Triangle Listing in Massive Networks

Brita Munsinger
Department of Computer Science
University of Texas at San Antonio

October 27, 2015

Abstract

Triangle listing has many important applications in
computer science, such as the analysis of complex
networks that emerge from real-world data sets. As
data sets have grown larger in recent years, a new
challenge for traditional triangle listing algorithms is
how to efficiently process a graph that is too large to
fit in main memory. This paper presents an algorithm
that addresses this issue.

1 Introduction

Triangle listing is the discovery and enumeration of
cycles of length three in graphs. There are numer-
ous uses of triangles in the analysis of the structure
of graphs and patterns within them, for example in
finding dense subgraphs or areas of high connectivity.
Recently, large data sets, such as those found within
social networks, have become more prevalent.

How to analyze these potentially massive graphs is
a real challenge. Traditionally, triangle listing algo-
rithms have been designed to process graphs that can
fit in their entirety in main memory. This simplifies
the analysis of the graph but limits the scope of the
algorithm. Technically an in memory algorithm could
be used to analyze a larger graph, but the repeated
access to auxiliary storage makes this cost prohibitive
in terms of running time.

We have developed an approach that can itera-
tively partition the graph and keep track of the tri-
angles found. As triangles are found, they are re-
moved from the graph. This continues until all trian-

gles have been found and the input graph is empty.
We ensure we do not miss triangles that may cross
partition boundaries by augmenting the graph with
supplementary data.

2 Related Work

Triangle listing is a rich area of research and there are
numerous variations within the field. While our ap-
proach focuses on listing all the triangles in a graph,
there are applications in which counting the num-
ber of triangles is sufficient, for example in calculat-
ing the clustering coefficient. Tsourakakis presents
an approach for counting triangles using eigenvalues
calculated from a matrix representation of the graph.
His method uses an in memory algorithm, so it is ad-
dressing different challenges than those we explore in
this paper.

Another triangle counting algorithm by Suri et al
has some common elements to the problem we are
exploring. Although their focus is on triangle count-
ing rather than listing, like us, they are concerned
with how to handle the analysis of graphs that do
not fit in memory. Their approach differs from ours
in that they apply MapReduce to the triangle prob-
lem in order to parallelize it rather than dividing up
the problem and analyzing partitions sequentially as
we do. As with Tsourakakis, their work is designed to
count triangles, in order to calculate such measures
as the clustering coefficient.

Alon et al take a different approach to the triangle
counting problem. They explore how to generalize
algorithms to count not just triangles, but cycles of

an arbitrary fixed length. As this paper is highly the-
oretical, issues of whether the graph fits in memory
are not relevant to their analysis as they are in our
work.

Much research in this area has a theoretical fo-
cus. Schank et al provides an alternative perspective
on triangle algorithms by implementing several and
comparing their performance on generated graphs.
In contrast to the other prior work explored here,
Schank et al include both counting and listing al-
gorithms in their analysis. They found that no algo-
rithm was best in all circumstances, but that forward,
a modified version of the standard edge-iterator algo-
rithm, was a good compromise.

3 Our Algorithm

At the core of our algorithm is keeping track of trian-
gles as we list them. To facilitate this we define three
types of triangles, Type 1, 2 and 3. Type 1 triangles
fall entirely within a single partition. Likewise, Type
2 triangles span two partitions and Type 3 triangles
span three partitions. In Figure 1, triangle abc rep-
resents a Type 1 triangle, triangle bcg is a Type 2
triangle, and triangle dej is a Type 3 triangle.

In order to keep track of edges that span par-
titions, we introduce the concept of extended sub-
graph. Additional directed edges are added to nodes
that are connected across partition boundaries. Fig-
ure 2 shows an example of extended subgraphs.

Our algorithm itself is listed in Figures 3 and 4.
The input to our algorithm is the graph and the final
output is a list of all triangles in the graph. The algo-
rithm works iteratively, first partitioning the graph,
then processing each partition in turn. The subpro-
cedure shown in Algorithm 3 in Figure 4 finds all
Type 1 and Type 2 triangles in the subgraph and
lists them out. Once the triangles are listed, those
edges are removed from the graph.

Type 3 triangles are handled indirectly. As edges
are removed, the overall graph shrinks and there will
be fewer partitions at each iteration. Eventually,
what were once Type 3 triangles spanning multiple
partitions will become Type 1 or 2 and be listed by
Algorithm 3. Once these partitions have been pro-

G

(G1) (G3)

Figure 1: This partitioned graph includes triangles of
Types 1, 2 and 3.

D@ | B D ’P/J
\"\. --.-"'--_ -~ \
i Y /@/
To - \
| /-../_.»_téz’ e &Y
a :
e

D)

g f \ 1
J e) A
gt W

D

) e
\ \
\"-, CD
=~ \
/C*B
Ly -/:

) L
&

@—@

(G37)

Figure 2: This shows the extended subgraphs for each
partition.

cessed, the algorithm begins again, repartitioning the
remaining graph. The algorithm runs until all trian-
gles have been counted, all edges removed, and the
graph is empty.

4 Conclusions

The algorithm we present addresses the challenge of
how to efficiently process a graph that is too large

ALGORITHM 2: I/O-Efficient Triangle Listing
Input: A graph G = (Vg, Eg)

Output: AlG)
1. while((is not empty)
2. Partition G into P = {Gy, ..., Gi, ..., Gph;
3. for each extended subgraph G of G, € P do
4. List all triangles in AL(G]) and A2(G]) (by Algorithm 3);
5. Remove all edges in G; from G;
end
end

Figure 3: Our triangle listing algorithm

ALGORITHM 3: Triangle Listing in Extended Subgraph

Input: An extended subgraph H" = (Vy+, Ey+)
Output: A1(H ") and A2(H™)

1 for each u € Vi do
2 for each v € adjy(w), where v > 1, do
3. for each w € (adjy. (u) Nadjy. (v)) do
4, iflw > vorwe¢ Vy)
5 List A,
end
end
end
end

Figure 4: A subprocedure for algorithm 2

to fit into main memory. Our simulation data shows
that our algorithm performs well on graphs too large
to fit in memory, and even on graphs that do fit in
memory it performs comparably to standard in mem-
ory triangle listing algorithms.

5 References

N. Alon, R. Yuster, and U. Zwick, ”Finding and
Counting Given Length Cycles.,” Algorithmica, vol.
17, 1997, p. 209-223.

S. Chu and J. Cheng, ” Triangle Listing in Massive
Networks,” ACM Transactions on Knowledge Discov-
ery from Data, vol. 6, no. 4, 2012.

T. Schank and D. Wagner, ”Finding, Counting and
Listing All Triangles in Large Graphs, an Experimen-
tal Study,” WEA, 2005, p. 606-609.

S. Suri and S. Vassilvitskii, ”Counting Triangles
and the Curse of the Last Reducer,” WWW, 2001.

C. Tsourakakis, ”"Fast Counting of Triangles in
Large Real Networks Without Counting: Algorithms
and Laws,” Eighth IEEE International Conference on
Data Mining, 2008, p. 608-617.

