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Introduction

Loops

1 Loop Styles: Constant, Increase, Decrease, Conditional, Irregular
2 Loop Scheduling: Static, Dynamic
3 Loop Carried Dependence: DOALL loops, DOACROSS loops
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Introduction

Examples of Parallel Loops

1 Mandelbrot Set

MSetLSM(MSet,nx,ny,xmin,xmax,ymin,ymax,maxiter)

BEGIN
FOR iy = 0 TO ny - 1 DO

cy = ymin + iy * (ymax - ymin)/(ny - 1)
FOR ix = 0 TO nx - 1 DO

cx = xmin + ix * (xmax - xmin)/(nx - 1)
MSet[ix][iy] = MSetLevel(cx,cy,maxiter)

END FOR
END FOR

END
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Introduction

Examples of Parallel Loops

MSetLevel(cx,cy,maxiter)

BEGIN
x = y = x2 = y2 = 0.0, iter = 0
WHILE(iter < maxiter) AND (x2 + y2 < 2.0)DO

temp = x2 - y2 + cx; y = 2 * x * y + cy;
x = temp; x2 = x * x; y2 = y * y; iter++;

END WHILE
RETURN (iter)

END
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Introduction

Examples of Parallel Loops

1 Adjoint Convolution

BEGIN
FOR I = 1 TO N DO

FOR J = I TO N DO
A(I) = A(I) + X * B(J) * C(J - I)

END FOR
END FOR

END
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Introduction

Goal: Minimization of Execution time

1 Assigning tasks to processors in order to make the processor
loads well balanced

2 Avoiding assigning small number of iterations

3 Reducing communication overhead
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Introduction

Self-Scheduling Scheme

Common Solution:
1 Partition problem into several independent tasks (if possible)
2 Distribute workload on multiple machines
3 Collect results

Figure : Self-Scheduling Schemes: the Master-Worker model
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Simple Loop Self-Scheduling Schemes

Simple Loop Scheduling Schemes

In a generic self-scheduling scheme, at the ith scheduling step, the
master computes the chunk-size Ci , a starting index istart , and the
remaining number of tasks Ri .

R0 = I, Ci = f (Ri−1,p), istart = J0 (1)
where f (, ) is a function possibly of more inputs than just Ri−1 and p.

1 The master
Assigns to a worker Ci iterations and a starting index istart
Then updates the istart and Ri :

istart = istart + Ci , Ri = Ri−1 − Ci (2)
If the Ci is below a threshold, then computation of Ci must be
modified by a Threshold Condition.
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Simple Loop Self-Scheduling Schemes

Simple Loop Scheduling Schemes

Algorithm of Simple Loop Scheduling Schemes:
1 Master:

Receive a new request from a worker for tasks
If(Ri > 0) then

Compute Ci , istart and Ri from (1)(2) above
Send a new task (starting index istart and size Ci ) to the worker

Else
Send ’terminate’ signal to requesting workers

2 Worker:
Send a request to Master
Receive new tasks or ‘terminate’ signal
Perform tasks or terminate
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Simple Loop Self-Scheduling Schemes

Chunk Self-Scheduling (CSS)

1 Ci = k , where k ≥ 1 and is chosen by the user.
k = 1: pure Self-Scheduling scheme (SS)
k = I/p: Fixed-size scheme (FS)

2 Strength: low scheduling overheads
3 Weakness: load imbalance, non-adaptive
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Simple Loop Self-Scheduling Schemes

Guided Self-Scheduling(GSS)

1 Ci = dRi−1/pe
Dynamic
Large chunks at the beginning
Small chunks at the end

2 GSS(k)
3 Example:

I = 1000 and p = 4

Scheme Chunk size
GSS 250 188 141 106 79 59 45 33 25 19 14 11

8 6 4 3 3 2 1 1 1 1
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Simple Loop Self-Scheduling Schemes

Factoring Self-Scheduling(FSS)

1 Ci = dRi−1/(αp)e, Ri = Ri−1 − pCi ( where R0 = I)
Improve GSS
Better load balance

2 Example:
I = 1000 and p = 4

Scheme Chunk size
FSS 125 125 125 125 63 63 63 63 31 31 31 31

16 16 16 16 8 8 8 8 4 4 4 4 2 2 2 2 1 1 1 1
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Simple Loop Self-Scheduling Schemes

Trapezoid Self-Scheduling (TSS)

1 F =
⌊

I
2p

⌋
= 125, L = 1, N =

⌈
2∗I

(F+L)

⌉
= 16

2 D =
⌊
(F−L)
(N−1)

⌋
= 8

3 Ci = Ci−1 − D,
reasonable load balance
Less synchronization

4 Example:
I = 1000 and p = 4

Scheme Chunk size
TSS 125 117 109 101 93 85 77 69 61 53 45 37

28
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Distributed Loop Self-Scheduling Schemes

Heterogeneity

1 heterogeneity
heterogeneous program has parallel loops with different amount of
work in each iteration;

Load Balance
heterogeneous processors have different speeds;

Load Balance
a heterogeneous network has different cost of communication
between processors.

Synchronization
Communication
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Distributed Loop Self-Scheduling Schemes

Cloud Computing

Figure : What is Cloud Computing (from http://abouttmc.com/)
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Distributed Loop Self-Scheduling Schemes

Cloud Computing Characteristics

1 On-demand self-service
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Distributed Loop Self-Scheduling Schemes

Cloud Computing Characteristics

Figure : Cloud Computing Characteristics (from http://www.opengroup.org/)
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Distributed Loop Self-Scheduling Schemes

Cloud Service Models

Figure : Cloud Service Models (from Mark Baker’s lecture)
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Distributed Loop Self-Scheduling Schemes

Heterogeneous

Figure : virtual system (from http://pic.dhe.ibm.com/)
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Distributed Loop Self-Scheduling Schemes

Algorithm

1 Vj = Speed(Pj)/min1≤i≤p{Speed(Pi)}, j = 1, ...,p, is the virtual
power of Pj (computed by the master), where Speed(Pj ) is the
processing speed of Pj . That is a standardized computing power.

2 V =
∑p

j=1 Vj is the total virtual computing power.
3 DC is the distributed chunk size for one worker request.
4 Example, DGSS, Initialization: R = I:

Algorithm 1 Calculate DC, DGSS

for i = 1 to Vj do
DC = DC + dR/Ve;
R = R − dR/Ve;

end for
return DC;
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Distributed Loop Self-Scheduling Schemes

Experiment

1 Applications
Mandelbrot Set

Size: 10K * 10K, 20K * 20K
Adjoint Convolution

Size: 9K * 9K, 16K * 16K
2 Platform

FlexCloud of Institute for Cyber Security(ICS)
5 Racks of Dell R410, R610, R710, and R910s consisting of 748
processing cores, 3.44TB of RAM, and 144TB of total storage.
Redundant 10GB network connectivity provides high performance
access between all nodes.
Joynet
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Distributed Loop Self-Scheduling Schemes

Experiment

1 Experimental Setup
17 VMs, single core, 1GB memory, 10GB storage
Ubuntu Linux 10.04 image.
GCC/G++ and OpenMPI are installed
Stress

Configure CPU, memory, I/O, and disk stress
apt-get install stress
8, 5, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.
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Distributed Loop Self-Scheduling Schemes

Experiment

Stress
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Distributed Loop Self-Scheduling Schemes

Results (execution time)

1 Mandelbrot Set execution time, seconds
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Figure : The performance comparison of Mandelbrot Set using distributed
schemes
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Distributed Loop Self-Scheduling Schemes

Results (execution time)

1 Adjoint Convolution execution time, seconds
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Figure : The performance comparison of Adjoint Convolution using distributed
schemes
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Distributed Loop Self-Scheduling Schemes

Results (maximum difference)

1 maximum difference =
max{Tcomp1 ,Tcomp2 , . . . ,Tcompp} −min{Tcomp1 ,Tcomp2 , . . . ,Tcompp}

2 Mandelbrot Set maximum difference, seconds
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Figure : The maximum difference comparison of Mandelbrot Set using
distributed schemes
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Distributed Loop Self-Scheduling Schemes

Results (maximum difference)

1 Adjoint Convolution maximum difference, seconds

8 workers 16 workers
0

1

2

3

4

5

6

tim
e 

(s
ec

on
d)

 

 

 

TSS
DTSS
FSS
DFSS
GSS
DGSS

8 workers 16 workers
0

5

10

15

20

25

tim
e 

(s
ec

on
d)

 

 

 

TSS
DTSS
FSS
DFSS
GSS
DGSS

a. 9K * 9K b. 16K * 16K
Figure : The maximum difference comparison of Adjoint Convolution using
distributed schemes
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Distributed Loop Self-Scheduling Schemes

Results (speedup)

1 Baseline: T̂1 is the execution time for the TSS with 8 workers
2 Speedup: Sp = T̂1

Tp

3 Mandelbrot Set speedup
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Figure : The speedup comparison of Mandelbrot Set using distributed
schemes
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Distributed Loop Self-Scheduling Schemes

Results (speedup)

1 Baseline: T̂1 is the execution time for the TSS with 8 workers
2 Speedup: Sp = T̂1

Tp

3 Adjoint Convolution speedup
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Figure : The speedup comparison of Adjoint Convolution using distributed
schemes
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Hierarchical Distributed Loop Self-Scheduling Schemes

Hierarchical Schemes on Large-Scale Cluster

1 Master-Worker Model
Centralized: one master, multiple workers
Easy to implement and maintain
good performance
Not scalable
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Hierarchical Distributed Loop Self-Scheduling Schemes

Hierarchical Schemes on Large-Scale Cluster

1 Scalability

Figure : Hierarchical Model
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Hierarchical Distributed Loop Self-Scheduling Schemes

Experiment

1 Applications
Mandelbrot Set

Size: 200K * 200K
Adjoint Convolution

Size: 640K * 640K
2 Platform

Ranger, Texas Advanced Computing Center(TACC), UTexas at
Austin

SunBlade x6420 blade, 4 AMD Opteron Quad-Core 64-bit
processors, 16 cores totally.
total of 62,976 compute cores, 123 TB of total memory and 1.7 PB of
raw global disk space.
InfiniBand Constellation Core Switch.
Large option.
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Hierarchical Distributed Loop Self-Scheduling Schemes

Ranger

Figure : Ranger (from http://www.tacc.utexas.edu/)
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Hierarchical Distributed Loop Self-Scheduling Schemes

Results (execution time)

1 Mandelbrot Set execution time, seconds
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Figure : The performance of Mandelbrot Set using hierarchical distributed
schemes
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Hierarchical Distributed Loop Self-Scheduling Schemes

Results (execution time)

1 Adjoint Convolution execution time, seconds
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Figure : The performance of Adjoint Convolution using hierarchical distributed
schemes
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Hierarchical Distributed Loop Self-Scheduling Schemes

Results (speedup)

1 Baseline: T̂1 is the execution time for non hierarchical distributed
scheme with 256 workers

2 Speedup: Sp = T̂1
Tp

3 Mandelbrot Set speedup
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Figure : The speedup of Mandelbrot Set using hierarchical distributed
schemes
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Hierarchical Distributed Loop Self-Scheduling Schemes

Results (speedup)

1 Baseline: T̂1 is the execution time for non hierarchical distributed
scheme with 256 workers

2 Speedup: Sp = T̂1
Tp

3 Adjoint Convolution speedup
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Figure : The speedup of Adjoint Convolution using hierarchical distributed
schemes

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 38 / 41



Conclusion and Future Work

Conclusion

1 Simple Loop Self-Scheduling Schemes
Master-Worker Model
CSS
GSS
FSS
TSS

2 Distributed Loop Self-Scheduling Schemes
Load Balance

3 Hierarchical Distributed Loop Self-Scheduling Schemes
Scalability

Synchronization
Communication
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Conclusion and Future Work

Future Work

1 Discover schemes for DOACROSS loops
2 Apply Hierarchical Distributed Loop Self-Scheduling Schemes on

cloud systems
Network heterogeneity

3 Hadoop MapReduce
Implement different schemes
Tune performance with different configurations
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Conclusion and Future Work
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