
,~ --~ - ,,~

~"- ~

Teaching Philosophy, 28:4, December 2005 319

Philosophy of Computer Science:
An Introductory Course

WILLIAM J. RAPAPORT

State University of New York at Buffalo

Abstract: There are many branches of philosophy called "the philosophy of
X," where X = disciplines ranging from history to physics. The philosophy
of artificial intelligence has a long history, and there are many courses and
texts with that title. Surprisingly, the philosophy of computer science is not
nearly as well-developed. This article proposes topics that might constitute
the philosophy of computer science and describes a course covering those
topics, along with suggested readings and assignments.

During the Spring 2004 semester, I created and taught a course on the
Philosophy of Computer Science. The course was both dual-listed at
the upper-level undergraduate and first-year graduate levels and cross-
listed in the Department of Computer Science and Engineering (CSE)
(where I am an associate professor) and the Department of Philosophy
(where I have a courtesy appointment as an adjunct professor) at State
University of New York at Buffalo ("UB").

The philosophy of computer science is not the philosophy of artifi-
cial intelligence (AI); it includes the philosophy of AI, of course, but
extends far beyond it in scope. There seem to be less than a handful
of such broader courses that have been taught: A Web search turned
up some three or four that were similar to my course in both title
and content.) There are several more courses with that title, but their
content is more accurately described as covering the philosophy of
AI. The philosophy of computer science deserves more exposure at
the university level. The UB course was popular (with an enrollment
of just under fifty), and the students found it valuable, not only for
its coverage of topics in the philosophy of computer science, but also
for the critical-thinking skills they learned (see p. 322). This article
presents my ideas on what a course in the philosophy of computer
science might look like.

@ Teaching Philosophy. 2005. All rights reserved. 0145-5788 pp.319-341

- --'i--;,.,: "

-f~ ..

320 WILLIAM J. RAPAPORT

Why teach the philosophy of computer science? And why teach it in
a computer science department rather than in a philosophy department?
As a professor of computer science with a Ph.D. in philosophy (and a
previous career as a philosophy professor), I've long been interested in
philosophical issues in computer science in general and artificial intel-
ligence in particular. My colleague Stuart C. Shapiro in the VB CSE
department had urged me to develop some philosophy courses for our
students. Initially, I had resisted this, not being sure that such courses
would be acceptable to my department or-more importantly-taken
by enough students. Moreover, my colleague Randall R. Dipert in our
philosophy department regularly offered an undergraduate course in
the philosophy of AI, with which I didn't want to compete.

However, there were many metaphysical, epistemological, and ethi-
cal issues that I thought were of interest in the non-AI part of computer
science, many of which have only recently begun to be examined in
detail by philosophers and philosophically-oriented computer scientists,
and many of which shed new light on classical topics in philosophy.
This article surveys them and offers some interesting readings that
deserve to be better known. Moreover, a course such as this can serve
as an introduction to philosophy for computer science students, an
introduction to issues in computer science for philosophy students, a
capstone course for senior undergraduate computer science students,
or perhaps an overview course for beginning computer-science gradu-
ate students.

Syllabus
The course syllabus was organized around a set of questions whose
various answers we examined during the semester:2

1. What is philosophy? In particular, what is "the philosophy of
X" (where X = things like science, psychology, history, etc.)? (These
questions are especially important to discuss in a course primarily
aimed at computer science students, who might have misleading ideas
of what philosophy is all about-or no idea at all.)

2. What is computer science? (Although the "final" answer to this
question may simply be the extensional "whatever computer scientists
do," this is a reasonable issue to discuss, even if there is no intensional
answer. The following subquestions indicate some of the interesting
issues that this main question raises.) (a) What is science? What is
engineering] (b) Is computer science a science, or is it a branch of
engineering? (c) If it is a science, what is it a science of? (d) Is it a
science of computers (as some authors say)? (e) What, then, is a com-
puter? (f) Or is computer science a science of computation (as other
authors say)? (g) What, then, is computation? (h) What is an algorithm?

,

"'

PHILOSOPHY OF COMPUTER SCIENCE 321

Is an algorithm different from a procedure? Many authors say that an
algorithm is (like) a recipe; is it, or are there important differences?
(i) What are Church's and Turing's "theses"? (j) Some authors claim
that there are forms of computation-often lumped together under the
rubric "hypercomputation"-that, in some sense, go "beyond" Turing-
machine (TM) computation: What is hypercomputation"?

3. What is a computer program? (a) What is the relation of a
program to that which it models or simulates? What is simulation? (b)
Are programs (scientific) theories? (c) What is an implementation? (d)
What is software? How does it relate to hardware? (e) Can (or should)
computer programs be copyrighted, or patented? (f) Can computer
programs be verified?

4. What is the philosophy of artificial intelligence? (a) What
is AI? (b) What is the relation of computation to cognition? (c) Can
computers think? (d) What are the Turing Test and the Chinese Room

Argument?
5. What is computer ethics? (This, like the philosophy of AI, is a

vast question, deserving of its own course and having many textbooks
devoted solely to it. For my purposes, I decided to focus on questions
that don't seem to be the typical ones asked in such a course.) (a)
Should we trust decisions made by computers? (b) Should we build

"intelligent" computers?
The remainder of this paper surveys these topics, suggests readings,

discusses the sorts of assignments I gave, and presents some student
reactions.3

Textbooks

Unfortunately, there is no textbook that exactly covers the above topics.
Three possibilities were offered to the students as recommended texts:
Luciano Floridi's Philosophy and Computing (1999), Timothy Colburn's
Philosophy and Computer Science (2000), and Floridi's Blackwell
Guide to the Philosophy of Computing and Information (2004). The
first two are monographs offering the authors' points of view. There
is nothing wrong with this, of course, but I preferred a more neutral
approach for the sort of course that I had in mind. Moreover, the topics
covered in each of these had a relatively small intersection with my
topics. The third book is an anthology, but-again-there was only a
small overlap with my topics, and, in any case, I preferred that my
students read primary sources rather than overviews.

There are other sources, of course: A special issue of the philoso-
phy journal The Monist (82:1 [1999]) was devoted to the philosophy
of computer science. The journal Minds and Machines: Journal for
Artificial Intelligence, Philosophy, and Cognitive Science is almost

"~" ~---

'tor ~

322 WILLIAM J. RAPAPORT

entirely devoted to philosophy of computer science, broadly construed.
And about half of the articles in the Journal of Experimental and Theo-
retical Artificial Intelligence are on philosophy of computer science.
Finally, an excellent website, "Computational Philosophy," is moderated
by John Taylor (http: //www.crumpled.com/cp/).4 In the sections that
follow-and more extensively on the course web site (see note 3)-1
recommend appropriate readings for the topics that we covered.

Topics and Readings

What is philosophy? A typical advanced philosophy course in a phi-
losophy department normally does not need to address the question of
what philosophy is, but I felt that a course whose principal audience
was computer-science students needed to. I suspect that many such
students feel that philosophy is a "soft" subject where there are no
answers, so everyone's opinion is equally good.5 In contrast, I hoped
to present to the students a view of philosophy as an analytical and
critical discipline that could be of value to them.6

I began with a brief history of western philosophy, beginning with
Socrates' and Plato's view of the philosopher as "gadfly," challenging
others' assumptions. I offered my own definition of philosophy as the
search for truth in any field by rational means (which might be limited
to deductive logic, or might be extended to include empirical scientific
investigation). And we defined the "philosophy of X" as the study of
the fundamental assumptions and main goals of any discipline X.

I briefly covered some of the basic principles of critical thinking
and informal argument analysis, including the following notions:

1. "argument" (a set of premises and a conclusion)
2. "premise" (a Boolean proposition used to support a conclusion)
3. "conclusion" (a Boolean proposition that someone tries to con-

vince you of by means of a logical argument)
4. "valid argument" (an argument is valid iff it is impossible for

the premises all to be true yet for the conclusion to be false; this
semantic notion can also be supplemented with a syntactic one:
an argument is (syntactically) valid iff it has the form of any of
a given standard set of argument forms that are (semantically)
valid, such as Modus Ponens)

5. "factual argument" (this is a non-standard, but useful, notion:7
an argument is factual iff all of its premises are true)

6. "sound" (an argument is sound iff it is factual and valid).8

I will have more to say about this when I discuss the course assignments,
but I should point out that Computing Curricula 2001 's "Social and Pro-
fessional Issues" knowledge area includes the item "Methods and Tools

PHILOSOPHY OF COMPUTER SCIENCE 323

of Analysis" (SP3), which covers precisely these sorts of argument-analy-
sis techniques (http://www.computer.org/education/cc2001/finaVsp.htm#
SP-MethodsAndTools).

As a reading assignment, I asked the students to read at least one
of a variety of brief introductions to philosophy (e.g., Plato's Apol-
ogy; Colburn 2000: chaps. 3-4; Audi 2001), and I listed Mark B.
Woodhouse's Preface to Philosophy (2003) as another recommended
textbook for the course.

What is computer science? We began the first major section of
the course by discussing the reasons one might have for asking what
a discipline is: There are, of course, philosophical-primarily onto-
logical-reasons. But there are also political reasons, especially in
the case of a discipline such as computer science, which can be found
both in (arts-and-)science faculties as well as in engineering faculties
(sometimes in both at the same institution!), or even in its own faculty
(either accompanied by other departments in, say, an informatics faculty
or else by itself). Then, too, there is the question of the relationship
between computer science and computer engineering.

We surveyed the following answers that have been given to the
question "What is computer science?"

. It is a science of computers and surrounding phenomena (such
as algorithms, etc.) (Newell, Perlis, and Simon 1967).

. It is the study (N.B. not "science") of algorithms and surround-
ing phenomena (such as the computers they run on, etc.) (Knuth
1974).

. It is the empirical study ("artificial science") of the phenomena
surrounding computers (Newell and Simon 1976; cf. Simon
1996).. It is a natural science, not of computers or algorithms, but of
procedures (Shapiro 2001).

. It is not a science, but a branch of engineering (Brooks 1996).

. It is the body of knowledge dealing with information-transform-

ing processes (Denning 1985).
. It is the study of information itself (Hartmanis and Lin 1992).

Note that several of these (especially the first two) might be "exten-
sionally equivalent" but approach the question from very different per-
spectives: Some emphasize the computer (hardware); others emphasize
algorithms, processes, procedures, etc. (software), or even something
more abstract (e.g., information). An orthogonal dimension focuses on
whether computer science is a science or perhaps something else (a
"study," a "body of knowledge," an engineering discipline, etc.). And,
of course, the name itself varies (computer science, computing science,
informatics, etc.), often for political, not philosophical, reasons.9

c-~ c--~~~"

'f
1",

324 WILLIAM J. RAPAPORT

Is "computer science" science or engineering? The question of
whether computer science is really a science or else is really a branch
of engineering has been the subject of several essays. It has had spe-
cial relevance at VB ever since our former Department of Computer
Science, housed in the Faculty of Natural Sciences and Mathematics,
merged with several computer engineerslo from our former Department
of Electrical and Computer Engineering to form a new Department of
Computer Science and Engineering housed in the School of Engineer-
ing and Applied Sciences. This is not only confusing to read about,
but has given rise to a certain identity crisis for both our students and
faculty, and I thought it would provide interesting local color to an
investigation of the nature of science and of engineering.

We first turned to the question "What is science?" discussing both
its goals (should it merely describe the world-as Ernst Mach thought
[cf. Alexander 1967: 118-119]-or explain it?) as well as the nature of
its theories (are they merely instrumentalist, or realist?). We looked at
debates over scientific method (is it experimental and cumulative, or
does it proceed by paradigm and revolution?) and its branches (is math-
ematics a science?). The primary readings on science were selections
from David Papineau's "Philosophy of Science" (1996) and chapters
from John G. Kemeny's A Philosopher Looks at Science (1959).

We next looked at the history of engineering (Michael Davis's
Thinking Like an Engineer [1998] is especially useful), discussing
engineering as applied science, as defined in terms of professional
education, and as a design activity (Petroski 2003). And we looked
at a definition of computer science as a new kind of engineering that
studies the theory, design, analysis, and implementation of informa-
tion-processing algorithms (Loui 1987, 1995).

What is a computer?-Part I. Insofar as computer science is the
science (or study) primarily of computers, the next reasonable ques-
tion is: What is a computer? This is a large topic, and I divided it into
two parts.

The first part was a survey of the history of computers. I presented
this in terms of two parallel goals: the goal of building a computing
machine, and the goal of providing a foundation for mathematics. As
I see it, these were two more-or-less independent goals that converged
in the first half of the twentieth century. (Whether or not this is a his-
torically accurate way of looking at the matter is itself an interesting
question; in any case, it is certainly a convenient way to organize the
topic pedagogically.) Our discussion of the first goal involved the con-
tributions of Babbage, Aiken, Atanasoff and Berry, Turing, and Eckert
and Mauchly. The contributions of Leibniz, Boole, Frege, Hilbert, Tur-
ing, Church, and Godel made up the overview of the second goal.

'"

-

PHll..OSOPHY OF COMPUTER SCIENCE 325

The history of computers is a large topic, and we did not spend much
time on it. Consequently, the assigned readings were intended only to
give the students a flavor of the main events. I prepared a website, "A
Very Brief History of Computers,"11 based on the IEEE's "Timeline
of Computing History"12 and containing links for further information,

\ and I asked the students to read O'Connor and Robertson 1998 (on
Babbage), Simon and Newell 1958 (pp. 1-3 are also on Babbage), and
Ensmenger 2004 (on the controversy over who deserved the US patent
for the first computer).

What is an algorithm?-Part I. The other main answer to the
question of what computer science studies is: algorithms. So, what
is an algorithm? We began our two-part investigation of this by first
considering what computation is. One informal, introductory-computer-
science-style explanation proceeds as follows: A function f (viewed as
a set of ordered pairs, or "inputs" and "outputs") is computable means
by definition that there is an "algorithm" that computesf, i.e., there is
an algorithm A such that for all input i, A(i)=.f(i), and A specifies how
f's inputs and outputs are related (or howl's outputs are produced by
its inputs). Then an algorithm for a problem P can be characterized
as a finite procedure (i.e., a finite set of instructions) for solving P
that is:

1. unambiguous for the computer or human who will execute it;
i.e., all steps of the procedure must be clear and well-defined
for the executor, and

2. effective; i.e., it must eventually halt, and it must output a cor-
, . rect solution to P .13

It became an interesting exercise as we went through the semester to
compare the different (informal) explications of 'algorithm,' no two
of which seem to be equivalent. This makes Turing's accomplishment
all the more interesting!

With this informal exposition in mind, we then turned to a careful
reading of Turing's magnum opus, "On Computable Numbers" (1936).
There are several versions on the Web, though the most trustworthy is
the one reprinted in Davis 1965. When I say "careful reading," I mean
it: We spent an entire eighty-minute class doing a slow, "active," line-
by-line reading of as much of it as we could.14 I strongly recommend
that all computer-science students (as well as computationally-oriented
philosophy students, of course) do this at least once in their lives. In
addition to being one of the most significant scientific papers of the
twentieth century, it is also fascinating, well-written, and contains many
interesting philosophical insights. The students told me afterward that
this slow reading was one of the highlights of the course.

,

c~ ",,""r' "0':"1

i" ~ ,. ~

326 WILLIAM J. RAPAPORT

We also discussed the history of the mathematical investigation
of the concept "computable," and discussed the relationship of (1)
Turing's thesis that a function is (informally) computable if and only
if it is TM-computable to (2) Church's thesis that a function is (in-
formally) computable if and only if it is lambda-definable (which is
logically equivalent to being recursive and, of course, to being TM-
computable).

Besides Turing 1936, I also asked the students to read Leon Henkin's
"Are Logic and Mathematics Identical?" (1962), which has a good
discussion of the history of logic and the foundations of mathematics
that led up to Turing's analysis, and Gabor Herman's "Theory of Algo-
rithms" (1983), which discusses the informal notions of "algorithm" and
"effective computability" and provides a good background for Turing
1936. I also especially recommend (to instructors, if not to students)
Robert I. Soare's "Computability and Recursion" (1996) for the clar-
ity it brings to the history of the competing analyses of 'computable'
(e.g., how Turing's Thesis differs from Church's Thesis).

What is a computer?-Part II. Armed with this background, we
turned to philosophical questions surrounding the nature of computers.
John Searle's "Is the Brain a Digital Computer?" (1990) argues that
everything is a digital computer (which seems to trivialize the ques-
tion), and Patrick Hayes's "What Is a Computer?" (1997) is a sym-
posium that responds to Searle. Hayes's own view is that a computer
is a machine that can take, as input, patterns that describe changes to
themselves and other patterns, and that causes the described changes
to occur. (A related definition-a computer is a device that "change[s]
variable assignments"-is offered in Thomason 2003: 328.) It turns
out that it is surprisingly difficult to give a precise characterization of
what a computer is.

A closely related topic for which a relevant reading did not appear
till after the semester was over is the question of whether the universe
itself is a computer (or whether parts of the universe compute; e.g.,
does the solar system compute Kepler's laws?). On this, see Seth Lloyd
and Y. Jack Ng's "Black Hole Computers" (2004). This issue also
concerns the nature of simulation (see Rapaport 1998, Perruchet and
Vinter 2002 [esp. §1.3.4], and the discussion of programs as scientific
theories, below).

What is an algorithm?-Part II. As hard as it is to define 'com-
puter,' the notion of "algorithm" is even murkier, despite the accom-
plishments of Church, Godel, Kleene, Markov, Turing, Post, and others.
Introductions to computer science often liken algorithms to recipes,
and, indeed, there are clear similarities. But the differences are even
more illuminating, given the informality with which recipes are usually
presented. An interesting unpublished paper by Beth Preston (2000)

PHILOSOPHY OF COMPUTER SCIENCE 327

suggests that recipes are more like specifications than they are like ,,"

algorithms. And Carol Cleland has written a series of papers (1993,
1995, 2001, 2002) that explores the relationships between algorithms,
recipes, and procedures, introducing a notion of "mundane" procedures
(causal processes, including recipes), which are effective procedures
that (she argues) are not TM-computable, since their effectiveness
depends on the external world.

What is hypercomputation? "Hypercomputation" is a name given
by the philosopher Jack Copeland (2002) to the computation of func-
tions that can't be TM-computed. We briefly investigated Turing's
"oracle" machines, Putnam's and Gold's "trial and error" machines
(Turing machines where it is the last answer that counts, not the first
answer), Boolos and Jeffrey's infinitely accelerating "Zeus" machines,
and Wegner's "interaction" machines (such as automatic-teller machines
or airline-reservation systems) (see Copeland 2002 for citations and
other models). We also looked at Kugel's (2002) thesis that Putnam-
Gold machines may be needed for AI to succeed.

What is a computer program? We focused on five aspects of this
question: the nature of implementation, whether programs are theories,
the nature of software (vs. hardware), whether software can or should
be copyrighted or patented, and whether programs can be verified. Each
is discussed briefly, below, with a digression on course evaluation.

What is Implementation? "Implementation" is a ubiquitous notion
in computer science, but one that is rarely defined, and thus crying out
for philosophical analysis. We say that programs implement algorithms,
yet high-level programs can be implemented in machine language. We
say that particular data structures (e.g., arrays) can implement abstract
data types (ADTs) (e.g., stacks), yet some ADTs (e.g., stacks) can be
implemented in other ADTs (e.g., linked lists). Is implementation a
relation between an abstraction and something "concrete," or can it
(also) be a relation between two abstractions? Is it an isomorphism, or
a homomorphism? In rebuttal to Searle's argument that everything is a
computer (see What is a Computer?-Part II, above), David Chalmers
(1994) develops a notion of implementation as isomorphism. I have
urged that implementation is best viewed as the semantic interpretation
of an abstract formal system (Rapaport 1999 and forthcoming-a). These
issues were all touched upon, and I also used this opportunity to care-
fully develop the notions of syntax, semantics, and formal systems.

Are Programs Scientific Theories? Some computational cognitive
scientists (e.g., Pylyshyn 1984: 76, Johnson-Laird 1988: 52) have
claimed that cognitive theories are best expressed, not in the languages
of statistics or mathematics, or even in natural language, but in com-
puter programs. These programs, being simultaneously theories and
models (or implementations of the theories), can then be executed,

"

328 WILLIAMJ. RAPAPORT

in order to test whether the theory is a good model of cognition. It
h~s also been argued, of course, that such a program is more than
merely a model or simulation of the cognitive phenomenon under
investigation; some have argued that it actually exhibits the cognitive
ability. As background, we also discussed the relationships between
theories and models, simulations and "the real thing,"and simulations
and emulations; philosophical theories of scientific explanation; and
philosophical theories of scientific models. Relevant readings here also
include Joseph Weizenbaum's Computer Power and Human Reason
(1976: chaps. 5 and 6 are on models and theories) and Herbert Simon's
Sciences of the Artificial (1996: chap. 1, which discusses scientific
theories, is also good reading for the question of whether computer
science is a science).

What is Software?

Introductory computer science courses often assume that the distinc-
tion between software and hardware is clear. Computer scientists and
philosophers know otherwise. James Moor's "Three Myths of Computer
Science" (1978) points out the inadequacies of the usual "abstract"
software vs. "concrete" hardware distinction, arguing that software
is a computer program that is changeable by a person. This allows
for the "software" to be "hardwired," as long as it can be changed.
The "software is abstract" point of view is well argued by Peter Su-
ber (1988), who considers it to be "syntactic form" (and this ties in
nicely with the discussion of syntax vs. semantics in the section on
implementation). Finally, Colburn (1999) views software as a "concrete
abstraction": It has a "medium of description" insofar as it is a text in
a formal language (which is an abstraction), and it has a "medium of
execution" insofar as it is implemented in circuits and semiconductors
(which are concrete).

Interlude:
Midsemester Course Evaluation and Course Correction

The previous topic brought us more or less to the midsemester point in
the course. Borrowing an idea from my colleague Stuart C. Shapiro, I
traditionally give a midsemester course evaluation. I strongly recom-
mend this for any course: It is far more useful than an end-of-course
evaluation that is not seen until the course is over and hence is of no
use in improving the course that just ended. For this course, I asked
two simple, open-ended questions: What aspects of the course would
you like to see changed? and What aspects of the course do you es-
pecially like? The answers let me know what needed to be fixed and

-

PHILOSOPHY OF COMPUTER SCIENCE 329

what was going well. I summarized the answers and posted a response
to the course newsgroup.

For this course, the major complaint was the amount of reading. I
told the students that I would try to comply with their request for less
reading, but that there were just so many exciting things that I wanted
them to read that I would compromise: From then on, I only assigned
one (sometimes two) required readings for each of the remaining top-
ics, per class session, but I recommended (sometimes strongly) other
things to look at-if not now, then at their leisure after the semester was
over. Thus, for example, instead of requiring the students to read Moor
1978 and Suber 1988 (which is a very long paper) and Colburn 1999
(which is philosophically challenging), I only required them to read
Moor 1978 (which is well-written and also discusses other important
topics), strongly recommended Suber 1988 (which is wide-ranging and
has lots of things to think about), and recommended Colburn 1999. In
lecture, however, I discussed all three.

I hasten to add that there were many compliments, too! Students
were pleased with the topics and organization, and especially liked the
writing assignments, which I discuss below.

Can Software Be Patented? Or Should it Be Copyrighted? The topic
of whether computer programs are copyrightable entities or patentable
entities 15 is a fascinating one, because it combines legal, social, and
metaphysical issues. We concentrated on the last of these, since it flows
nicely from the previous topic of what software is.

Here is the fundamental paradox: If a computer program is viewed
as a written text, then it is, by definition, copyrightable. But the very
"same" program, engraved on a CD-ROM and, hence, executable on
a computer, can be viewed as a machine that is, by definition, patent-
able (as well as subject to legal limitations on exportation to foreign
countries; see Colburn 1999). Yet, also by definition, nothing is both
copyrightable and patentable. (Whether one should copyright or patent
a program vs. whether programs should be "open source" is one of the
interesting social issues that we did not have time to consider.)

We looked at the legal definitions of copyright and patent (available
from various US government websites)16 and read a fascinating-and
little known-essay by computer scientist Allen Newell ("The Mod-
els are Broken, the Models are Broken") that appeared as part of a
symposium on this topic in the University of Pittsburgh Law Review
(1985-1986). Newell argues that we computer scientists need to devise
better models-i.e., better ontological theories-of such computer-
science entities as algorithms, programs, etc. In contrast, some legal
scholars (e.g., Koepsell 2000) have argued that lawyers need to devise
better methods of legal protection that better match the unique natures
of computer software and hardware. The point in both cases is that

"'

330 WILLIAM J. RAPAPORT

there is a mismatch between computer-science entities, on the one hand,
and legal forms of protection, on the other (or between computational
ontology and legal ontology); something's got to give.

Can Programs Be Verified? We ended our investigations into the
nature of computer programs with an inquiry into whether they can be
formally verified. There is a subfield of computer science and software
engineering that looks into formal methods for proving program correct-
ness (see, e.g., Gries 1981 for a classic treatment). Two philosophers
have written essays that critique this approach. I am a firm believer in
the value of such formal proofs (despite some very real limitations),
and I have several times taught our department's course on program
verification. Consequently, I spent some time introducing some aspects
of formal verification before turning to the criticisms.

Brian Cantwell Smith's (1985) "Limits of Correctness in Comput-
ers" is, in my opinion, one of the most significant papers on all as-
pects-moral, legal, semantic, ontological, etc.-of the philosophy of
computer science, and should be required reading for all computer sci-
ence majors. Among other things, he argues that there is a gap between
the world and our models of it and that computers are doubly removed,
relying on models of the models, yet must act in the real world.

The other critique is James Fetzer's explosive essay, "Program
Verification: The Very Idea," that appeared in the Communications
of the ACM in 1988 and that launched a vicious public debate on the
pros and cons of verification. Briefly, Fetzer argues that programs
can't be verified because you can't logically prove that causal systems
won't fail; at best, you can verify an algorithm. Note that, in order to
properly evaluate Fetzer's argument, you must have a firm grasp of the
relationship of algorithm to program, which, by this time, my students
were well prepared for.

Philosophy of AI: Could we build artificial intelligences? As I
indicated above, the philosophy of AI deserves a full course to itself
(see, e.g., Moulton and Voytek 1979, Rapaport 1986), and one of my
motivations for creating a course in the philosophy of computer science
(and not merely the philosophy of AI) was that there were many non-AI
philosophical issues of interest. Nevertheless, the philosophy of AI is
a proper part of the philosophy of computer science, it is my own area
of expertise, and the students intensely wanted to discuss it.

I limited myself to two topics: the Turing Test and the Chinese-
Room Argument. A case can be made that an excellent course on the
philosophy of computer science could consist solely of close readings
of Turing's two major essays: his 1936 paper on computability and his
1950 paper on whether computers can think. So, for this topic, we read
Turing's "Computing Machinery and Intelligence" (1950) as well as the

- ---

-

"

PHILOSOPHY OF COMPUTER SCIENCE 331

current (and probably perennially most popular) reply: John Searle's
Chinese-Room Argument (Searle 1980).

Turing 1950, as is well known, argued that a computer will be said
to be able to think if we cannot distinguish its linguistic (hence cog-
nitive) behavior from a human's. Searle 1980 proposed a now-classic
counterexample that alleges that a computer could pass a Turing Test
without really being able to think.l? (A good source for both of these,
and related, papers is Shieber 2004; cf. Rapaport, forthcoming-b.) We
closed this topic with my own attempt at a rebuttal of Searle (Rapa-
port 2000), arguing that syntactic symbol manipulation of the sort that
computers do can suffice for semantic interpretation of the kind needed
for computational cognition.

Computer ethics. Our final topic was computer ethics. As noted
above, and as with philosophy of AI, this is often the topic of full
courses by itself and is the subject of numerous texts and anthologies.
I gave a brief overview of (computer) ethics, based on Moor's "What
Is Computer Ethics?" (1985). We focused on his claim that we need to
have metaphysical and ontological theories of computers (in particular,
their "logical malleability") and related phenomena in order to answer
ethical and social questions about their nature and use.

I chose to concentrate on two issues that are not often covered in
such courses or books: Are there decisions that computers should never
make? and Should we build artificial intelligences?

We turned to Moor's "Are There Decisions Computers Should Never
Make?" (1979). One of his main points is that there are no decisions
computers shouldn't make, at least as long as their track record is
better than that of humans, but it's up to us to accept or reject their
decisions. An interesting contrasting opinion is that of Friedman and
Kahn's "People Are Responsible, Computers Are Not" (1992), which
argues that there are decisions that computers should not make, be-
cause only humans are capable of being moral agents. But "to err is
human," and we looked at a recent case of an airline crash caused by
following a human's decision instead of a computer's (as reported in
qeorge Johnson's "To Err Is Human," 2002).

On ethical issues in AI, we read Michael R. LaChat's "Artifi-
cial Intelligence and Ethics: An Exercise in the Moral Imagination"
(1986). First, I outlined the plot of Stanislaw Lem's "Non Serviam"
(1971)-which should be required reading for all researchers in ar-
tificial life!-in which what we would today call an Artificial Life
researcher is forced to pull the plug on his creations when his research
grant ends. LaChat considers whether such research shouldn't even
begin but agrees that considering the possibilities enables us to deal
with important issues such as: What is a person? Would an AI with
personhood have rights? Could it be moral?

,
..

332 WILLIAM J. RAPAPORT

Philosophy of computer science: A summary and a unifying
theme. In closing the semester, I asked the students to read two recent
overviews of issues in the philosophy of computer science, as a way to
gauge what they had learned-Matthias Scheutz's "Philosophical Issues
about Computation" (2002) and Smith's "The Foundations of Comput-
ing" (2002)-and we reviewed the semester's readings and discussion,
with an eye towards themes that connected the several topics.

One such theme that the students and I became aware of as the
semester progressed is the relation of an abstract computation to the
real world. This theme is addressed explicitly in some of the papers we
read, and is implicit in many others. It emerges in Cleland's discussion
of the causal nature of "mundane" procedures, which produce some
actual product or physically affect the real world in some way. This is
also one of Smith's themes in his "Limits of Computation" essay, as
well as an underlying reason of Fetzer's arguments against program
verification. It is, of course, the subject matter of implementation, and
underlies the paradoxical nature of software vs. hardware, and hence the
issue of whether software is copyrightable or patentable. I recommend
an exploration of this theme as a unifying idea for a future course in
philosophy of computer science.

Assignments
A difficulty. I wanted the students to do a lot of reading and thinking.
Thinking is best done by active reading (Rapaport 2005a), discussion,
and writing-lots of writing. There is a well-known drawback to as-
signing a lot of writing to students: The instructor has to read it all
and, ideally, comment on it. When this course was first advertised, I
expected about ten to fifteen students, in a small seminar-like setting.
The first preliminary enrollment report said that thirty students had
signed up. Thinking that they thought that this might be a "gut" course
("A philosophy course in a computer science department? Oh, this'll be
easy to ace!"), I posted a note to the undergraduate news group spell-
ing out the large quantities of writing that I would expect. Enrollment
doubled to sixty! It finally settled down at just under fifty students. IS

Still, fifty ten-page term papers plus frequent short writing assignments
during the semester was not a prospect that I looked forward to.

Nor could I rely on help from graduate teaching assistants or reci-
tation sections (a problem I was familiar with from my days teaching
at a primarily undergraduate institution). No recitation sections had
been assigned to the course, since I had not expected such a large
enrollment. They would have been useful for discussion purposes, but
that was not to be. I did have an excellent graduate teaching assistant,
but he was a computer-science grad student, not a philosophy grad

~--

PHILOSOPHY OF COMPUTER SCIENCE 333

student (although he did have some undergraduate philosophy experi-
ence and was philosophically sophisticated), and, in any case, he had
no recitation sections to lead. Consequently, he was of most use to me
in keeping records, though he did hold office hours and students felt
comfortable going to him for advice on writing.

But how to have students write a lot without having to read it all?
And how to have discussions without special time allotted for them?
Of course, faculty at undergraduate institutions face this problem all
the time, unlike we faculty at research universities. And so I drew
upon my experiences as a philosophy professor at an undergraduate
institution with no TAs and no recitation sections.

A solution: Required, short position papers. . . I assigned the
students five one-page position papers throughout the semester, roughly
one every two or three weeks. A first draft of each assignment was due
one week after it was announced. The day it was due we set aside for
"peer editing" (adapted from techniques used in English composition
classes; cf. Cho and Schunn 2004): Students were asked to bring five
copies of their position papers, one for me, one for themselves, and
one each for three other students. I put the students into small groups
of three or four "peers," each of whom had written a response to the
same assignment. I asked them to spend about ten to fifteen minutes
on each paper, reading it, critiquing it, and making suggestions for
improvement. The students were then given another week to revise
their papers to be handed in for credit.19 To ease my burden of grad-
ing, I read and put copious comments on only about 40 percent of the
papers for each of the five assignments; each student received at least
two papers fully critiqued by me (the other three papers were recorded
as being handed in).

Peer editing accomplished several goals simultaneously: The stu-
dents had plenty of opportunities to discuss the material with each other.
In fact, probably more students participated in these small groups than
would have ordinarily spoken out in a large classroom setting (though
such full-class discussions were encouraged, as well). Moreover, all
students got multiple feedback on each paper, in addition to my feed-
back on a subset of their papers. Another advantage of peer editing in
class is that I had the freedom (and responsibility) to walk around the
room, listening to the student discussions and occasionally facilitating
one or answering a question on a one-on-one basis.

The position papers were designed to supplement the lectures and
readings, as well as to foster the students' critical-thinking skills. In
particular, the topics always involved an argument that the students
were asked to evaluate in terms of factuality (i.e., truth value of the
premises) and validity (i.e., reasoning). Students were encouraged to
present their opinions and to support them with reasons. As one ex-

--'~-,""~

... .,..

334 WILLIAM J. RAPAPORT

ample, Position Paper 1, on "What is computer science?" asked the
students to evaluate the following argument (embedded in the context
of a story about a dean moving a computer science department from
a school of science to a school of engineering):

1. Science is the systematic observation, description, experimental
investigation, and theoretical explanation of natural phenomena.

2. Computer science is the study of computers and related phe-
nomena.

3. Therefore, computer science is not a science.

(All assignments and peer-editing guidelines are on the Web at http://
www.cse.buffalo.edu/-rapaport/510/pospapers.html.)

As one student observed later, the argument-analysis format of the
position papers made them somewhat easier to grade than an ordinary
essay would have been. Since the students were required to examine
a rigid structure of an argument, they had fewer "degrees of freedom"
in writing their responses. Thus, grading such papers can be closer to
grading a mathematical problem set than a typical essay. It also made
grading somewhat more impartial and somewhat less controversia}.2°

. . . And two optional assignments. In addition to the required
position papers, there was an optional term paper, whose topic had to
be approved by me in advance. I supplied a list of some possible topics,
but I encouraged the students to explore areas of interest to them. As
a default topic, a student could write a summary of the philosophy of
computer science in the style of an encyclopedia article or else pres-
ent his or her own answers to the syllabus questions (see "Syllabus"
above). An exclusive-alternative option was a final exam (students could
do the exam or the term paper, but not both). This was a take-home,
short-answer, essay-style exam, asking for analytic and evaluative sum-
maries of the possible answers to the topic-questions.

A required reading journal. In addition, in order to provide
evidence that the students were really reading the material, as well
as to encourage them to read slowly and actively, I required them to
keep a "reading journal." For each essay they read, they were to copy
interesting passages (or at least full references to them) and-most
importantly-to provide their own comments on them and on the is-
sues raised in each item read. (Suggestions on how to do this can be
found in Rapaport 2005a.) I collected these Journals at the end of the
semester, and included them in the grade calculation.

Students who attended almost all classes and turned in a Reading
Journal could get a C; students who did that plus all five position
papers could get a B; and students who did all of that plus either the
term paper or final exam could get an A. All but one student wrote the

-

"

PHILOSOPHY OF COMPUTER SCIENCE 335

position papers. Over 80 percent of the students chose the exam/paper
option, with about 70 percent choosing the exam option.

What the Students Did and Didn't Like

The students' favorite part of the course was the writing, peer-edit-
ing, and revising of the one-page position papers: They enjoyed the
discussions, the ability to revise (including an option to re-revise for
a higher grade), and-most importantly-the skills they learned, and
the practice they got, in critically analyzing and evaluating informal
arguments. In addition, well after the course ended, some students told
me that they have continued keeping reading journals in their other
courses and research.

They also appreciated the course website, which has links to the
syllabus and a directory of documents that, in turn, has a large bibli-
ography, links to other relevant websites, and links to the assignments,
position papers, term-paper topics, and final exam. I began each new
section of the course by putting up a webpage containing recommended
readings for that topic. I then gave a quick overview in lecture about
each of the readings. Students informed me that this was very useful
because it provided a summary of what was to come, including the
different positions that have been taken on each issue.

Here is what one student said, in an unsolicited e-mail message I
received after the course was over:

I'd like to thank you for putting together such a great course this semester. I'll
admit, knowing very little about it, I never had much respect for philosophy
in the past-but. this course has provided me with an entirely new perspec-
tive. In fact, I'd say that I learned as much in your course as any other I've
taken in my graduate career at VB (not to mention the fact that the skills I
learned in [it] are far more transferable than the skills of the more esoteric
CS courses). . . . I urge [you] to offer this course again in the future. It offers
exactly the kind of breadth of education that the department needs to stress,
and with its CS flavor, it can tap the interest of students who would otherwise
blow it off. Thanks again for a great semester, and please consider making
Philosophy of CS a regular offering :)
Another student observed that "I don't think there was a single

student in the class whose critical thinking/writing/reading skills didn't
improve as a result of taking this course."

As noted above, the students' least favorite part of the course was
the amount of reading. Of course, this is something that students almost
always complain about, but, in this case, the complaint really was about
the quantity, not the quality: By and large, they found all of the read-
ings to be interesting and useful; their complaint was that they didn't
have enough time to read them all as carefully as they (and I) would
have liked. Fortunately, on the basis of the mid-semester course evalu-

;,:'.:2

. "
..

336 WILLIAM J. RAPAPORT

ation, I found this out early enough to be able to do something about
it. As discussed above, subsequent reading assignments were limited
to at most two required readings, with suggestions for recommended
(but optional) follow-up readings.

Conclusions

I believe this to have been a worthwhile course, both for me and-more
importantly-for the students. It gave many of the computer science ma-
jors the option to think about many issues that they either hadn't thought
of before or had thought about but had no venue for discussing. It also
gave them an opportunity to (learn how to) think critically, and to find
out what philosophy could be like. The philosophy majors, in addition,
had the opportunity to learn some things about computers, computing, and
computer science that they probably would not have come across in more
traditional philosophy courses, as well as the opportunity to apply some
of their philosophical skills and knowledge to a different domain.

Notes

I am grateful to my students Dima Dligach and Albert Goldfain, to my colleagues Peter D.
Scott and Stuart C. Shapiro, and to an anonymous reviewer for comments on earlier drafts.

1. In particular, CD5650, Swedish National Course on Philosophy of Computer
Science, at Miilardalen University (Sweden), coordinated by Gordana Dodig-Crnkovic
(http://www.idt.mdh.se/-gdc/Pl-network-course.htm); Selected Topics in the Philosophy
of Computer Science, at Tel Aviv University (Israel), taught by Eli Dresner (http://www.
tau.ac.il/humanities/digicult/english.htm); and PHI 3 I 9, Philosophy of Computing, at Ari-
zona State University, taught by Bernard W. Kobes (http://www.asu.edu/clas/philosophy/

course_descripts .htm).
2. I am grateful to Timothy Colburn, Randall R. Dipert, Eli Dresner, James H. Fetzer,

Luciano Floridi, Bipin Indurkhya, James Moor, Robert Stainton, and Chris Viger for (e-
mail) discussions on the questions that such a course might focus on.

3. The home page for the course, with links to the complete syllabus, assignments,
and other course web pages, is at http://www.cse.buffalo.edu/-rapaport/philcs.html and
archived as Rapaport 2005b.

4. Pointers to these and other sources are at my course Web page "What is Philosophy
of Computer Science?" (http: //www.cse.buffalo.edu/-rapaport/510/whatisphilcs.html).

5. This claim is based on a not unreasonable assumption that computer-science
students tend to be "Dualists" who see (and fear?) philosophy as being a "Multiplistic"
discipline. These are terms from William Perry's (1970, 1981) "scheme" of intellectual
and ethical development. For a quick online glimpse of Perry's views, see my website,
"William Perry's Scheme of Intellectual and Ethical Development" (http://www.cse
. buffalo.edu/ -rapaport/perry. positions.htrnl).

Roughly, "Dualists" believe that all questions have correct answers and that the
student's job is to learn these answers, whereas "Multiplists" believe that most ques-
tions have no known answers and, consequently, that everyone's opinion is equally

.

PHILOSOPHY OF COMPUTER SCIENCE 337

good. However, those are vast oversimplifications, and the interested reader is urged to ""-"

consult Perry's writings, or any of the other sources listed on my website. On whether
there can be answers to philosophical questions and, thus, real progress in philosophy,
see Rapaport 1982.

6. In Perry's terminology, philosophy is a "Contextually Relativistic" discipline, i.e.,
one that critically evaluates claims on the basis of evidence (the truth-value of a claim is
"relative" to its evidential "context").

7. Learned from my former philosophy colleague, Kenneth G. Lucey.
8. There are many excellent textbooks on critical thinking and informal logic, and,

of course, it is the subject of many full courses on its own. A useful short introduction
for a course such as this is Longview Community College's website "Critical Thinking
Across the Curriculum Project" (http://www.kcmetro.cc.mo.us/longview/ctac/toc.htm).

9. Another (more recent) view is that computer science is the study of virtual phe-
nomena (Crowcroft 2005).

10. Some of whom had their doctorates from departments of computer science!
II. http: //www.cse.buffalo.edu/-rapaport/510/history.html.
12. http: / /www.computer.org/computer/timeline/.
13. This is an adaptation of Stuart C. Shapiro's informal characterization; personal

communication.
14. On this sort of Talmudic, slow-but-active reading sty~e, see Rapaport 2005a, §5.
15. There is a third possibility: that they are trademarkable entities; we did not consider

this option.
16. For 'copyright,' see the US Copyright Office Circular 1 at http://www.copyright

.gov/circs/circl.html#Wci; for 'patent,' see the US Patent and Trademark Office Glossary
at http://www.uspto.gov/main!glossary/index.html#p.

~ 17. Mention should be made that a very early version of Searle's thought experiment
appears as a way of explicating Turing machines in Rogers 1959 (part I, reprinted in
1969: 131,133; based on a 1957 lecture).

18. The breakdown of student majors was as follows:

CSE PHI Other
unde!:&.fads 72% 10% 12%
[g!"ads 75% 15% 10%
total 73% 12% 15%
CSE = Computer Science and Engineering majors; PHI = Philosophy majors; Other =
students majoring in Biology, Economics, Electrical Engineering, Management, Manage-
ment and Information Science, and Mathematics.

19. My writing guidelines and a brief guide to grammar and punctuation are on the
Web at http://www.cse.buffalo.edu/-rapaport/howtowrite.html.

20. For more thoughts on grading, and a "triage" theory of grading, see my website,
"How I Grade," http://www.cse.buffalo.edu/-rapaport/howigrade.htrnl.

Bibliography
Alexander, Peter. 1967. "Mach, Ernst," in Encyclopedia of Philosophy, ed. Paul Edwards,

vol. 5: 115-19.

. ...
...

338 WILLIAM J. RAPAPORT

Audi, Robert. 2001. "Philosophy: A Brief Guide for Undergraduates" http://www.apa
. ude 1. edu/ apa/pu b licati ons/texts/bri ef gd.html.

Brooks, Frederick P., Jr. 1996. "The Computer Scientist as Toolsmith n," Communications
of the ACM 39:3 (March): 61-68.

Chalmers, David J. 1994. "On Implementing a Computation," Minds and Machines 4
(1994): 391-402.

Cho, Kwangsu, and Christian D. Schunn. 2004. "You Write Better When You Get Feed-
back from Multiple Peers than from a Single Expert," Proceedings of the 20th Annual
Conference of the Cognitive Science Society (Mahwah, N.J.: Lawrence Erlbaum
Associates, 2005).

Cleland, Carol E. 1993. "Is the Church-Turing Thesis True?" Minds and Machines 3:3
(August): 283-312.

- . 1995. "Effective Procedures and Computable Functions," Minds and Machines
5:1: 9-23.

_.2001. "Recipes, Algorithms, and Programs," Minds and Machines 11:2 (May):
219-37.

- . 2002. "On Effective Procedures," Minds and Machines 12:2 (May): 159-79.
Colburn, Timothy R. 1999. "Software, Abstraction, and Ontology," The Monist 82:1:

3-19; reprinted (in slightly different form) in Colburn 2000, chap. 12.
_.2000. Philosophy and Computer Science (Armonk, N.Y.: M. E. Sharpe).
Copeland, B. Jack. 2002. "Hypercomputation," Minds and Machines 12:4: 461-502.
Crowcroft, Jon. 2005. "On the Nature of Computing," Communications of the ACH 48:2:

19-20.
Davis, Martin, ed. 1965. The Undecidable: Basic Papers on Undecidable Propositions,

Unsolvable Problems, and Computable Functions (New York: Raven Press).
Davis, Michael. 1998. Thinking Like an Engineer: Studies in the Ethics of a Profession

(New York: Oxford University Press).
Denning, Peter J. 1985. "What Is Computer Science?" American Scientist 73 (Janu-

ary-February): 16-19.
Ensmenger, Nathan. 2004. "Bits of History: Review of A. R. Burks's Who Invented the

Computer? The Legal Battle that Changed Computing History," American Scientist
91 (September-October): 467-68.

Fetzer, James H. 1988. "Program Verification: The Very Idea," Communications of the
ACM 31:9 (September): 1048-63; reprinted in Program Verification: Fundamental
Issues in Computer Science, ed. Timothy R. Colburn, James H. Fetzer, and Terry L.
Rankin (Dordrecht: Kluwer Academic Publishers, 1993),321-58.

Floridi, Luciano. 1999. Philosophy and Computing: An Introduction (London: Rout-
ledge).

- . 2004. The Blackwell Guide to the Philosophy of Computing and Information
(Malden, Mass.: Blackwell).

Friedman, Batya, and Peter H. Kahn, Jr. 1992. "People Are Responsible, Computers Are
Not," excerpt from their "Human Agency and Responsible Computing: Implications
for Computer System Design," Journal of Systems Software (1992): 7-14; excerpt
reprinted in Computers, Ethics, and Society, second edition, edited by M. David
Ermann, Mary B. Williams, and Michele S. Shauf (New York: Oxford University
Press, 1997), 303-14.

Gries, David. 1981. The Science of Programming (New York: Springer-Verlag).
Hartrnanis, Juris, and Herbert Lin. 1992. "What Is Computer Science and Engineering?"

in Computing the Future: A Broader Agendafor Computer Science and Engineering,

~

PHILOSOPHY OF COMPUTER SCIENCE 339

ed. Juris Hartmanis and Herbert Lin (Washington: National Academy Press), chap.
6, pp. 163-216.

Hayes, Patrick J. 1997. "What Is a Computer? An Electronic Discussion," The Monist

80:3.
Henkin, Leon. 1962. "Are Logic and Mathematics Identical?" Science 138:3542 (No-

vember 16): 788-94.
Herman, Gabor T. 1983. "Algorithms, Theory of," in Encyclopedia of Computer Science

and Engineering, second edition, edited by Anthony S. Ralston (New York: Van

Nostrand Reinhold), 57-59.
Johnson, George. 2002. "To Err Is Human," New York Times (14 July).
Johnson-Laird, Philip N. 1988. The Computer and the Mind: An Introduction to Cognitive

Science (Cambridge, Mass.: Harvard University Press).
Kemeny, John G. 1959. A Philosopher Looks at Science (Princeton, N.J.: D. van Nos-

trand).
Knuth, Donald. 1974. "Computer Science and Its Relation to Mathematics," American

Mathematical Monthly 81:4 (April): 323-43.
Koepsell, David R. 2000. The Ontology of Cyberspace: Philosophy, Law, and the Future

of Intellectual Property (Chicago: Open Court).
Kugel, Peter. 2002. "Computing Machines Can't Be Intelligent (. . . and Turing Said

So)," Minds and Machines 12:4: 563-79.
LaChat, Michael R. 1986. "Artificial Intelligence and Ethics: An Exercise in the Moral

Imagination," AI Magazine 7:2: 70-79.
Lem, Stanislaw. 1971. "Non Serviam," in S. Lem, A Perfect Vacuum, trans. Michael

Kandel (New York: Harcourt Brace Jovanovich, 1979).
Lloyd, Seth, and Y. Jack Ng. 2004. "Black Hole Computers," Scientific American 291:5

(November): 52-61.
Loui, Michael C. 1987. "Computer Science Is an Engineering Discipline," Engineering

Education 78:3: 175-78.
- . 1995. "Computer Science Is a New Engineering Discipline," ACM Computing

Surveys 27:1 (March): 31-32.
Moor, James H. 1978. "Three Myths of Computer Science," British Journalfor the Phi-

losophy of Science 29:3 (September): 213-22.
-. 1979. "Are There Decisions Computers Should Never Make?" Nature and

System 1: 217-29.
-. 1985. "What Is Computer Ethics?" Metaphilosophy 16:4 (October): 266-75.
Moulton, Janice, and Jane Voytek. 1979. "Can Humans Think Machines Think?" Teach-

ing Philosophy 3:2: 153-67.
Newell, Allen. 1985-1986. "Response: The Models Are Broken, the Models Are Broken,"

University of Pittsburgh Law Review 47: 1023-31.
Newell, Allen, Alan J. Perlis, and HerbertA. Simon. 1967. "Computer Science," Science

157:3795 (22 September): 1373-74.
Newell, Allen, and Herbert A. Simon. 1976. "Computer Science as Empirical Inquiry:

Symbols and Search," Communications of the ACM 19:3 (March): 113-26.
O'Connor, J. J., and E. F. Robertson. 1998. "Charles Babbage," http: Ilwww-gap.dcs

. st -and.ac. uk! -history /Mathematicians/Babbage.html.
Papineau, David. 1996. "Philosophy of Science," in The Blackwell Companion to Philoso-

phy, ed. Nicholas Bunnin and E. P. Tsui-James (Oxford: Blackwell), 290-324.
Perruchet, Pierre, and Annie Vmter. 2002. "The Self-Organizing Consciousness," Behav-

ioral and Brain Sciences 25:3 (June): 297-388.

. '"

"

340 WILLIAM J. RAPAPORT

Perry, William G., Jr. 1970. Fonns of Intellectual and Ethical Development in the College
Years: A Scheme (New York: Holt, Rinehart, and Winston).

- . 1981. "Cognitive and Ethical Growth: The Making of Meaning," in Arthur W.
Chickering and Associates, The Modem American College (San Francisco: Jossey-

Bass),76-116.
Petroski, Henry. 2003. "Early Education," American Scientist 91 (May-June): 206-09.
Preston, Beth. 2000. "Recipes and Songs: Towards a Theory of Production" (unpublished

ms.)
Pylyshyn, Zenon W. 1984. Computation and Cognition: Toward a Foundationfor Cogni-

tive Science (Cambridge, Mass.: MIT Press).
Rapaport, William J. 1982. "Unsolvable Problems and Philosophical Progress," American

Philosophical Quarterly 19: 289-98.
-. 1986. "Philosophy of Artificial Intelligence: A Course Outline," Teaching

Philosophy 9: 103-20.
- . 1998. "How Minds Can Be Computational Systems," Journal of Experimental

and Theoretical Artificial Intelligence 10: 403-19.
, -. 1999. "Implementation Is Semantic Interpretation," The Monist 82:1: 109-30.

-. 2000. "How to Pass a Turing Test: Syntactic Semantics, Natural-Language
Understanding, and First-Person Cognition," Journal of Logic, Language, and Infor-
mation, 9:4: 467-90; reprinted in The Turing Test: The Elusive Standard of Artificial
Intelligence, ed. James H. Moor (Dordrecht: Kluwer, 2003),161-84.

-. 2005a. "How to Study," http://www.cse.buffalo.edu/-rapaport/howtostudy
.html.

- . 2005b. "Philosophy of Computer Science: An Introductory Course," Technical
Report 2005-16 (Buffalo: SUNY Buffalo Department of Computer Science and En-
gineering); pre-print version of this article, containing archived webpages; available
at http: //www.cse.buffalo.edu/tech-reports/2005-16.pdf.

- . Forthcoming-a. "Implementation Is Semantic Interpretation: Further Thoughts,"
Journal of Theoretical and Experimental Artificial Intelligence.

- . Forthcoming-b. Review of Shieber 2004, Computational Linguistics.
Rogers, Hartley, Jr. 1959. "The Present Theory of Turing Machine Computability,"

Journal of the Society for Industrial and Applied Mathematics 7: 114-30; reprinted
in The Philosophy of Mathematics, ed. Jaakko Hintikka (London: Oxford University
Press, 1969), 130-46.

Scheutz, Matthias. 2002. "Philosophical Issues about Computation," Encyclopedia of
Cognitive Science (London: Macmillan).

Searle, John R. 1980. "Minds, Brains, and Programs," Behavioral and Brain Sciences
3: 417-57.

-. 1990. "Is the Brain a Digital Computer?" Proceedings and Addresses of the
American Philosophical Association 64: 21-37.

Shapiro, Stuart C. 2001. "Computer Science: The Study of Procedures," http://www.cse
. buffalo. edu/ - shapiro/Papers/w hati sc s. pM.

Shieber, Stuart M. 2004. The Turing Test: Verbal Behavior as the Hallmark of Intelligence
(Cambridge, Mass.: MIT Press).

Simon, HerbertA. 1996. The Sciences of the Artificial, Third Edition (Cambridge, Mass.:
MIT Press).

Simon, Herbert A., and Allen Newell. 1958. "Heuristic Problem Solving: The Next
Advance in Operations Research," Operations Research 6: 1 (January-February):
1-10.

-

"". --'"

PHILOSOPHY OF COMPUTER SCIENCE 341 ,

Smith, Brian Cantwell. 1985. "Limits of Correctness in Computers," Technical Report ~ ,

CSU-85-36 (Stanford, Calif.: Center for the Study of Language and Information);
first published in Computerization and Controversy, ed. Charles Dunlop and Rob
Kling (San Diego: Academic Press, 1991),632-46; reprinted in Program Verification:
Fundamental Issues in Computer Science, ed. Timothy R. Colburn, James H. Fetzer,
and Terry L. Rankin (Dordrecht: Kluwer Academic Publishers, 1993),275-93.

- . 2002. "The Foundations of Computing," in Computationalism: New Directions,
ed. Matthias Scheutz (Cambridge, Mass.: MIT Press), 23-58.

Soare, Robert I. 1996. "Computability and Recursion," Bulletin of Symbolic Logic 2:3
(September): 284-321.

Suber, Peter. 1988. "What Is Software?" Journal of Speculative Philosophy 2:2:
89-119.

Thomason, Richmond H. 2003. "Dynamic Contextual Intensional Logic: Logical Founda-
tions and an Application," in CONTEXT 2003, Lecture Notes in Artificial Intelligence
2680, ed. P. Blackburn et al. (Berlin: Springer-Verlag), 328-41.

Turing, Alan M. 1936. "On Computable Numbers, with an Application to the Entsche-
idungsproblem," Proceedings of the London Mathematical Society, ser. 2, vol. 42:
230--65.

-' 1950. "Computing Machinery and Intelligence," Mind 59: 433-60; reprinted
in Shieber 2004.

Weizenbaum, Joseph. 1976. Computer Power and Human Reason: From Judgment to
Calculation (New York: W.H. Freeman).

Woodhouse, Mark B. 2003. A Preface to Philosophy, 7th edition (Belmont, Calif.: Wads-
worthffhomson Learning).

William J. Rapaport, Department of Computer Science and Engineering, Department of
Philosophy, and Center for Cognitive Science, State University of New York at Buffalo, Buf-
falo NY 14260-2000, rapaport@cse.buffalo.edu, http://www.cse.buffalo.edul-rapaport/

;'

