
Hardware Based Method to Diagnose Software
Bugs

Hongyu Liu
Computer Science, University of Texas at San Antonio

xhe341@my.utsa.com

Abstract

Software bugs are notorious. Before we release a software, test
work should be done to ensure no failures in production runs. How-
ever some bugs could be escaped from test. This may compromise
end-user benefits. Unfortunately, to find out production-run bugs is
challenging. Existing tools cannot meet all requirements, such as pri-
vacy, performance overhead, diagnosis latency and so on.

To build a ideal tool, we design it based on two observations[1].
First, many bugs have short propagation which means we can find
out root cause right before failure sites. Second, collecting such in-
formation is much cheaper than monitoring the whole program ex-
ecution. Software based methods have lots of shortcomings, while
hardware based methods can be efficient and effective. We can use
branch-tracing hardware and performance counters to collect useful
information.

Many researches shows this method is feasible.
keywords: bug detection, LBR, Hardware

1 Introduction

Although we use sophisticated tools and approaches to detect bugs, many
software bugs cannot be found out. But this bugs may incur significant
influence. For example, Knight company lost $440 million due to a software
glitch which could let computers execute a series of automatic orders in a
short time. The company almost went bankrupt[3].

1

Unfortunately, it is very difficult to diagnose production-run bugs. In
production-run situation, we need to preserve user’s privacy and reduce per-
formance overhead, which may increase diagnosis latency.

Existing tools could be classified in to three categories. The first one is to
monitor the whole program in execution. Although these tools can find root
cause of bugs easily, it would add much performance overhead. The more
information it collects, the more overhead it adds. It is impossible to use these
tools in production runs. The second one is to collect failure sites information.
Due to collecting only failure sites information, the overhead is lowest. Users
cannot notice these tools exist. Little information means we may not find
out the root cause or it cannot capture the root cause information. This
would cost long time to analyze and recollect information[8]. The third
one is a tradeoff between the above two methods. In order to obtain more
information and add low overhead, the tools use sampling to acquire data[4].
The obstacle to use this method is when we do sampling, there is no bugs,
while bugs occur at sampling interval. It is so efficient to collect information
related to bugs.

To build a ideal tool, we design based on two observations[1]. First,
we can capture root cause right before failure sites. Second, recording this
information is much cheaper than monitoring the whole program execution.

According to low overhead of hardware, we can use existing hardware
to record runtime information. Intel processors provide hardware perfor-
mance monitoring unit which is used for performance profiling. In provided
facilities, we can use Last Branch Record (LBR) and Branch Trace Store
(BTS) to record program branch information. LBR can be configured to
record different types of branch instructions, including conditional branches,
unconditional jumps, calls, returns, and others. We can use perf event to
collect cache-coherence events which may be useful for us to identify root
cause of bugs.

2 Related work

Many works have been done on hardware based method to monitor pro-
gram execution. THeME uses hardware instrumentation for test coverage
analysis[7]. This is not for bugs detection. Intel GNU GDB tool uses hard-
ware facilities for debugging. LBRLOG[1] uses LBX to store branches before
program failure. This tool just could diagnose sequential bugs. LCRLOG[1]

2

can find out root cause of concurrent bugs. But this tool is a conceptional
tool since it uses hardware extension to record cache-coherence event which
means there is no such hardware so far. Like the LCRLOG, ECMon[5] pro-
poses a hardware extension to deal with cache events in the whole program
execution. This incurs more overhead than LCRLOG.

Triage[6] uses record and replay mechanism to detect bugs automatically.
The tool modified OS kernel. It is impractical to use, since we do n’t know
whether this may compromise our system. CBI[2] was proposed for failure
diagnosis. However the tool uses sampling method to collect information.
The method is not efficient and precise. It may re-execute program many
times to obtain enough information for diagnosis.

3 Conclusion

Based on the works which have been done, it indicates it is feasible to
use hardware for failure diagnosis. We can design a tool which has low
performance overhead and low diagnosis latency. This can be deployed in
production-run program. Not only this can get enough information for bugs
detection, but it can preserve user’s privacy. We can combine record and
replay mechanism with hardware based method to detect bugs and eliminate
bugs automatically.

References

[1] J. Arulraj, G. Jin, and S. Lu. Leveraging the short-term memory of hard-
ware to diagnose production-run software failures. In Proceedings of the
19th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14, pages 207–222, New
York, NY, USA, 2014. ACM.

[2] P. Arumuga Nainar and B. Liblit. Adaptive bug isolation. In Proceedings
of the 32Nd ACM/IEEE International Conference on Software Engineer-
ing - Volume 1, ICSE ’10, pages 255–264, New York, NY, USA, 2010.
ACM.

[3] CNN. Knight expensive software glitches.

3

[4] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable
statistical bug isolation. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
’05, pages 15–26, New York, NY, USA, 2005. ACM.

[5] V. Nagarajan and R. Gupta. Ecmon: Exposing cache events for moni-
toring. In Proceedings of the 36th Annual International Symposium on
Computer Architecture, ISCA ’09, pages 349–360, New York, NY, USA,
2009. ACM.

[6] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou. Triage: Diagnosing
production run failures at the user’s site. In Proceedings of Twenty-first
ACM SIGOPS Symposium on Operating Systems Principles, SOSP ’07,
pages 131–144, New York, NY, USA, 2007. ACM.

[7] K. Walcott-Justice, J. Mars, and M. L. Soffa. Theme: A system for testing
by hardware monitoring events. In Proceedings of the 2012 International
Symposium on Software Testing and Analysis, ISSTA 2012, pages 12–22,
New York, NY, USA, 2012. ACM.

[8] D. Yuan, S. Park, P. Huang, Y. Liu, M. M. Lee, X. Tang, Y. Zhou, and
S. Savage. Be conservative: Enhancing failure diagnosis with proactive
logging. In Presented as part of the 10th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 12), pages 293–306,
Hollywood, CA, 2012. USENIX.

4

