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ABSTRACT
This paper serves as an extended background explanation,
motivation, and related works section for [16].

1. INTRODUCTION
This paper’s goal is to provide an extended background and
related works for [16]. [16] is a paper detailing a method
of triangle estimation in real-world graphs using a mathe-
matical relationship between the number of eigenvalues of
real-world graphs and their triangle count. This paper in-
troduces the basic ideas of graph theory, the motivations
behind this work, the previous algorithms developed for tri-
angle counting, and insights into why this particular triangle
counting algorithm works.

2. GRAPH THEORY BACKGROUND
A graph G is defined as a way of encoding pairwise relation-
ships among a set of objects. It consists of a collection of
nodes V and a collection of edges E, each of which joins two
nodes. Each edge v is an ordered pair (u, v). An edge e is
said to leave node u and enter node v. Nodes are also called
vertices [8].

Graphs can be either directed (meaning an edge can only be
traversed in a certain direction) or undirected [8]. In this
paper, the graphs we consider are undirected.

A self-edge (or loop) is a node that has an edge connecting
it to itself [5].

Two nodes are adjacent if they have an edge connecting
them. A fully connected graph (also known as a complete
graph) is a graph in which all nodes are pairwise adjacent
[5].

A triangle is defined to be a set of three fully connected
nodes in an undirected graph without self-edges [16].

The degree of a node is defined to be the number of edges
that connect to it [5].

A closed walk of a graph is a finite, loop-free, non-empty
alternating sequence of nodes and edges such that each edge
is connected to each subsequent node, and the end node is
the same as the start node [5].

3. MOTIVATION
According to Watts and Strogatz [17], small-world graphs
are the norm for real-world data. A small-world graph is
defined as a tightly-clustered graph with small path lengths
[17]. It is easy to see that a tightly-clustered graph with
small path lengths will contain many triangles. The number
of triagles are thus important for understanding the data in
a graph because they give us an idea of the cliquishness of
a graph.

The standard metrics for the cliquishness of a graph are the
clustering coefficient and the transitivity ratio, which have a
high correlation to the number of triangles in a graph. The
clustering coefficient of a node is the fraction of possible
edges it could have to other nodes divided by the number
of edges it actually has [17]. One of the ways of calculating
the global clustering coefficient is actually by calculating
the number of triangles, multiplying that number by three,
and dividing by the number of connected triples of vertices
[11]. The transitivity of a graph (which is the transitivity
ratio restricted to undirected graphs) is another term for the
global clustering coefficient [12].

4. TRIANGLE COUNTING AND LISTING
WORKS

4.1 Exact counting and listing algorithms
Schank and Wagner present an overview of triangle algo-
rithms. They divide triangle algorithms into either count-
ing or listing algorithms, where counting algorithms simply
produce the number of triangles, while listing algorithms
produce a list of every triangle present in the graph [13].

They present several exact counting methods in their pa-
per. The simplest traverses the adjacency matrix using the
matrix multiplication solution to the shortest paths prob-
lem to get a count of the triangles, with a runtime of O(n3)
[13]. A slightly better exact counting algorithm, which they



call node-iterator, traverses all nodes and counts every set of
three connected nodes and obtains a runtime of O(nd2max).

The fastest currently-known exact triangle counting algo-
rithm is known as AYZ for the authors Alon, Yuster, and
Zwick, which uses fast matrix multiplication to traverse the
nodes and count all triangles and has a runtime of O(m3/2)
[1]. Thus, the fastest exact triangle counting takes expo-
nential time, which is why [16] presents a fast estimation
algorithm.

4.2 Streaming algorithms
A streaming algorithm is an algorithm that handles data
that arrives in a data stream. Bar-Yossef et. al. have devel-
oped a streaming algorithm to approximate the number of
triangles in a large graph. This algorithm has the advantage
of being space efficient and only requiring a single pass over
the data [2].

4.3 Semi-streaming algorithms
Becchetti, Boldi, and Castillo present an algorithm to esti-
mate the local number of triangles in a graph (for each node,
compute the number of triangles that the node participates
in). They chose to use a semi-streaming algorithm for this
because a streaming algorithm would constrain the memory
usage too much to be useful. The semi-streaming algorithm
limits the passes over the data to be at most O(logN) [3].

4.4 Algorithms that minimize disk I/O
Triangle listing algorithms suffer from huge datasets and the
fact that in-memory algorithms are unable to handle looking
at each node without significant slowdowns from disk I/O.
Chu and Cheng have solved this problem using an algorithm
that is designed to work on neighboring vertices as a whole
in order to minimize disk I/O accesses [4].

4.5 Algorithms that use MapReduce and Hadoop
Exact triangle counting also has the issue of huge graphs and
many disk I/O accesses. Suri and Vassilvitskii have devel-
oped an algorithm to calculate the number of triangles using
MapReduce on a computing cluster in order to mitigate this
issue [15].

The ability to massively parallelize triangle counting is im-
portant due to the size of the graphs being mined, and the
algorithm presented in [16] is able to be run on a MapReduce
system as well.

5. BACKGROUND WORKS
This section will introduce the topics needed to understand
the theorems and algorithms [16] presents.

5.1 Adjacency matrices
An adjacency matrix of a graph which has n nodes is a
matrix A = (aij)nxn which is defined by aij = 1 if vivj ∈ E
and 0 otherwise [5]. This gives us a way to do linear algebra
operations on graphs.

5.2 Eigenvalues
For a matrix A, given the expression Ax = λx, where x is
a vector and λ is a real or complex number, x is said to be
the eigenvector of A and λ is said to be its eigenvalue. [9]

5.3 Estimating eigenvalues
The Lanczos method is an iterative method of estimating the
eigenvalues in a matrix. It provides a good, fast estimate for
large graphs with sparse eigenvalues [6].

5.4 Power laws
A power law is a J-shaped, highly skewed distribution func-
tion of some empirical data with a long tail [14].

A degree power law is a graph with a power law for graph
degrees. In other words, it has a few nodes with a high
degree and many nodes with a low degree [10].

If a graph has a degree power law, it also has an eigenvalue
power law [10]. Degree power laws are common in real net-
works [16], and so by extension eigenvalue power laws are
also common. The fact that these graphs have eigenvalue
power laws makes the eigenvalues fast to calculate because
there are only a few important eigenvalues, and many unim-
portant (small) eigenvalues, so the Lanczos method can be
used to find the most important eigenvalues and thus find a
close approximation quickly [16].

5.5 Number of closed walks in a graph
In [7], Harary and Schwenk prove that the number of closed
walks of length n in a graph is the sum of the nth powers
of the graph’s eigenvalues. By extension, the number of
closed walks of length 3 is the sum of cubes of the graph’s
eigenvalues, and a closed walk of length 3 is a triangle.

6. METHOD
The main idea of [16] is the fact that the total number of
triangles in a graph is proportional to the sum of cubes of
its adjacency matrix eigenvalues. The formula developed by
[16] is the following:
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The proposed algorithm EigenTriangle which calculates the
number of triangles involves iteratively using the Lanczos
method to calculate the eigenvalues, cubing and summing
them as we calculate them.

In addition, [16] presents another formula and algorithm
which are extensions of EigenTriangle that count the num-
ber of triangles ∆i that node i participates in, calling these
EigenTriangleLocal. The formula for this is the following:
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Similarly, the algorithm for this works by using the Lanc-
zos method to compute the cubes of the eigenvalues of the
adjacency matrix.

This method provides a mean speedup of 250x compared
to the aforementioned node-iterator algorithm presented by
[13].

In addition to the algorithms developed, [16] also uncov-
ers a power law between a graph’s average degree and the



number of triangles present in the graph. [16] calls this the
DEGREE-TRIANGLE power law.

[16] also notes that the idea of using eigenvalues to calculate
the number of triangles in a graph also works for Kronecker
graphs and Erdos-Renyi graphs.

7. CONCLUSION
This has been an explanation and related works for [16].
This paper has explained the basic concepts, motivation,
background and related works so that [16] is easier to un-
derstand.
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