
Triangle Counting: Problem and Related Literature

Sam Silvestro, University of Texas at San Antonio

Provides an introduction to the problem of triangle counting, as well as the review of the paper ”Triangle

Listing in Massive Networks” by Shumo Chu and James Cheng of the University of Hong Kong. Additionally,

literature related to this problem is discussed.

1. INTRODUCTION

1.1. What is the triangle counting problem?

Given a (usually undirected) graph G=(V, E), we wish to count or list all cycles of length
3. In other words, a triangle is a ”complete subgraph of G” consisting of three vertices.

1.2. Why is it important?

The concept of triangles is at the heart of the definitions of many important measures for
network analysis, such as the clustering coefficients (of a single vertex in the network as
well as the entire network itself), transitivity, triangular connectivity, etc.

Each of these measures can be directly computed from the result of triangle listing,
and have a large number of important applications. In addition, triangle listing also has a
broad range of applications in other areas, such as the discovery of dense subgraphs, the
computation of trusses (i.e., subgraphs of high connectivity), spam detection, the uncovering
of hidden thematic relationships in the Web, etc. In all these applications, triangle listing
plays an important role.

The triangle counting problem is divided into several sub-categories. There are counting
algorithms which ”simply” count the number of triangles present, as well as listing algo-
rithms, in which each triangle is enumerated. Furthermore, there are approximating versus
exact algorithms, in-memory versus on-disk algorithms, etc.

Finding more efficient algorithms is a high priority due to the size of graphs being ana-
lyzed, for example, those modeling large telecommunication networks, social networks, the
Internet, etc. There may be millions of nodes and billions of edges in these cases.

2. THE PAPER

The paper I explored in depth was ”Triangle Listing in Massive Networks” by [Chu and
Cheng 2012]. In it, the authors present an exact listing algorithm. Specifically, they focus on
designing an efficient algorithm for listing when the input graph is too large to be occupied
in main memory and therefore must remain on disk during processing. They point out that
all of the existing algorithms fall into the category of ”in-memory” algorithms, many of
which still require at least linear additional memory to operate in.

While a number of approximating algorithms exist which avoid the need to parse the entire
graph, their shortcoming is that they only provide an estimate of the triangle count. The
authors further contend that triangle counting has significantly limited scope as compared
to triangle listing: ”Moreover, the set of applications of triangle counting is only a small
subset of that of triangle listing, as the result of triangle counting is directly obtainable
from that of triangle listing.”

Their approach consists of partitioning the input graph into subgraphs that are able to
fit in memory, where they process the local triangle listings in memory. Furthermore, they
categorize the types of triangles they encounter into three distinct classes: Type 1, Type 2,
and Type 3. Type 1 triangles are those in which all three edges of the triangle are found
within a single subgraph. Type 2 triangles are those in which two edges of the triangle reside
in one subgraph, while the third edge is in another. Similarly, Type 3 triangles occur when
each of its three edges occur in different subgraphs.



2 Silvestro

Their algorithm assumes the data stored on disk to be in an adjacency list format, in
which each vertex is assigned a unique vertex ID, and the vertices are arranged in the list
in ascending order of their ID’s. The algorithm itself begins like many others, in that we
visit each node in-turn according to its vertex ID, then perform an intersection between its
own adjacency list and that of each neighbor, but only if the neighbor has a higher vertex
ID. This condition prevents duplicate processing of vertices, and therefore the duplicate
outputting of triangles.

The unique vertex ID is not ordered based on the degree of the vertices – as is common
in other counting algorithms – but rather, is an arbitrary numbering. This saves costly
pre-processing of the adjacency list necessary for some other algorithms.

The authors point out that most existing algorithms require random access to the adja-
cency lists of a nodes neighbors. While the adjacency list of a node is easily read sequentially
from disk while reading in the graph, the adjacency list of its neighbors could be located
anywhere, necessitating random access to the disk. However, other algorithms such as ”for-
ward” require an additional storage array, the total size of which is linear in terms of its
input size. This would require the extra arrays be stored on disk (unless the graph were
merely a fraction of memory size), which places it too in a position to require random access
to the disk.

The main idea of the algorithm is to iteratively partition the graph into pieces that can
fit into main memory, then perform the triangle listing on each local subgraph. It then
removes from the overall graph any edges in the subgraph that no longer contribute to
triangle listing. This process is repeated until the graph is empty.

To implement this, they introduce the concept of extended subgraphs, which are simply
the same as each subgraph with the addition of a directed edge connecting each vertex in
the subgraph to its neighbors immediately outside of the subgraph. We can then discovery
and report all Type-1 and Type-2 triangles from the extended subgraph, then remove all of
the triangle edges found in the subgraph from the larger graph. After each sub-graph has
been processed, the graph is repartitioned and the process repeated. By re-partitioning the
shrunken graph after processing its subgraphs, we will gradually convert the set of Type-
3 triangles existing during the previous iteration into Type-1 and Type-2 triangles with
respect to the new partition during subsequent iterations.

If the shrunken graph becomes small enough to fit into memory at any point, the algorithm
will compute a partition consisting of only one subgraph, which will eliminate any remaining
Type-3 triangles with respect to the old partition. This process continues until all edges in
the graph have been removed.

3. RELATED WORK

This paper directly cited the work of [Schank and Wagner 2005] titled, ”Finding, Counting
and Listing all Triangles in Large Graphs, An Experimental Study”. The authors plainly
state that the purpose of this paper is to evaluated ”the practicability” of triangle counting
and listing in very large graphs of various degree distributions. Each algorithm is evaluated
against both artificially generated graphs, as well as real-world data (for example, the road
network of Germany). They also claim to provide a simple enhancement to a well-known
algorithm, making it feasible for use on very large graphs.

While this paper does not seem to contribute much in the way of original algorithm
development, its findings relating to real-world runtimes of popular algorithms are cited by
many papers concerning the problem of triangle counting.

The authors chose to implement each algorithm in C++, running them on a 64-bit AMD
Opteron-based machine. They count the number of ”triangle operations” performed by each
algorithm, on graphs of increasingly greater size, to essentially describe their asymptotic
running times provided no preprocessing. A triangle operation is considered to be a triangle
test; that is, determining whether a triangle exists by performing some test of equality.



Review of Related Literature 3

Their findings indicate that the two known standard algorithms namely, node-iterator
and edge-iterator perform the same asymptotically (as expected). They note that edge-
iterator performs best on graphs in which the degree of nodes does not differ significantly
from the average. In situations in which the distribution of the degree of nodes is skewed,
an algorithm such as ”forward” is more suitable, and performs better asymptotically.

”Efficient Algorithms for Large-Scale Local Triangle Counting” by [Becchetti et al. 2010],
explores the problem of approximating local triangle counts in large graphs. An algorithm
addressing such a problem will provide a count of the number of triangles incident to
every node in the graph. These authors present two such approximating algorithms. The
local triangle count for a given node could then be used directly to compute its clustering
coefficient. (The clustering coefficient of a node is a measure of connectedness, and is defined
as the ratio of the number of incident triangles to the total possible number of incident
triangles.)

The first of these algorithms is referred to in the topic paper, ”Triangle Listing in Massive
Networks.” The authors dismiss this (and similar) algorithms which operate from external
storage on the basis that it is an approximate counting algorithm, rather than the superior
listing-type algorithm they provide.

Both proposed algorithms rely on ”well-established probabilistic techniques” to estimate
the size of the intersection of two sets. In this example, given a pair of nodes, we would like to
estimate the size of the intersection of their sets of neighbors. The first algorithm performs
its work with the graph stored on disk as an adjacency matrix, while the other operates in
memory. They further impose on themselves the restriction of sequential access to the disk.
This requirement ensures their algorithms space and time complexity are compatible with
the ”semi-streaming” computation model.

”Streaming” algorithms come up frequently when studying triangle counting algorithms.
The streaming model was defined by [Raghavan 1999] in ”Computing on data streams.”
It presents a model for computation in which a small (i.e., constant) number of sequential
passes over the input data are allowed. Additionally, polylog space is often prescribed for
streaming algorithms. Relating to graphs specifically, a graph will be read in as a ”graph
stream” as a sequence of edges. The ”semi-streaming model” was then proposed by [Feigen-
baum et al. 2005] to loosen these requirements by allowing O(n polylog n) space and
logarithmically many passes.

In ”DOULION: Counting Triangles in Massive Graphs with a Coin” by [Tsourakakis
et al. 2009], a novel framework is proposed for counting triangles in very large graphs.
Their proposal relies on the use of some other counting algorithm as a black box that we
”drop in” to their framework. They implemented their framework using the Node-Iterator
algorithm and performed 166 experiments on both real-world and synthetic data sets, and
demonstrate speedups of up to 130 times.

The general idea is quite simple: it seeks to ”sparsify” the input graph, thus yielding a
speedup when counted using the black box algorithm. The framework takes as input the
graph, as well as a ”sparsification parameter” p, where 0 < p ≤ 1. We will use a random
number generator to implement a virtual coin having a biased probability of success equal
to p. We then visit each edge and ”flip” our virtual coin. If the flip was successful, we keep
the edge; otherwise, we delete it. (In lieu of ”keeping or deleting” the edge we could simply
assign a weight to it instead: 1

p on success, 0 otherwise.)

Upon completion, we provide the modified graph as input to the counting algorithm of
our choosing. We then take the resulting triangle count and multiply it 1

p3 to obtain the

estimated number of triangles in the original graph. If we chose to use weighted edges rather
than the deletion of edges, we could modify our black box algorithm to count triangles by
multiplying together their edge weights. In the event that any edge weight were 0 then the
product would be 0 as well. Similarly, if all three edges possess weight 1

p , their product would



4 Silvestro

yield 1
p3 . As mentioned, due to the random removal of edges, this framework is properly

classified as an approximating algorithm; however, they claim typical accuracy rates of over
99% in practice.

4. CONCLUSIONS

The paper and related works discussed here hardly begin to attack even a seemingly simple
problem such as triangle counting. With increased reliance on this problem to compute
valuable statistics relating to networks of various types, further research is bound to not
just continue, but increase. Moreover, the scope of such ”related works” encompasses many
varied disciplines, and overlaps with several other research problems such as triad census,
circuit counting, parallel processing, and many others which I explored while writing this
paper. This problem will undoubtedly remain the topic of further research for some time to
come.

REFERENCES

Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. 2010. Efficient algorithms for large-scale
local triangle counting. ACM Transactions on Knowledge Discovery from Data (TKDD) 4, 3 (2010),
13.

Shumo Chu and James Cheng. 2012. Triangle listing in massive networks. ACM Transactions on Knowledge
Discovery from Data (TKDD) 6, 4 (2012), 17.

Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. 2005. On graph
problems in a semi-streaming model. Theoretical Computer Science 348, 2 (2005), 207–216.

Monika R Henzinger Prabhakar Raghavan. 1999. Computing on data streams. In External Memory Algo-
rithms: DIMACS Workshop External Memory and Visualization, May 20-22, 1998, Vol. 50. American
Mathematical Soc., 107.

Thomas Schank and Dorothea Wagner. 2005. Finding, counting and listing all triangles in large graphs, an
experimental study. In Experimental and Efficient Algorithms. Springer, 606–609.

Charalampos E Tsourakakis, U Kang, Gary L Miller, and Christos Faloutsos. 2009. Doulion: counting trian-
gles in massive graphs with a coin. In Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 837–846.


