
Finding, Counting and Listing All Triangles in
Large Graphs, an Experimental Study�

Thomas Schank and Dorothea Wagner

University of Kalrsruhe, Germany

1 Introduction

In the past, the fundamental graph problem of triangle counting and listing
has been studied intensively from a theoretical point of view. Recently, triangle
counting has also become a widely used tool in network analysis. Due to the
very large size of networks like the Internet, WWW or social networks, the
efficiency of algorithms for triangle counting and listing is an important issue.
The main intention of this work is to evaluate the practicability of triangle
counting and listing in very large graphs with various degree distributions. We
give a surprisingly simple enhancement of a well known algorithm that performs
best, and makes triangle listing and counting in huge networks feasible. This
paper is a condensed presentation of [SW05].

2 Definitions

Let G = (V,E) be an undirected, simple graph with a set of nodes V and a set
of edges E. We use the symbol n for the number of nodes and the symbol m
for the number of edges. The degree d(v) := |{u ∈ V : ∃{v, u} ∈ E}| of node v
is defined to be the number of nodes in V that are adjacent to v. The maximal
degree of a graph G is defined as dmax(G) = max{d(v) : v ∈ V }. An n-clique
is a complete graph with n nodes. Unless otherwise declared we assume graphs
to be connected. A triangle ∆ = (V∆, E∆) of a graph G = (V,E) is a three
node subgraph with V∆ = {u, v, w} ⊂ V and E∆ = {{u, v}, {v, w}, {w, u}} ⊂ E.
We use the symbol δ(G) to denote the number of triangles in graph G. Note
that an n-clique has exactly

(
n
3

)
triangles and asymptotically δclique ∈ Θ(n3). In

dependency to m we have accordingly δclique ∈ Θ(m3/2) and by concentrating
as many edges as possible into a clique we observe that there exists a family of
graphs Gm, such that δ(Gm) ∈ Θ(m3/2).

� This work was partially supported by the DFG under grant WA 654/13-2, by the Eu-
ropean Commission - Fet Open project COSIN - COevolution and Self-organization
In dynamical Networks - IST-2001-33555, and by the EU within the 6th Framework
Programme under contract 001907 (integrated project DELIS).

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 606–609, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Finding, Counting and Listing All Triangles in Large Graphs 607

3 Algorithms

We call an algorithm a counting algorithm if it outputs the number of triangles
δ(v) for each node v and a listing algorithm if it outputs the three participating
nodes of each triangle. A listing algorithm requires at least one operation per
triangle. For the running time we get worst case lower bounds of Ω(n3) in terms
of n and Ω(m3/2) in terms of m by the observation in Section 2.

listing-ayz

node-iterator

matrix-multiplication

edge-iterator

forward

core

ayz using fast

matrix-

multiplication

listing algorithms

fast matrix-

multiplication

(n
3

)

counting algorithms

forward-hashed

hashed

O (
n3

)

O(mdmax)

O
(
m3/2

)

O (
n3

)

O (nγ)

O
(
m

2γ
γ+1

)

Fig. 1. An overview of the presented algorithms

A very simple approach is to use matrix multiplication as a counting algo-
rithm or to check for connecting edges between any three nodes as a listing
algorithm. Traversing over all nodes and checking for existing edges between
any pair of neighbors is part of the folklore. This algorithm, which we call node-
iterator has running time O(

nd2
max

) ⊂ O(
n3

)
. The Algorithm listing-ayz is the

Algorithm 1: forward
Input: ordered list (high degree first) of vertices (1, . . . , n); Adjacencies Adj(v)

Data: Node Data: A(v);

for v ∈ V do
A(v) ← ∅

for s ∈ (1, . . . , n) do
for t ∈ Adj(s) do

if s < t then
foreach v ∈ A(s) ∩ A(t) do

output triangle {v, s, t} ;

A(t) ←− A(t) ∪ {s};

608 T. Schank and D. Wagner

listing version of the currently most efficient counting algorithm [AYZ97]. It
has running time in O(

m3/2
)
. Algorithm node-iterator-core uses the concept

of cores. It takes a node with currently minimal degree, computes its triangles
in the same fashion as in node-iterator and then removes the node from the
graph. The running time is in O(

nc2
max

)
, where c(v) is the core number of node

v. Since node-iterator-core is an improvement over listing-ayz the running time
of node-iterator-core is also in O(

m3/2
)
.

Similar to node-iterator one can also traverse over all edges and compare
the adjacency lists of the two incident nodes. This algorithm, which we call
edge-iterator is equivalent to an algorithm introduced by Batagelj and Mrvar
[BM01]. The running time without preprocessing is in O(mdmax). It can actually
be shown that node-iterator and edge-iterator are asymptotically equivalent, see
[SW05] for details. Algorithm forward is an improvement of edge-iterator. The
pseudo code is listed in Algorithm 1. It can be shown, that forward has running

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07 1e+08

edge-iterator
listing-ayz

node-iterator
edge-iterator-hashed

forward
node-iterator-core

forward-hashed
triangles

(a) Triangle Operations vs m

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07 1e+08

listing-ayz
node-iterator

edge-iterator-hashed
node-iterator-core

forward-hashed
forward

edge-iterator

(b) Execution Times (sec.) vs m

Fig. 2. Generated Gn,m Graphs

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07

edge-iterator
node-iterator

edge-iterator-hashed
forward

listing-ayz
node-iterator-core

forward-hashed
triangles

(a) Triangle Operations vs m

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07

node-iterator
edge-iterator

edge-iterator-hashed
listing-ayz

node-iterator-core
forward-hashed

forward

(b) Execution Times (sec.) vs m

Fig. 3. Generated Graphs with High Degree Nodes

Finding, Counting and Listing All Triangles in Large Graphs 609

time in O(
m3/2

)
. Both algorithms can be further improved with certain methods

relying on hashing, see [SW05] for details.

4 Experiments

The algorithms are tested in two ways. On the one hand we list the execution
time of the algorithms. Additionally, we give the number of triangle operations,
which in essence captures the asymptotic running time of the algorithm without
preprocessing. The algorithms are implemented in C++. The experiments were
carried out on a 64-bit machine with a AMD Opteron Processors clocked at
2.20G-Hz. Figure 2 shows the results on generated Gn,m graphs where m edges
are inserted randomly between n nodes. These Gn,m graphs tend to have no
high degree nodes and to have a very low deviation from the average degree.
However, this seems to be not true for many real networks [FFF99]. Therefore,
Figure 3 shows results on modified Gn,m graphs with O(

√
n) high degree nodes.

5 Conclusion

The two known standard Algorithms node-iterator and edge-iterator are asymp-
toticly equivalent. However, the Algorithm edge-iterator can be implemented
with a much lower constant overhead. It works very well for graphs where the
degrees do not differ much from the average degree. If the degree distribution is
skewed refined algorithms are required. The Algorithm forward shows to be the
best compromise. It is asymptotically efficient and can be implemented to have
a low constant factor with respect to execution time.

References

AYZ97. Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length
cycles. Algorithmica, 17(3):209–223, 1997.

BM01. Vladimir Batagelj and Andrej Mrvar. A subquadratic triad census algo-
rithm for large sparse networks with small maximum degree. Social Networks,
23:237–243, 2001.

FFF99. Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law
relationships of the Internet topology. In Proceedings of SIGCOMM’99, 1999.

SW05. Thomas Schank and Dorothea Wagner. Finding, counting and listing all tri-
angles in large graphs. Technical report, Universität Karlsruhe, Fakultät für
Informatik, 2005.

	Introduction
	Definitions
	Algorithms
	Experiments
	Conclusion

