
UNIVERSITY OF Texas at San Antonio • Department of Computer Science

UTSA

Systems Research Group

http://www.cs.utsa.edu/~tongpingliu/

Tongping Liu

Single System Distributed System

User
Space

Kernel
Space

Hypervisor

Performance

Multithreading

Reliability

MY MISSION: help programmers design correct and efficient software systems

Broad Research Field

UNIVERSITY OF Texas at San Antonio • Department of Computer Science

UTSA

Tongping Liu

Performance Improvement

for Parallel Applications

http://people.cs.umass.edu/~tonyliu

Parallelism is Important

• Multicore is the standard

– smart phones, tablets

– laptops, workstations

– supercomputers, data centers

Multicore drives parallel computing

Parallel Computing is Challenging

• Efficiency Problem
– Algorithm, data structure

– Type and distribution of workload (parallelizable
percentage, task granularity, load balance, thread
model)

– Hardware effect

• Reliability Problem

– Input dependent

– Timing dependent

Parallel Computing is Challenging

• Efficiency Problem
– Algorithm, data structure

– Type and distribution of workload (parallelizable
percentage, task granularity, load balance, thread
model, locality)

– Hardware effect

• Reliability Problem

– Input dependent

– Timing dependent

False sharing on cache lines: SHERIFF, PREDATOR

Memory error: DOUBLETAKE

Deterministic Multithreading: DTHREADS

Reliability

SHERIFF: [Liu, OOPSLA’11]

 Detecting and Tolerating False Sharing

Performance

DTHREADS: [Liu, SOSP’11]

 Efficient Deterministic Multithreading

DOUBLETAKE: [Liu, Submission]

 Evidence-Triggered Dynamic Analysis

PREDATOR: [Liu, PPOPP’14]

 Predictive False Sharing Detection

Research Focus: Parallel Computing

Outline

• False Sharing: Background & Motivation

• Correctly and Precisely Detect False Sharing

• Automatically Eliminate False Sharing

• Other Contributions

• Future Work

Cache Line

False Sharing vs. True Sharing

Task 3 Task 1

Task 2 Task 4

False

Sharing

Task 1

True

Sharing

Task 2

False Sharing vs. True Sharing

False Sharing can dramatically degrade performance

Parallelism:

Parallel Program

0

10

20

30

40

50

60

70

80

90

1 2 4 8

Number of threads

R
u

n
ti

m
e
 (

s)



Expectation
int count[8];
int W;
void increment(int S)
{
 for(in=S; in<S+W; in++)
 for(j=0; j<1M; j++)
 count[in]++;
}

int main(int THREADS) {
 W=8/THREADS;
 for(i=0; i<8; i+=W)
 spawn(increment,i);
}

Awesome Expectation

False

sharing

count[0]~count[3] count[4]~count[7]

THREADS = 2

0

20

40

60

80

100

120

140

1 2 4 8

Number of threads

False sharing slows the program by 13X

R
u

n
ti

m
e
 (

s)

Parallel Program



Expectation

 Reality int count[8];
int W;
void increment(int S)
{
 for(in=S; in<S+W; in++)
 for(j=0; j<1M; j++)
 count[in]++;
}

int main(int THREADS) {
 W=8/THREADS;
 for(i=0; i<8; i+=W)
 spawn(increment,i);
}

Parallelism: Awful Reality

False Sharing in Real Applications

False sharing slows MySQL by 50%

Resource Contention at Cache Line Level

Task 1

Main Memory

Core 1

Task 2

Core 2

Cache Cache

Invalidate

Cache line: basic unit of data transfer

False Sharing Causes Performance Problems

Task 1 Task 2

Cache Cache

Invalidate

Interleaved accesses cause cache invalidations

Main Memory

Core 1 Core 2

False Sharing Causes Performance Problems

False Sharing is Hard to Diagnose

Multiple experts worked together to

diagnose MySQL scalability issue (1.5M LOC)

PREDATOR: Predictive

False Sharing Detection

Tongping Liu, Chen Tian, Ziang Hu, Emery Berger

PPoPP 2014

Interested by Many Companies

 “Here IBM has this power platform with

different settings from X86. I'm thinking

about techniques that can detect false

sharing on Power, and your solution is

quite relevant on this aspect.”

• IBM, Intel, Huawei, SAS, Mathworks

Related Work

• S.M.Gunther et.al. WBIA 2009.

• C.Liu. Master thesis 2009.

• Q.Zhao et.al. MIT. VEE2011.

Reports cache miss ratio and cache invalidation ratio. (6X slower)

Reports false sharing miss ratio. (> 100X slower)

Reports false sharing counters on physical addresses.(120X slower)

1. False positives

2. Cannot pinpoint the exact

 cause of false sharing

Too many false positives

Intel Performance Tuning Utility

Existing Tools vs. PREDATOR

Cannot pinpoint

where are problems

False positives

Precisely pinpoint false

sharing problems

No false positives

Only detect observed

false sharing

Predict potential false

sharing without occurrences

Task 1 Task 2

Cache Cache

Invalidat

e

Main

Memory

Core 1 Core 2

False Sharing Causes Performance Problems

Find cache lines with many cache invalidations

Interleaved accesses

Cache invalidations

Performance problems

Detect false sharing causing performance problems

Find Cache Lines with Many Invalidations

.

……

Track cache invalidations on each cache line

Memory: Global, Heap

Track Invalidations Based on Memory Accesses

0 0 0

Two-entries-history-table # of invalidations

Track Invalidations Based on Memory Accesses

r w r w w r w T1 T2

0 1 2

Time

3

• Assumptions

1. Each thread runs on a core with its private cache

2. Infinite cache capacity

of invalidations Two-entries-history-table

0 0 T2 T1 T2 T1 T2

• Scalable (based on tid)

• Portable (software-only approach)

PREDATOR Components

Compiler

Instrumentation

Runtime System

Instruments every memory

read/write access

Collects memory accesses

and reports false sharing

Detect Problems Correctly & Precisely

• Correctly:

– No false alarms

Task 3 Task 1

Task 2 Task 4

False

Sharing

Task 1

True

Sharing

Task 2

Track memory accesses

on each word

• Precisely

– Global variables: names

– Heap objects: calling context of memory allocation

Why do we need prediction?

Necessity of False Sharing Prediction

Thread 1 Thread 2

Cache line 1 Cache line 2

Cache line 1 Cache line 2

False

Sharing

Cache line 1

False

Sharing

False Sharing is Sensitive to Dynamic Properties

32-bit platform   64-bit platform

Different memory allocator

Different compiler or optimization

Different allocation order by changing the code

• Change of memory layout

• Change of cache line size

0

1

2

3

4

5

6

R
u

n
ti

m
e
 (

S
e
c
o

n
d

s)

False Sharing is Sensitive to Memory Layout

Offset = 0

Cache line size = 64 bytes

Offset = 8

Colors represent threads

Memory

PREDATOR avoids the predicament of testing

Prediction Based on Virtual Cache Lines

Thread 1 Thread 2

Cache line 1 Cache line 2

Virtual cache line 1 Virtual cache line 2

False

Sharing

Virtual cache line 1

False

Sharing

Real case

Prediction 1

Prediction 2

d
Y X

(sz-d)/2 (sz-d)/2

Tracked virtual line

Non-tracked virtual lines

Determine Virtual Line by Memory Accesses

 d < the cache line size - sz

(X, Y) from different threads && one of them is write

Detection Results on Phoenix and PARSEC

Benchmarks Performance Improvements

(after fixes)

Histogram 46%

Linear_regression 1207%

Streamcluster-1 4.77%

Streamcluster-2 7.52%

Need prediction to detect

false sharing of Linear_regression

Detection Results on Real Applications

• MySQL

– Problem: different threads update the shared bitmap

simultaneously

– Performance improves 180% after fixes

• Boost library:

– Problem: “there will be 16 spinlocks per cache line”

– Performance improves about 100%

Caveats of Fixes

• Unavailable source code

– Infeasible to fix

• No performance improvement

Quote from the MIT’s VEE2011 paper:

“We added padding between the data but the

runtime actually increased because of lost cache

locality.”

SHERIFF: Precise Detection

& Automatic Mitigation of False Sharing

Tongping Liu, Emery Berger

Thread 1 Thread 2

Cache Cache

Invalidate

Sharing cache lines causes false sharing problems

Main Memory

Core 1 Core 2

Key Observation

Key Idea: Make Different Threads

Access Different Cache Lines

Thread 1 Thread 2

“Thread” 1 “Thread” 2

Global State

Main

Memory

Cache Cache

Core 1 Core 2

“Thread” 1

“Thread” 2

Prevent False Sharing by Isolation

shared address space disjoint address spaces

Processes-As-Threads

Threads Processes

Pthreads SHERIFF

1: Lock();

2: XX;

3: Unlock();

4: YY;

5: Lock();

Begin_isolated_execution

Commit_local_changes

XX; //isolated execution

SHERIFF: Isolated Execution

Lock_Process_Based();

Begin_isolated_execution

Commit_local_changes

YY; //isolated execution

Unlock_Process_Based();

Lock_Process_Based();

Snapshot and Diffing: Find Local Changes

Snapshot

Working

Begin

Global

State

“Thread”

Local State

Time

Detailed Memory Layout

Global Heap

Global State

Global Heap

Thread Local State

• Local (private)  global (shared): connect via file

• Applications only access thread local state (read-
only initially, writable, read-only)

Time

Global

State

Begin

Working

Snapshot

Execution

“Thread”

Local State

End

Time

Diff

Commit

Snapshot Snapshot

Global

State

Begin

Working

Execution

“Thread”

Local State

13%

0.0

0.3

0.5

0.8

1.0

1.3

1.5

1.8

N
o

rm
a
li

z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

pthreads SHERIFF

SHERIFF automatically boosts the

performance of applications with false sharing

A Complete Solution for Parallel

Applications with False Sharing

• First tool to pinpoint false sharing correctly and
precisely

– User can fix problems using padding or thread-local
variables

• First generalized system to eliminate false sharing

– Automatically boost performance without programmer

intervention

Reliability

SHERIFF: [Liu, OOPSLA’11]

 Detecting and Tolerating False Sharing

Performance

DTHREADS: [Liu, SOSP’11]

 Efficient Deterministic Multithreading

DOUBLETAKE: [Liu, Submission]

 Evidence-Triggered Dynamic Analysis

PREDATOR: [Liu, PPOPP’14]

 Predictive False Sharing Detection

Research Focus: Parallel Computing

 DTHREADS:

Efficient Deterministic Multithreading

Tongping Liu, Charlie Curtsinger, Emery Berger

Citation: 101, 4th of 28 papers in SOSP 2011

DTHREADS Enables…

Deterministic executions

Replay w/o logging

Replicate applications

on different machines

DTHREADS is the new basis

of Deterministic Multithreading

“Thread” 1

“Thread” 2

“Thread” 3

Parallel Serial Parallel
mutex_lock

cond_wait

pthread_create

Isolated
Memory

Access

Isolated
Memory

Access

Deterministic memory
commits & syncs

Dthreads Overview

DOUBLETAKE:

Evidence-Triggered Dynamic Analysis

Tongping Liu, Charlie Curtsinger, Emery Berger

Heartbleed OpenSSL Problem:
“This vulnerability is due to a missing bounds

check in the handling of the Transport Layer

Security (TLS) heartbeat extension”

Detecting Buffer Overflows

8 10 2 9 3 4 5 1 7

Red =
possible
bad
object

Blue =
not
bad
object

• Canaries in freed space detect corruption

known random value dead canary = corruption

= object id (allocation time)

Precise detection:

instrument every memory read/write access

Imposing 33% overhead for common path!

Snapshot

Normal execution

Irrevocable

system calls Snapshot

Error

detected
Rollback

Instrumented re-execution

Report errors

Check errors

Time

DOUBLETAKE: Efficient

Memory Error Detection

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o

rm
a
li
z
e
d

 R
u

n
ti

m
e

DOUBLETAKE:BO

DOUBLETAKE:BO+ML

DOUBLETAKE: BO+ML+DP

AddressSanitizer: BO+DP

BO: Buffer Overflow

ML: Memory Leak

DP: Dangling Pointers (use-after-

free)

BO+ML: only introduces 3% overhead

It is ready for the real deployment!

Future Work (short-term)

• Complete false sharing solutions
– Other languages: Java

– Other software stacks: kernel, hypervisor

– Improve performance using hardware-based approaches

– Automatically fixes

• Other performance issues
– lock granularity, thread model, scheduling

• Detect and prevent concurrency errors
– Deadlocks, races, etc.

• Emerging hardware
– NUMA: unpredictable performance, data sharing, efficient

memory allocator

– Heterogeneous systems (Start at NEC intern)

– Non-volatile memory

• Cloud computing and BIG DATA systems
– Quality of service (Related to Redline)

– Performance of BIG DATA systems (Started at IBM intern)

– Improve reliability (In study)

– Energy efficiency (In study)

Future Work (long-term)

 Efficiently detecting memory errors

Conclusion and Future Work

Operating Systems

[Redline,

 OSDI’08]

Runtime Systems

[DTHREADS, SOSP’11]

[Grace, OOPSLA’09]

[SHERIFF, OOPSLA’11]

[DOUBLETAKE]

Compiler

[PREDATOR,

 PPOPP’14]

 Performance

Reliability

Main Contributions:

Time

Future

Work

1. False sharing

2. Concurrency errors

3. Other performance problems

1. Emerging hardware

2. Cloud computing

3. BIG DATA

 New basis for deterministic multithreading

 Detecting and tolerating false sharing

Want real impact, work with me!

Performance Overhead of DOUBLETAKE

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o

rm
a
li

ze
d

 R
u

n
ti

m
e

DOUBLETAKE:BO

DOUBLETAKE:BO+ML

DOUBLETAKE: BO+ML+DP

AddressSanitizer: BO+DP

BO: Buffer Overflow

ML: Memory Leak

DP: Dangling Pointers (use-after-free)

BO+ML: only introduces 3% overhead

It is ready for the real deployment.

Detailed Prediction Algorithm

1. Find suspected cache lines

Detailed Prediction Algorithm

1. Find suspected cache lines

2. Track detailed memory accesses

Detailed Prediction Algorithm

1. Find suspected cache lines

2. Track detailed memory accesses

3. Predict based on hot accesses

Y X

d

 d < sz && (X, Y) from different threads,

potential false sharing

4: Tracking Cache
Invalidations on the Virtual Line

d
Y X

(sz-d)/2 (sz-d)/2

Tracked virtual line

Non-tracked virtual

lines

