Hierarchical Distributed Loop Self-Scheduling
Schemes on Cluster and Cloud Systems

Dr. Anthony T. Chronopoulos,
Yiming Han

(DT OWANa1 g o]y A M@ TEeTa Lol o eV MG e W ETl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 1/41

0 Introduction

e Simple Loop Self-Scheduling Schemes

e Distributed Loop Self-Scheduling Schemes

e Hierarchical Distributed Loop Self-Scheduling Schemes

e Conclusion and Future Work

(DT OWNa1 g o]y VA M@ TEeT Lol o eV MG I e W ETl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 2/41

Loops
@ Loop Styles: Constant, Increase, Decrease, Conditional, Irregular

@ Loop Scheduling: Static, Dynamic
© Loop Carried Dependence: DOALL loops, DOACROSS loops

Load(i) Load (i) Load(i)
(a) Constant (b) Increase (¢) Decrease
Load(i) Load(i)
(d) Conditional (e) Trregular

(DT OWNa1 g o]y VA M@ TEeTa Lol ooV MG e W ETl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 3/41

Examples of Parallel Loops

@ Mandelbrot Set

MSetLSM(MSet,nx,ny,xmin,xmax,ymin,ymax,maxiter)

BEGIN
FOR iy = 0 TO ny - 1 DO
cy = ymin + iy * (ymax — ymin)/(ny - 1)
FOR ix = 0 TO nx - 1 DO

cx = xmin + ix * (xmax - xmin)/(nx - 1)
MSet [ix] [iy] = MSetLevel (cx,cy,maxiter)
END FOR
END FOR

END

(DTG 1{aTe o)A M@ TeTalole eIV o0l [aIs s Yl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems

4/ 41

Examples of Parallel Loops

MSetLevel(cx,cy,maxiter)
BEGIN

x =y =x2 =y2 =0.0, iter = 0

WHILE (iter < maxiter) AND (x2 + y2 < 2.0)DO
temp = x2 - y2 + ¢cx; y =2 x X x y + Cy;
X = temp; X2 = X *x X; y2 =y x y; iter++;

END WHILE

RETURN (iter)

END

(DT OWNa1 g o]y VA M@ TEeTa Lol ooV MG e W ETl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 5/41

Examples of Parallel Loops

@ Adjoint Convolution

BEGIN
FOR I = 1 TO N DO
FOR J = I TO N DO
A(I) = A(I) + X x B(J) = C(J - I)
END FOR
END FOR
END

(DTG 1{aTe o)A M@ TeTalole eIV o0l [aIs s Yl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems

6/41

Goal: Minimization of Execution time

@ Assigning tasks to processors in order to make the processor
loads well balanced

@ Avoiding assigning small number of iterations

© Reducing communication overhead

(DT OWNa1 g o]y VA M@ TEeTa Lol ooV MG e W ETl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 7/41

Self-Scheduling Scheme

Common Solution:
@ Partition problem into several independent tasks (if possible)
© Distribute workload on multiple machines
© Collect results

Master

Task Request
chedule; Queue

Worker Worker Worker Worker

Figure : Self-Scheduling Schemes: the Master-Worker model

(DTG 1{aTe o)A M@ TeTalole eIV o0l [aIs s Yl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems

8/41

Simple Loop Scheduling Schemes

In a generic self-scheduling scheme, at the iy, scheduling step, the
master computes the chunk-size C;, a starting index istart, and the
remaining number of tasks R;.

Ro =1, C; = f(Ri_1,p), Istart = Jo (1)
where f(,) is a function possibly of more inputs than just R;_ and p.

@ The master
o Assigns to a worker C; iterations and a starting index is¢art
e Then updates the iz and R;:
istart = istart + Cia Ri = Ri—1 - Ci (2)
If the C; is below a threshold, then computation of C; must be
modified by a Threshold Condition.

(DT OWNa1 g o]y VA M@ TEeTa Lol ooV MG e W ETl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 9/41

Simple Loop Scheduling Schemes

Algorithm of Simple Loop Scheduling Schemes:

@ Master:
o Receive a new request from a worker for tasks
o If(R; > 0) then
@ Compute C;, istart and R; from (1)(2) above
@ Send a new task (starting index istat and size C;) to the worker
o Else
@ Send 'terminate’ signal to requesting workers
@ Worker:
e Send a request to Master

o Receive new tasks or ‘terminate’ signal
o Perform tasks or terminate

(DT OWNa1 g o]y VA M@ TEeTa Lol ooV MG e W ETl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 10/41

Chunk Self-Scheduling (CSS)

@ C, = k, where k > 1 and is chosen by the user.

e k = 1: pure Self-Scheduling scheme (SS)
e k = I/p: Fixed-size scheme (FS)

@ Strength: low scheduling overheads
© Weakness: load imbalance, non-adaptive

(DT OWNa1 g o]y VA M@ TEeTa Lol ooV MG e W ETl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 11/41

Guided Self-Scheduling(GSS)

Q Ci=[R_1/p]
e Dynamic
e Large chunks at the beginning
e Small chunks at the end
@ GSS(k)
© Example:
e /=1000and p=4

Scheme | Chunk size
GSS 250 188 141 106 7959 453325 19 14 11
8643321111

(DT OWNa1 g o]y VA M@ TEeTa Lol ooV MG e W ETl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 12/41

Factoring Self-Scheduling(FSS)

0 C,' = [R,-,M(apﬂ, R,‘ = R,',1 — pC, (where R() = /)
o Improve GSS
o Better load balance

@ Example:
e /=1000and p=4

Scheme | Chunk size
FSS 125125 125 125 63 63 63 63 31 31 31 31
161616168888444422221111

(DT OWNa1 g o]y VA M@ TEeTa Lol ooV MG e W ETl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 13/41

Trapezoid Self-Scheduling (TSS)

o F- %J:ms, L:1,N:{%W =16
00 - -
@C-C-D,

@ reasonable load balance
@ Less synchronization

© Example:
e /=1000and p=4

Scheme | Chunk size
TSS 125117 109 101 93 85 77 69 61 53 45 37
28

(DT OWNa1 g o]y VA M@ TEeTa Lol ooV MG e W ETl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 14/ 41

Heterogeneity

@ heterogeneity
e heterogeneous program has parallel loops with different amount of
work in each iteration;

@ Load Balance
e heterogeneous processors have different speeds;
@ Load Balance
e a heterogeneous network has different cost of communication
between processors.
@ Synchronization
@ Communication

RO TleloloT[oI NI s Il F-sll Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 15/41

Cloud Computing

Automated
backups,
uptime, SLA,
Multi-tenant maintenance
solution Automated
provided by upgrades
vendor

Cloud Computing

Elastic, pay Web and
as you go — mobile -
scale up or access from
down Modern web anywhere
based
integration

Figure : What is Cloud Computing (from http:/abouttme.com/)

[Ohal(elaloloIe TV [T s Nz EliMM Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 16 /41

Distributed Loop Self-Scheduling Schemes

Cloud Computing Characteristics

@ On-demand self-service

Rising
CAPEX < demand
& scenario
K L
A
¥ |
& & (K
.
& L
Capacity Q’\@ (I
o | \
vy © (I
/—\/ S
falling
demand
scenario
Time
Demand Classic Capacity Cloud Capacity

AR TNl TN TN EY Ml Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems

17 /41

Cloud Computing Characteristics

On-Demand
Self-Service

Measured Broad
Service Network
Access

Cloud

Resource
Pooling

Rapid
Elasticity

Figure : Cloud Computing Characteristics (from http://www.opengroup.org/)

(DT OWNa1 g o]y VA M@ TEeTa Lol ooV MG e W ETl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 18/41

Cloud Service Models

Software as a Platform as a Infrastructure as a
Service (SaaS) Service (PaasS) Service (laasS)

Cloud Infrastructure | |Cloud Infrastructure Cloud Infrastructure
laaS Software as a Service|
SalesForce CRM Faas — (Saas)
LotusLive T [seas | [seas | Providers
Applications
(
Cloud Infrastructure Cloud Infrastructure
Google e ,
9 laaS Platform as a Service (PaaS)
ADD PaaS PaaS
2
BWronshase Deploy cus.tom.er
created Applications

Cloud Infrastructure

amazon laas Infrastructure as a Service (laaS)
webservices”
s Rent Processing, storage, N/W
r.v) rackspace. capacity & computing resources
HOSTING

Figure : Cloud Service Models (from Mark Baker’s lecture)
[Ohal(elaloloIe TV [T s Nz EliMM Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 19/41

Distributed Loop Self-Scheduling Schemes

Heterogeneous

J server

\

wvirtual
machina

virtual
machine

virtual
machine

hypervisor

virtual system

J sorver

virtual
machine

virtual
machine

virtual
machine

hypervisor

al svstem (from httn*//nic dhe ibm com/)
Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems

20/ 41

Algorithm

@ V; = Speed(P))/mini<j<p{Speed(P;)}, j =1, ..., p, is the virtual
power of P; (computed by the master), where Speed(F;) is the
processing speed of P;. That is a standardized computing power.

Q V= ZL V; is the total virtual computing power.
© DC is the distributed chunk size for one worker request.
© Example, DGSS, Initialization: R = [

Algorithm 1 Calculate DC, DGSS

fori=1to V; do
DC =DC+ [R/V];
R=R-[R/V];

end for

return DC;

(DT OWNa1 g o]y VA M@ TEeTa Lol ooV MG e W ETl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 21 /41

Experiment

@ Applications
e Mandelbrot Set
@ Size: 10K * 10K, 20K * 20K
@ Adjoint Convolution
@ Size: 9K * 9K, 16K * 16K

@ Platform
o FlexCloud of Institute for Cyber Security(ICS)
@ 5 Racks of Dell R410, R610, R710, and R910s consisting of 748
processing cores, 3.44TB of RAM, and 144TB of total storage.
@ Redundant 10GB network connectivity provides high performance
access between all nodes.
@ Joynet

(DT OWNa1 g o]y VA M@ TEeTa Lol ooV MG e W ETl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 22/41

Experiment

@ Experimental Setup
17 VMs, single core, 1GB memory, 10GB storage
e Ubuntu Linux 10.04 image.
o GCC/G++ and OpenMPI are installed
@ Stress
@ Configure CPU, memory, I/O, and disk stress

@ apt-get install stress
@ 8,52,2,2,1,1,1,1,1,1,1,1,1,1,1, 1.

(DT OWNa1 g o]y VA M@ TEeTa Lol ooV MG e W ETl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 23/41

Experiment

Stress

yhan@ubuntu: ~

-c: command not found
yhan@ubuntu:~§ stress
‘stress' imposes certain types of compute stress on your system

Usage: stress [OPTION [ARG]] ...

=
i

-v,
-q,
-n,
&

-c,
i,

-m,

-d,

--help
--version
--verbose
--quiet
--dry-run
--timeout N
--backoff N
--cpu N

--io N

--vm N
--vm-bytes B
--vm-stride B
--vm-hang N
--vm-keep
--hdd N
--hdd-bytes B
--hdd-noclean

show this help statement

show version statement

be verbose

be quiet

show what would have been done

timeout after N seconds

wait factor of N microseconds before work starts
spawn N workers spinning on sqrt()

spawn N workers spinning on sync()

spawn N workers spinning on malloc()/free()

malloc B bytes per vm worker (default is 256MB)
touch a byte every B bytes (default is 4096)

sleep N secs before free (default is none, O is inf)
redirty memory instead of freeing and reallocating
spawn N workers spinning on write()/unlink()

write B bytes per hdd worker (default is 1GB)

do not unlink files created by hdd workers

Example: stress --cpu 8 --i0 4 --vm 2 --vm-bytes 128M --timeout 10s

(DTG 1{aTe o)A M@ TeTalole eIV o0l [aIs s Yl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems

24 /41

Results (execution time)

@ Mandelbrot Set execution time, seconds

80 T 300
I TSS I 7SS
70 I DTSS I DTSS
[CFss 250 CFss
60 C_]DFss C_loFss
I Gss [Gss
. I DGSS ~ 200 I DGSS |
ER E
3 8
840 § 150
@ Q
£30 £ 100
20
50
10
0 L 0 L
8 workers 16 workers 8 workers 16 workers
* *
a. 10K * 10K b. 20K * 20K

Figure : The performance comparison of Mandelbrot Set using distributed
schemes

ROl lelole T[Nyl M=yl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 25/41

Results (execution time)

@ Adjoint Convolution execution time, seconds

25 60
7SS I 7SS
— B DTSS Il DTSS
CJFss 50 _ [rss
20 ™ [_]DFss [_JDFss
I Gss I Gss
= I DGSS ~ 40 I DGSS |
=] °
c 15 c
o o
1= o
f"’i E,,i 30
£ 10 g
= =20
5 10
0 | ! 0 [
8 workers 16 workers 8 workers 16 workers
* *
a. 9K * 9K b. 16K * 16K

Figure : The performance comparison of Adjoint Convolution using distributed
schemes

AR TNl TN TN EY Ml Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 26 /41

Results (maximum difference)

@ maximum difference =

max{ Tcomp,, Tcomps» - - - » Tcompp} — min{ Teomp, , Tcompy» - - - » Tcompp}
@ Mandelbrot Set maximum difference, seconds

250

200

50

8 workers 16 workers 8 workers 16 workers

a. 10K * 10K b. 20K * 20K
Figure : The maximum difference comparison of Mandelbrot Set using
distributed schemes

(DT OWNa1 g o]y VA M@ TEeTa Lol ooV MG e W ETl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 27 /41

Results (maximum difference)

@ Adjoint Convolution maximum difference, seconds

6 25
7SS I 7SS
I DTSS Il DTSS
5 CJFss = [rss
- C—IbFss 20 C_JDFss ||
I Gss I Gss
=4 I DGSS = N DGSS
=] =]
£ c 15 1
o o
[=3 (=
83)
Q 9]
£ e 10
=2 =
1 5
0 L ! 0 L
8 workers 16 workers 8 workers 16 workers
* *
a. 9K * 9K b. 16K * 16K

Figure : The maximum difference comparison of Adjoint Convolution using
distributed schemes

AR TNl TN TN EY Ml Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 28 /41

Results (speedup)

@ Baseline: T is the execution time for the TSS with 8 workers
@ Speedup: S, = %
© Mandelbrot Set speedup

3 3
A s
-7 227
2,50 P2 25 Leic
2 P4 - 2 PR
- 7 /4” 8 .- PR b
3 o PP 2 - ezt
® 15 o T T 15 P 1
2 i “o- TSS & Pt —+- TsS
0 Petcd 7 Pt
U -0- FSS PR —4-FsSS
1 & -0~ GSS 1 18 -s- GSS
-0~ DTSS -+ DTSS
L -0- DFSS ~*- DFSS
0.5 DGSs 0.5 DGSS
0 0
8 workers 16 workers 8 workers 16 workers
* *
a. 10K * 10K b. 20K * 20K

Figure : The speedup comparison of Mandelbrot Set using distributed
schemes

(DT OWNa1 g o]y VA M@ TEeTa Lol ooV MG e W ETl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 29/41

Results (speedup)

@ Baseline: T is the execution time for the TSS with 8 workers

@ Speedup: S, = %
© Adjoint Convolution speedup

21
1.5p
[=X
S
=l
[
[
2 qf -x-.TSS
-x- FSS
-x-GSS
—-x-~ DTSS
0.5p -x- DFSS
DGSS
0
8 workers 16 workers

a. 9K * 9K

Figure : The speedup comparison of Adjoint Convolution using distributed

schemes

speedup

15

0.5

il
gonZm Tl -4
< PIERAR
3;55’:/ —4-TSS
—-FsS
- GSS
-4~ DTSS
—<- DFSS
DGSS
8 workers 16 workers
b. 16K * 16K

(DTG 1{aTe o)A M@ TeTalole eIV o0l [aIs s Yl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems

30/41

Hierarchical Schemes on Large-Scale Cluster

@ Master-Worker Model

Centralized: one master, multiple workers
e Easy to implement and maintain

@ good performance

o Not scalable

(DT OWNa1 g o]y VA M@ TEeTa Lol ooV MG e W ETl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 31/41

Hierarchical Schemes on Large-Scale Cluster

@ Scalability

Supermaster

Task
cheduler

Task
Pool

Master

Request
Queue

Master

Task Request
Pool Queue

/

\

Worker

Worker

Worker

/]

Worker Worker

(DTG 1{aTe o)A M@ TeTalole eIV o0l [aIs s Yl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems

Worker Worker Worker

Figure : Hierarchical Model

32/41

Experiment

@ Applications
o Mandelbrot Set
@ Size: 200K * 200K
@ Adjoint Convolution
@ Size: 640K * 640K
@ Platform

o Ranger, Texas Advanced Computing Center(TACC), UTexas at
Austin

@ SunBlade x6420 blade, 4 AMD Opteron Quad-Core 64-bit
processors, 16 cores totally.

@ total of 62,976 compute cores, 123 TB of total memory and 1.7 PB of
raw global disk space.

@ InfiniBand Constellation Core Switch.

@ Large option.

(DT OWNa1 g o]y VA M@ TEeTa Lol ooV MG e W ETl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 33/41

Hierarchical Distributed Loop Self-Scheduling Schemes

Ranger

Figure : Ranger (from http://www.tacc.utexas.edu/)

(DT OWNa1 g o]y VA M@ TEeTa Lol ooV MG e W ETl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 34 /41

Results (execution time)

@ Mandelbrot Set execution time, seconds

250 T T T — — .
non hirerachical m—
2 Masters mmmm
200 4 Masters o |

8 Masters mwm—"
16 Masters mmm2

150

100

time (seconds)

50

processors

Figure : The performance of Mandelbrot Set using hierarchical distributed
schemes

ROl lelole T[Nyl M=yl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 35/41

Results (execution time)

@ Adjoint Convolution execution time, seconds

800 T T — T— T
non hirerachical
700 2 Masters mommm |
4 Masters m—
600 |- 8 Masters wwmm |
16 Masters m=mmz
500]
400

300

time (seconds)

200

100

0 ! | |
256 512 1024 2048 4096 8192

processors

Figure : The performance of Adjoint Convolution using hierarchical distributed
schemes

ROl lelole T[Nyl M=yl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 36 /41

Hierarchical Distributed Loop Self-Scheduling Schemes

Results (speedup)

@ Baseline: Ty is the execution time for non hierarchical distributed
scheme with 256 workers
@ Speedup: S, = %

© Mandelbrot Set speedup

12 T T T T
non hirerachical =——+—
10 F 2 Masters _
4 Masters -8+
g | 8 Masters g i
16 Masters

speedup

log,(processors)

Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 37/ 41

Dr. Anthony T. Chronopoulos, Yiming Han

Results (speedup)

@ Baseline: Ty is the execution time for non hierarchical distributed
scheme with 256 workers

@ Speedup: S, = %

© Adjoint Convolution speedup

20 — — . :
18 non hirerachical —+—]
2 Masters
16 - 4 Masters ===+ R
14 8 Masters g i
=3 L 16 Masters i
5 12
? 10t P T
g
g st - i
6 -
4r g
2 [1 9
0 1 1 1 |
2, %, % 4 o %
‘%@o«@ ‘5@@ %%*’a ‘%@0@ %@0%/ %@%
log,(processors)

(DT OWNa1 g o]y VA M@ TEeTa Lol ooV MG e W ETl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 38/41

Conclusion

@ Simple Loop Self-Scheduling Schemes
o Master-Worker Model
e CSS
e GSS
e FSS
e TSS
@ Distributed Loop Self-Scheduling Schemes
o Load Balance

© Hierarchical Distributed Loop Self-Scheduling Schemes
o Scalability

@ Synchronization
@ Communication

(DTG 1{aTe o)A M@ TeTalole eIV o0l [aIs s Yl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems

39/41

Future Work

@ Discover schemes for DOACROSS loops
© Apply Hierarchical Distributed Loop Self-Scheduling Schemes on
cloud systems
o Network heterogeneity
© Hadoop MapReduce

o Implement different schemes
o Tune performance with different configurations

(DT OWNa1 g o]y VA M@ TEeTa Lol ooV MG e W ETl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 40/ 41

References

@ Y. Han, A. T. Chronopoulos, A Hierarchical Distributed Loop
Self-Scheduling Scheme for Cloud Systems, Proceedings of IEEE
NCA 2013, The 12th IEEE International Symposium on Network
Computing and Applications, pp. 7-10, Boston, MA, USA, August
2013.

@ Y. Han, A. T. Chronopoulos, Distributed Loop Scheduling
Schemes for Cloud Systems, Proceedings of the 27th IEEE
International Parallel and Distributed Processing Symposium,
High-Performance Grid and Cloud Computing Workshop, pp.
955-962, Boston, Massachusetts, USA, May 2013.

(DT OWNa1 g o]y VA M@ TEeTa Lol ooV MG e W ETl Hier. Distributed Loop Self-Scheduling Schemes on Cluster&Cloud Systems 41 /41

	Introduction
	Simple Loop Self-Scheduling Schemes
	Distributed Loop Self-Scheduling Schemes
	Hierarchical Distributed Loop Self-Scheduling Schemes
	Conclusion and Future Work

