
Hierarchical Distributed Loop Self-Scheduling
Schemes on Cluster and Cloud Systems

Dr. Anthony T. Chronopoulos,
Yiming Han

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 1 / 41

Outline

1 Introduction

2 Simple Loop Self-Scheduling Schemes

3 Distributed Loop Self-Scheduling Schemes

4 Hierarchical Distributed Loop Self-Scheduling Schemes

5 Conclusion and Future Work

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 2 / 41

Introduction

Loops

1 Loop Styles: Constant, Increase, Decrease, Conditional, Irregular
2 Loop Scheduling: Static, Dynamic
3 Loop Carried Dependence: DOALL loops, DOACROSS loops

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 3 / 41

Introduction

Examples of Parallel Loops

1 Mandelbrot Set

MSetLSM(MSet,nx,ny,xmin,xmax,ymin,ymax,maxiter)

BEGIN
FOR iy = 0 TO ny - 1 DO

cy = ymin + iy * (ymax - ymin)/(ny - 1)
FOR ix = 0 TO nx - 1 DO

cx = xmin + ix * (xmax - xmin)/(nx - 1)
MSet[ix][iy] = MSetLevel(cx,cy,maxiter)

END FOR
END FOR

END

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 4 / 41

Introduction

Examples of Parallel Loops

MSetLevel(cx,cy,maxiter)

BEGIN
x = y = x2 = y2 = 0.0, iter = 0
WHILE(iter < maxiter) AND (x2 + y2 < 2.0)DO

temp = x2 - y2 + cx; y = 2 * x * y + cy;
x = temp; x2 = x * x; y2 = y * y; iter++;

END WHILE
RETURN (iter)

END

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 5 / 41

Introduction

Examples of Parallel Loops

1 Adjoint Convolution

BEGIN
FOR I = 1 TO N DO

FOR J = I TO N DO
A(I) = A(I) + X * B(J) * C(J - I)

END FOR
END FOR

END

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 6 / 41

Introduction

Goal: Minimization of Execution time

1 Assigning tasks to processors in order to make the processor
loads well balanced

2 Avoiding assigning small number of iterations

3 Reducing communication overhead

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 7 / 41

Introduction

Self-Scheduling Scheme

Common Solution:
1 Partition problem into several independent tasks (if possible)
2 Distribute workload on multiple machines
3 Collect results

Figure : Self-Scheduling Schemes: the Master-Worker model

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 8 / 41

Simple Loop Self-Scheduling Schemes

Simple Loop Scheduling Schemes

In a generic self-scheduling scheme, at the ith scheduling step, the
master computes the chunk-size Ci , a starting index istart , and the
remaining number of tasks Ri .

R0 = I, Ci = f (Ri−1,p), istart = J0 (1)
where f (,) is a function possibly of more inputs than just Ri−1 and p.

1 The master
Assigns to a worker Ci iterations and a starting index istart
Then updates the istart and Ri :

istart = istart + Ci , Ri = Ri−1 − Ci (2)
If the Ci is below a threshold, then computation of Ci must be
modified by a Threshold Condition.

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 9 / 41

Simple Loop Self-Scheduling Schemes

Simple Loop Scheduling Schemes

Algorithm of Simple Loop Scheduling Schemes:
1 Master:

Receive a new request from a worker for tasks
If(Ri > 0) then

Compute Ci , istart and Ri from (1)(2) above
Send a new task (starting index istart and size Ci) to the worker

Else
Send ’terminate’ signal to requesting workers

2 Worker:
Send a request to Master
Receive new tasks or ‘terminate’ signal
Perform tasks or terminate

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 10 / 41

Simple Loop Self-Scheduling Schemes

Chunk Self-Scheduling (CSS)

1 Ci = k , where k ≥ 1 and is chosen by the user.
k = 1: pure Self-Scheduling scheme (SS)
k = I/p: Fixed-size scheme (FS)

2 Strength: low scheduling overheads
3 Weakness: load imbalance, non-adaptive

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 11 / 41

Simple Loop Self-Scheduling Schemes

Guided Self-Scheduling(GSS)

1 Ci = dRi−1/pe
Dynamic
Large chunks at the beginning
Small chunks at the end

2 GSS(k)
3 Example:

I = 1000 and p = 4

Scheme Chunk size
GSS 250 188 141 106 79 59 45 33 25 19 14 11

8 6 4 3 3 2 1 1 1 1

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 12 / 41

Simple Loop Self-Scheduling Schemes

Factoring Self-Scheduling(FSS)

1 Ci = dRi−1/(αp)e, Ri = Ri−1 − pCi (where R0 = I)
Improve GSS
Better load balance

2 Example:
I = 1000 and p = 4

Scheme Chunk size
FSS 125 125 125 125 63 63 63 63 31 31 31 31

16 16 16 16 8 8 8 8 4 4 4 4 2 2 2 2 1 1 1 1

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 13 / 41

Simple Loop Self-Scheduling Schemes

Trapezoid Self-Scheduling (TSS)

1 F =
⌊

I
2p

⌋
= 125, L = 1, N =

⌈
2∗I

(F+L)

⌉
= 16

2 D =
⌊
(F−L)
(N−1)

⌋
= 8

3 Ci = Ci−1 − D,
reasonable load balance
Less synchronization

4 Example:
I = 1000 and p = 4

Scheme Chunk size
TSS 125 117 109 101 93 85 77 69 61 53 45 37

28

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 14 / 41

Distributed Loop Self-Scheduling Schemes

Heterogeneity

1 heterogeneity
heterogeneous program has parallel loops with different amount of
work in each iteration;

Load Balance
heterogeneous processors have different speeds;

Load Balance
a heterogeneous network has different cost of communication
between processors.

Synchronization
Communication

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 15 / 41

Distributed Loop Self-Scheduling Schemes

Cloud Computing

Figure : What is Cloud Computing (from http://abouttmc.com/)
Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 16 / 41

Distributed Loop Self-Scheduling Schemes

Cloud Computing Characteristics

1 On-demand self-service

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 17 / 41

Distributed Loop Self-Scheduling Schemes

Cloud Computing Characteristics

Figure : Cloud Computing Characteristics (from http://www.opengroup.org/)

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 18 / 41

Distributed Loop Self-Scheduling Schemes

Cloud Service Models

Figure : Cloud Service Models (from Mark Baker’s lecture)
Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 19 / 41

Distributed Loop Self-Scheduling Schemes

Heterogeneous

Figure : virtual system (from http://pic.dhe.ibm.com/)
Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 20 / 41

Distributed Loop Self-Scheduling Schemes

Algorithm

1 Vj = Speed(Pj)/min1≤i≤p{Speed(Pi)}, j = 1, ...,p, is the virtual
power of Pj (computed by the master), where Speed(Pj) is the
processing speed of Pj . That is a standardized computing power.

2 V =
∑p

j=1 Vj is the total virtual computing power.
3 DC is the distributed chunk size for one worker request.
4 Example, DGSS, Initialization: R = I:

Algorithm 1 Calculate DC, DGSS

for i = 1 to Vj do
DC = DC + dR/Ve;
R = R − dR/Ve;

end for
return DC;

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 21 / 41

Distributed Loop Self-Scheduling Schemes

Experiment

1 Applications
Mandelbrot Set

Size: 10K * 10K, 20K * 20K
Adjoint Convolution

Size: 9K * 9K, 16K * 16K
2 Platform

FlexCloud of Institute for Cyber Security(ICS)
5 Racks of Dell R410, R610, R710, and R910s consisting of 748
processing cores, 3.44TB of RAM, and 144TB of total storage.
Redundant 10GB network connectivity provides high performance
access between all nodes.
Joynet

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 22 / 41

Distributed Loop Self-Scheduling Schemes

Experiment

1 Experimental Setup
17 VMs, single core, 1GB memory, 10GB storage
Ubuntu Linux 10.04 image.
GCC/G++ and OpenMPI are installed
Stress

Configure CPU, memory, I/O, and disk stress
apt-get install stress
8, 5, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 23 / 41

Distributed Loop Self-Scheduling Schemes

Experiment

Stress

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 24 / 41

Distributed Loop Self-Scheduling Schemes

Results (execution time)

1 Mandelbrot Set execution time, seconds

8 workers 16 workers
0

10

20

30

40

50

60

70

80

tim
e

(s
ec

on
d)

TSS
DTSS
FSS
DFSS
GSS
DGSS

8 workers 16 workers
0

50

100

150

200

250

300

tim
e

(s
ec

on
d)

TSS
DTSS
FSS
DFSS
GSS
DGSS

a. 10K * 10K b. 20K * 20K
Figure : The performance comparison of Mandelbrot Set using distributed
schemes

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 25 / 41

Distributed Loop Self-Scheduling Schemes

Results (execution time)

1 Adjoint Convolution execution time, seconds

8 workers 16 workers
0

5

10

15

20

25

tim
e

(s
ec

on
d)

TSS
DTSS
FSS
DFSS
GSS
DGSS

8 workers 16 workers
0

10

20

30

40

50

60

tim
e

(s
ec

on
d)

TSS
DTSS
FSS
DFSS
GSS
DGSS

a. 9K * 9K b. 16K * 16K
Figure : The performance comparison of Adjoint Convolution using distributed
schemes

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 26 / 41

Distributed Loop Self-Scheduling Schemes

Results (maximum difference)

1 maximum difference =
max{Tcomp1 ,Tcomp2 , . . . ,Tcompp} −min{Tcomp1 ,Tcomp2 , . . . ,Tcompp}

2 Mandelbrot Set maximum difference, seconds

8 workers 16 workers
0

10

20

30

40

50

60

70

tim
e

(s
ec

on
d)

TSS
DTSS
FSS
DFSS
GSS
DGSS

8 workers 16 workers
0

50

100

150

200

250

tim
e

(s
ec

on
d)

TSS
DTSS
FSS
DFSS
GSS
DGSS

a. 10K * 10K b. 20K * 20K
Figure : The maximum difference comparison of Mandelbrot Set using
distributed schemes

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 27 / 41

Distributed Loop Self-Scheduling Schemes

Results (maximum difference)

1 Adjoint Convolution maximum difference, seconds

8 workers 16 workers
0

1

2

3

4

5

6

tim
e

(s
ec

on
d)

TSS
DTSS
FSS
DFSS
GSS
DGSS

8 workers 16 workers
0

5

10

15

20

25

tim
e

(s
ec

on
d)

TSS
DTSS
FSS
DFSS
GSS
DGSS

a. 9K * 9K b. 16K * 16K
Figure : The maximum difference comparison of Adjoint Convolution using
distributed schemes

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 28 / 41

Distributed Loop Self-Scheduling Schemes

Results (speedup)

1 Baseline: T̂1 is the execution time for the TSS with 8 workers
2 Speedup: Sp = T̂1

Tp

3 Mandelbrot Set speedup

8 workers 16 workers
0

0.5

1

1.5

2

2.5

3

sp
ee

du
p

TSS
FSS
GSS
DTSS
DFSS
DGSS

8 workers 16 workers
0

0.5

1

1.5

2

2.5

3

sp
ee

du
p

TSS
FSS
GSS
DTSS
DFSS
DGSS

a. 10K * 10K b. 20K * 20K
Figure : The speedup comparison of Mandelbrot Set using distributed
schemes

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 29 / 41

Distributed Loop Self-Scheduling Schemes

Results (speedup)

1 Baseline: T̂1 is the execution time for the TSS with 8 workers
2 Speedup: Sp = T̂1

Tp

3 Adjoint Convolution speedup

8 workers 16 workers
0

0.5

1

1.5

2

sp
ee

du
p

TSS
FSS
GSS
DTSS
DFSS
DGSS

8 workers 16 workers
0

0.5

1

1.5

2

sp
ee

du
p

TSS
FSS
GSS
DTSS
DFSS
DGSS

a. 9K * 9K b. 16K * 16K
Figure : The speedup comparison of Adjoint Convolution using distributed
schemes

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 30 / 41

Hierarchical Distributed Loop Self-Scheduling Schemes

Hierarchical Schemes on Large-Scale Cluster

1 Master-Worker Model
Centralized: one master, multiple workers
Easy to implement and maintain
good performance
Not scalable

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 31 / 41

Hierarchical Distributed Loop Self-Scheduling Schemes

Hierarchical Schemes on Large-Scale Cluster

1 Scalability

Figure : Hierarchical Model

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 32 / 41

Hierarchical Distributed Loop Self-Scheduling Schemes

Experiment

1 Applications
Mandelbrot Set

Size: 200K * 200K
Adjoint Convolution

Size: 640K * 640K
2 Platform

Ranger, Texas Advanced Computing Center(TACC), UTexas at
Austin

SunBlade x6420 blade, 4 AMD Opteron Quad-Core 64-bit
processors, 16 cores totally.
total of 62,976 compute cores, 123 TB of total memory and 1.7 PB of
raw global disk space.
InfiniBand Constellation Core Switch.
Large option.

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 33 / 41

Hierarchical Distributed Loop Self-Scheduling Schemes

Ranger

Figure : Ranger (from http://www.tacc.utexas.edu/)

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 34 / 41

Hierarchical Distributed Loop Self-Scheduling Schemes

Results (execution time)

1 Mandelbrot Set execution time, seconds

 0

 50

 100

 150

 200

 250

256 512 1024 2048 4096 8192

tim
e

(s
ec

on
ds

)

processors

non hirerachical
2 Masters
4 Masters
8 Masters

16 Masters

Figure : The performance of Mandelbrot Set using hierarchical distributed
schemes

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 35 / 41

Hierarchical Distributed Loop Self-Scheduling Schemes

Results (execution time)

1 Adjoint Convolution execution time, seconds

 0

 100

 200

 300

 400

 500

 600

 700

 800

256 512 1024 2048 4096 8192

tim
e

(s
ec

on
ds

)

processors

non hirerachical
2 Masters
4 Masters
8 Masters

16 Masters

Figure : The performance of Adjoint Convolution using hierarchical distributed
schemes

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 36 / 41

Hierarchical Distributed Loop Self-Scheduling Schemes

Results (speedup)

1 Baseline: T̂1 is the execution time for non hierarchical distributed
scheme with 256 workers

2 Speedup: Sp = T̂1
Tp

3 Mandelbrot Set speedup

 0

 2

 4

 6

 8

 10

 12

log
2 (256)

log
2 (512)

log
2 (1024)

log
2 (2048)

log
2 (4096)

log
2 (8192)

sp
ee

du
p

log2(processors)

non hirerachical
2 Masters
4 Masters
8 Masters

16 Masters

Figure : The speedup of Mandelbrot Set using hierarchical distributed
schemes

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 37 / 41

Hierarchical Distributed Loop Self-Scheduling Schemes

Results (speedup)

1 Baseline: T̂1 is the execution time for non hierarchical distributed
scheme with 256 workers

2 Speedup: Sp = T̂1
Tp

3 Adjoint Convolution speedup

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

log
2 (256)

log
2 (512)

log
2 (1024)

log
2 (2048)

log
2 (4096)

log
2 (8192)

sp
ee

du
p

log2(processors)

non hirerachical
2 Masters
4 Masters
8 Masters

16 Masters

Figure : The speedup of Adjoint Convolution using hierarchical distributed
schemes

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 38 / 41

Conclusion and Future Work

Conclusion

1 Simple Loop Self-Scheduling Schemes
Master-Worker Model
CSS
GSS
FSS
TSS

2 Distributed Loop Self-Scheduling Schemes
Load Balance

3 Hierarchical Distributed Loop Self-Scheduling Schemes
Scalability

Synchronization
Communication

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 39 / 41

Conclusion and Future Work

Future Work

1 Discover schemes for DOACROSS loops
2 Apply Hierarchical Distributed Loop Self-Scheduling Schemes on

cloud systems
Network heterogeneity

3 Hadoop MapReduce
Implement different schemes
Tune performance with different configurations

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 40 / 41

Conclusion and Future Work

References

1 Y. Han, A. T. Chronopoulos, A Hierarchical Distributed Loop
Self-Scheduling Scheme for Cloud Systems, Proceedings of IEEE
NCA 2013, The 12th IEEE International Symposium on Network
Computing and Applications, pp. 7-10, Boston, MA, USA, August
2013.

2 Y. Han, A. T. Chronopoulos, Distributed Loop Scheduling
Schemes for Cloud Systems, Proceedings of the 27th IEEE
International Parallel and Distributed Processing Symposium,
High-Performance Grid and Cloud Computing Workshop, pp.
955-962, Boston, Massachusetts, USA, May 2013.

Dr. Anthony T. Chronopoulos, Yiming Han Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 41 / 41

	Introduction
	Simple Loop Self-Scheduling Schemes
	Distributed Loop Self-Scheduling Schemes
	Hierarchical Distributed Loop Self-Scheduling Schemes
	Conclusion and Future Work

