
NAutoBuilder: A NLP Based Tool to Build
Software Automatically

Foyzul Hassan
Department of Computer Science

University of Texas at San Antonio
Email:foyzul.hassan@gmail.com

Abstract—In Software Engineering, even with recent research
on automated tools , human involvement is required in hole
life cycle of software development. Automation of this task will
assist developers and also help researchers for better analysis
of the software. Our research goal is build software repositories
automatically from software configuration and readme files using
Natural Language Processing techniques. The result is a system
that will build software without intervention of human activity
and it will set other configuration related tasks to build and run
the software.

I. INTRODUCTION

During the past decade, as more software developers
have their projects hosted in open software repositories
(e.g., Github [1], Sourceforge [2], Google Code [3]), large
open software repositories become available to software
engineering researchers and provide valuable resources for
developing novel software engineering techniques. A large
number of recently developed techniques are based on
analyzing and mining data (code, version history, bug reports,
emails, etc.) from software repositories, and the software
projects in software repositories also serve as desirable
subjects for the evaluation of numerous software engineering
techniques [4] [5].

Since the code base is typically the functioning part in
software projects, in both scenarios mentioned above, it is
often necessary to apply certain types of program analysis on
the code base of software projects in the software repositories.
Furthermore, to analyze a large number of software projects
from software repositories, it is important to automate the
whole process of analysis by reducing or eliminating human
intervention.

However, while the majority of program analysis techniques
require a successful build process or a well built software
project as their input, this requirement is not easy to satisfy for
software projects collected from open software repositories.
Open software repositories typically store and maintain only
source code of software projects, so the projects must be built
before they can be fed into various program analysis tools.
Although it is possible to apply partial program analysis on
only the available source code, without the resolution of
dependencies, and relevant types / bindings, it is difficult
or impossible to precisely perform some basic tasks such

as counting API calls or constructing a call graph, with
only partial program analysis. For example, for a statement
foo().bar();, if foo() is an unresolved library method, we are
not able to know its return type. So, we have to assume that
all methods with a name ”bar” can be invoked, while actually,
only the methods with a name ”bar” in the subtypes of the
return type of foo() can be invoked. Also, we are not able to
know if bar() is an API call or not, and what API it refers
to. Furthermore, many well-maintained popular frameworks
(e.g., Soot [6], Wala [7], and LLVM [8]) require built
software or a successful build process, and a large number of
program analysis techniques have been developed on these
frameworks. Thus, without have the software projects built,
these techniques and corresponding tools cannot be reused.

To sum up, automatic building of software projects pro-
vides a desirable foundation to support a large variety of
software engineering research tasks based on open software
repositories. With this foundation, it will be easier for soft-
ware engineering researchers to design more sophisticated and
effective program-analysis-based techniques, and larger-scale
evaluation.

II. RELATED WORKS

Our research work is the first research effort on the
automatic building of software projects from open software
repositories using NLP techniques. The project is related to
recent research efforts on the analysis of build configuration
files, and mining software repositories. Existing research on
analysis of build configuration files mainly falls in three
categories: dependency analysis of involved path expressions,
migration of build configuration files, and empirical studies.

On dependency analysis, Gunter [9] proposed a Petri-
net based model to describe the dependencies in build
configuration files. Adams et al. [10] proposed a framework
to extract a dependency graph for build configuration files,
and provide automatic tools to keep consistency during
revision. Most recently, Al-Kofahi et al. [11] proposed an a
fault localization approach for make files, which provides the
suspiciousness scores of each statement in a make files for a
building error. The most closely related work in this category
is SYMake developed by Tamrawi et al. [12]. SYMake uses
a symbolic-evaluation-based technique to generate a string



dependency graph for the string variables/constants in a
Makefile , automatically traces these values in maintenance
tasks (e.g., renaming), and detect common errors. Compared
to SYMake, the proposed project plans to develop build
configuration analysis for a different purpose (i.e., automatic
software building). Therefore, the proposed analysis estimates
run-time values of string variables with grammar-based string
analysis instead of string dependency analysis, and analyzes
flows of files to identify the paths to put downloaded files
and source files to be involved.

On migration of build configuration files, AutoConf [13]
is a GNU software that automatically generates configuration
scripts based on detected features of a computer system.
AutoConf detects existing features (e.g., libraries, software
installed) in a build environment, and configure the software
based on pre-defined options. By contrast, our proposed
project tries to adapt the build environment, and resolve
build errors which are not expected by developers. Most
recently, Gligoric et al. [14] proposed an approach to
automate the migration of various building configuration
files to CloudMake configuration files based on building
execution with system-level instrumentation. While their
approach requires a successful execution of the original build
configuration files, our proposed project mainly handles the
cases with NLP techniques.

Mining Software Repositories. In the field of mining
software repositories, our research is specifically related to
online software search, and large scale analysis of software
projects. On online software search, a number of research
efforts have been made on searching for relevant libraries
given certain queries. Such research efforts include CodeWeb,
component-ranking. Previous researchers also studied
searching for similar applications of a given application ,
and searching for code samples of APIs . Compared to the
above research efforts, automatic software building searches
libraries with signatures so the assessment of search results is
straightforward. However, since it is prohibitively expensive
to download and try all search results, a proper ranking
strategy is required to enhance search efficiency.

On large-scale analysis of software projects, most previ-
ous researchers apply partial program analysis or meta-data
analysis to mine software repositories or to perform empirical
studies. Our work may further enhance these research efforts
by allowing more in-depth program analysis techniques to be
applied to a large number of software projects. Researchers
also have been aware of the importance of diversity and
reproducibility of empirical studies and evaluations based on
software repositories. We believe that our work may provide
some benefits to the diversity and reproducibility of such tasks.

III. CONCLUSION

The proposed research work provides a framework to auto-
matically build arbitrary software projects in open software

repositories. Such techniques will enable more precise and
complete program analysis on a large number of software
projects and versions in open software repositories, and thus
will benefit software engineering techniques that mines and
analyzes these repositories, as well as large scale evaluation
of program-analysis-based software engineering techniques.
By reporting building failures related to portability flaws of
software projects, the project may also enhance the portability
of software projects in open software repositories.

REFERENCES

[1] P. Charles, “Project title,” https://github.com/charlespwd/project-title,
2013.

[2] “The sourceforge story,” http://web.archive.org/web/20110716044546/http://itmanagement.earthweb.com/cnews/article.php/3705731,
accessed: 2012-04-12.

[3] “Google code project hosting,” https://code.google.com/hosting, ac-
cessed: 2009-08-06.

[4] A. E. Hassan, “The road ahead for mining software repositories,” in
Frontiers of Software Maintenance, 2008. FoSM 2008. IEEE, 2008,
pp. 48–57.

[5] H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and taxonomy of
approaches for mining software repositories in the context of software
evolution,” Journal of Software Maintenance and Evolution: Research
and Practice, vol. 19, no. 2, pp. 77–131, 2007.

[6] P. Lam, E. Bodden, L. Hendren, and T. U. Darmstadt, “The soot
framework for java program analysis: a retrospective.”

[7] “Ibm. the t. j. watson libraries for analysis (wala),”
http://wala.sourceforge.net, accessed: 2012-03-20.

[8] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed
and Runtime Optimization, ser. CGO ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 75–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=977395.977673

[9] N. Aoumeur and G. Saake, “Dynamically evolving concurrent
information systems specification and validation: A component-based
petri nets proposal,” Data Knowl. Eng., vol. 50, no. 2, pp. 117–173, Aug.
2004. [Online]. Available: http://dx.doi.org/10.1016./j.datak.2003.10.005

[10] B. Adams, H. Tromp, K. De Schutter, and W. De Meuter, “Design
recovery and maintenance of build systems,” in Software Maintenance,
2007. ICSM 2007. IEEE International Conference on, Oct 2007, pp.
114–123.

[11] J. Al-Kofahi, H. V. Nguyen, and T. N. Nguyen, “Fault localization
for build code errors in makefiles,” in Companion Proceedings of
the 36th International Conference on Software Engineering, ser. ICSE
Companion 2014. New York, NY, USA: ACM, 2014, pp. 600–601.
[Online]. Available: http://doi.acm.org/10.1145/2591062.2591135

[12] A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. N. Nguyen,
“Symake: A build code analysis and refactoring tool for makefiles,”
in Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE 2012. New
York, NY, USA: ACM, 2012, pp. 366–369. [Online]. Available:
http://doi.acm.org/10.1145/2351676.2351749

[13] “Gnu autoconf - creating automatic configuration scripts,”
http://www.gnu.org/software/autoconf/manual/index.html, accessed:
2015-10-25.

[14] M. Gligoric, W. Schulte, C. Prasad, D. van Velzen, I. Narasamdya,
and B. Livshits, “Automated migration of build scripts using dynamic
analysis and search-based refactoring,” in Proceedings of the Conference
on Object Oriented Programming Systems, Languages and Applications,
2014.


