M and S.

 cellT *M, *S, *D;

 /* somehow the lists pointed by M and S are created */

 D = difference_M_S(M, S);

After your function, M and S should be intact. So do not remove the cells from M or S! When

needed, create new cells and copy the IDs and names from the cells in M .

“T. K.”

2

“A. Z.”

 5

"T. T.”

 10

NULL

“N. K.”

 1

“T. K.”

 2

“Z. E.”

 8

“P.T”

 9

“W. A.”

 14

NULL

“A. Z.”

 5

“T. T.”

 10

NULL

5

cellT *difference_M_S(cellT *M, cellT *S)

{

cellT *D=NULL, *tmp, *tail;

6

3. (25pt) Recall the bufferADT which had the same interface buffer.h with four different

implementations (i.e., array, stack, single linked list and circular double linked list).

Suppose buffer.h has a function void ReverseBuffer(bufferADT buffer);,

which reverses the order of characters in a given buffer.

For Example:

Suppose buffer has A | B C

Here is how the buffer conceptually looks like:

After we call ReverseBuffer(buffer);

The buffer should have : C B | A

a. [5pt] As in the above figure, first draw how the buffer conceptually looks like now.

7

b. [20pt] Then implement this function under circular double linked list representation.

/* doublelinkedlistbuf.c */

#include "buffer.h"

typedef struct DcellT {

 char ch;

 struct DcellT *prev;

 struct DcellT *link;

} DcellT;

struct bufferCDT {

 DcellT *start;

 DcellT *cursor;

};

bufferADT NewBuffer(void)

{

 bufferADT buffer;

 DcellT *dummy;

 buffer = New(bufferADT);

 dummy = New(DcellT *);

 buffer->start = dummy;

 buffer->cursor = dummy;

 dummy->link = dummy;

 dummy->prev = dummy;

 return (buffer);

}

/* implementations of other functions */

void ReverseBuffer(bufferADT buffer)

{

 DcellT *curr, *next, *tmp;

8

4. (25pt) Recall queueADT structure which had the following queue.h interface:

/* queue.h */

#ifndef _queue_h

#define _queue_h

#include "genlib.h“

typedef void *queueElementT;

typedef struct queueCDT *queueADT;

queueADT NewQueue(void);

void FreeQueue(queueADT queue);

void Enqueue(queueADT queue, queueElementT element);

queueElementT Dequeue(queueADT queue);

bool QueueIsEmpty(queueADT queue);

bool QueueIsFull(queueADT queue);

int QueueLength(queueADT queue);

queueElementT GetQueueElement(queueADT queue, int index);

#endif

Suppose its implementation is available as queue.o, so you can use all the functions in

queue.h, but you cannot change their implementation.

Now you are asked to complete the driver/application program in the next page by using the

above queue.h interface and implementing the necessary piece of codes needed for your

driver/application as defined below.

The driver/application simply reads all the double numbers from a file whose name is given

as a command line argument (this part is already done for you) and inserts (Enqueue) them

into the queue (you will do this part). Please note that queueElementT is defined to be

void *. So you cannot directly enqueue the double numbers into the queue. In this case,

remember you should allocate memory for your double numbers and then enqueue their

addresses in the queue!

Then you are asked to find and print the sum of the double values in the queue, but do not

dequeue or remove the numbers from the queue. So the queue still contains all the values.

Finally, before exiting from the program, make sure all the dynamically allocated memory

spaces and structures are released/freed.

9

/* driver.c */ /* assume all the necessary standard C libraries and booklibs are included here too */

#include "queue.h"

int main(int argc, char *argv[])

{

FILE *fp;

queueADT myQ;

double value, *ptr, sum;

int i;

if(argc!=2 || (fp=fopen(argv[1],"r")) == NULL){

 printf("not enough argument or file cannot be opened\n"); exit(0);

}

myQ = NewQueue();

// [9pt] get each double value from the file, insert it into myQ

while(fscanf(fp, "%lf", &value) == 1){

}

// [9pt] find/print the sum of the values in myQ.

// but do not dequeue or remove the numbers from myQ.

// [7pt] release/free all the dynamically allocated memory spaces

}

