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Parallelism is Important 

• Multicore is the standard 

– smart phones, tablets 

– laptops,  workstations 

– supercomputers, data centers 

Multicore drives parallel computing 



Parallel Computing is Challenging 

• Efficiency Problem 
– Algorithm, data structure  

– Type and distribution of  workload (parallelizable 
percentage, task granularity, load balance, thread 
model) 

– Hardware effect 

 

• Reliability Problem 

– Input dependent 

– Timing dependent 



Parallel Computing is Challenging 

• Efficiency Problem 
– Algorithm, data structure  

– Type and distribution of  workload (parallelizable 
percentage, task granularity, load balance, thread 
model, locality) 

– Hardware effect 

 

• Reliability Problem 

– Input dependent 

– Timing dependent 

False sharing on cache lines: SHERIFF, PREDATOR   

Memory error: DOUBLETAKE   

Deterministic Multithreading: DTHREADS   



Reliability 

SHERIFF:            [Liu, OOPSLA’11] 

 

  Detecting and Tolerating False Sharing 

Performance 

DTHREADS:         [Liu, SOSP’11] 

 

  Efficient Deterministic Multithreading 

DOUBLETAKE:   [Liu, Submission] 

 

  Evidence-Triggered Dynamic Analysis 

PREDATOR:        [Liu, PPOPP’14] 

   

  Predictive False Sharing Detection 

Research Focus:  Parallel Computing 



Outline 

• False Sharing: Background & Motivation 
 

• Correctly and Precisely Detect False Sharing 
 

• Automatically Eliminate False Sharing 
 

• Other Contributions 
 

• Future Work 



Cache Line 

False Sharing vs. True Sharing 



Task 3 Task 1 

Task 2 Task 4 

False  

Sharing 

Task 1 

True 

Sharing 

Task 2 

False Sharing vs. True Sharing 

False Sharing can dramatically degrade performance 



Parallelism: 

Parallel Program 
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 

Expectation 
int count[8]; 
int W;  
void increment(int S)  
{ 
  for(in=S; in<S+W; in++) 
    for(j=0; j<1M; j++) 
      count[in]++; 
} 
 
int main(int THREADS) { 
 W=8/THREADS; 
 for(i=0; i<8; i+=W)  
  spawn(increment,i); 
} 

Awesome Expectation 

False 

sharing 

count[0]~count[3] count[4]~count[7] 

THREADS = 2  
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Parallel Program 

 

Expectation 

 Reality int count[8]; 
int W;  
void increment(int S)  
{ 
  for(in=S; in<S+W; in++) 
    for(j=0; j<1M; j++) 
      count[in]++; 
} 
 
int main(int THREADS) { 
 W=8/THREADS; 
 for(i=0; i<8; i+=W)  
  spawn(increment,i); 
} 

Parallelism: Awful Reality 



False Sharing in Real Applications 

False sharing slows MySQL by 50% 



Resource Contention at Cache Line Level 



Task 1 

Main Memory 

Core 1 

Task 2 

Core 2 

Cache  Cache  

Invalidate 

Cache line: basic unit of  data transfer 

False Sharing Causes Performance Problems 



Task 1 Task 2 

Cache  Cache  

Invalidate 

Interleaved accesses cause cache invalidations 

Main Memory 

Core 1 Core 2 

False Sharing Causes Performance Problems 



False Sharing is Hard to Diagnose 

Multiple experts worked together to  

diagnose MySQL scalability issue (1.5M LOC) 



PREDATOR: Predictive  

False Sharing Detection  

Tongping Liu, Chen Tian, Ziang Hu, Emery Berger 

PPoPP 2014 



Interested by Many Companies 

   “Here IBM has this power platform with 

different settings from X86. I'm thinking 

about techniques that can detect false 

sharing on Power, and your solution is 

quite relevant on this aspect.” 

• IBM, Intel, Huawei, SAS, Mathworks 

 



Related Work 

• S.M.Gunther et.al. WBIA 2009. 

   

• C.Liu. Master thesis 2009. 

 

• Q.Zhao et.al. MIT. VEE2011.  

 

 

Reports cache miss ratio and cache invalidation ratio. (6X slower)  

Reports false sharing miss ratio. ( > 100X slower)  

Reports false sharing counters on physical addresses.(120X slower)  

1. False positives 

2. Cannot pinpoint the exact  

    cause of  false sharing 



Too many false positives 

Intel Performance Tuning Utility 



Existing Tools vs. PREDATOR 

Cannot pinpoint  

where are problems 

False positives 

Precisely pinpoint false  

sharing problems 

No false positives  

Only detect observed 

false sharing 

Predict potential false  

sharing without occurrences 



Task 1 Task 2 

Cache  Cache  

Invalidat

e 

Main 

Memory 

Core 1 Core 2 

False Sharing Causes Performance Problems 

Find cache lines with many cache invalidations 

Interleaved accesses 

Cache invalidations 

Performance problems 

Detect false sharing causing performance problems 



Find Cache Lines with Many Invalidations  

. . . . . . . 

…… 

Track cache invalidations on each cache line 

Memory: Global, Heap  



Track Invalidations Based on Memory Accesses 

0 0 0 

Two-entries-history-table # of  invalidations 



Track Invalidations Based on Memory Accesses 

r w r w w r w T1 T2 

0 1 2 

Time  

3 

• Assumptions 

1. Each thread runs on a core with its private cache 

2. Infinite cache capacity 

 

# of  invalidations Two-entries-history-table 

0 0 T2 T1 T2 T1 T2 

• Scalable (based on tid) 

• Portable (software-only approach) 



PREDATOR Components 

Compiler 

Instrumentation 

Runtime System 

Instruments every memory 

read/write access  

Collects memory accesses 

and reports false sharing 



Detect Problems Correctly & Precisely 

• Correctly:  

– No false alarms 

Task 3 Task 1 

Task 2 Task 4 

False  

Sharing 

Task 1 

True 

Sharing 

Task 2 

Track memory accesses 

on each word 

• Precisely 

– Global variables: names 

– Heap objects: calling context of  memory allocation 



Why do we need prediction? 



Necessity of  False Sharing Prediction 

Thread 1 Thread 2 

Cache line 1 Cache line 2 

Cache line 1 Cache line 2 

False 

Sharing 

Cache line 1 

False 

Sharing 



False Sharing is Sensitive to Dynamic Properties 

32-bit platform   64-bit platform 

Different memory allocator 

Different compiler or optimization 

Different allocation order by changing the code 

• Change of  memory layout  

 

• Change of  cache line size 
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False Sharing is Sensitive to Memory Layout  

Offset = 0 

Cache line size = 64 bytes 

Offset = 8 

Colors represent threads 

Memory  

PREDATOR avoids the predicament of  testing 



Prediction Based on Virtual Cache Lines 

Thread 1 Thread 2 

Cache line 1 Cache line 2 

Virtual cache line 1 Virtual cache line 2 

False 

Sharing 

Virtual cache line 1 

False 

Sharing 

Real  case 

Prediction 1 

Prediction 2 



d 
Y X 

(sz-d)/2 (sz-d)/2 

Tracked virtual line 

Non-tracked virtual lines 

Determine Virtual Line by Memory Accesses 

  d < the cache line size - sz 

(X, Y) from different threads && one of  them is write 



Detection Results on Phoenix and PARSEC 

Benchmarks Performance Improvements 

(after fixes) 

Histogram 46% 

Linear_regression 1207% 

Streamcluster-1 4.77% 

Streamcluster-2 7.52% 

Need prediction to detect  

false sharing of  Linear_regression 



Detection Results on Real Applications 

• MySQL 

– Problem: different threads update the shared bitmap 

simultaneously 

– Performance improves 180% after fixes 

 

• Boost library: 

– Problem: “there will be 16 spinlocks per cache line” 

– Performance improves about 100% 

 



Caveats of  Fixes 

• Unavailable source code 

– Infeasible to fix 

 

• No performance improvement 

Quote from the MIT’s VEE2011 paper: 

 

“We added padding between the data but the 

runtime actually increased because of  lost cache 

locality.” 



SHERIFF: Precise Detection 

& Automatic Mitigation of  False Sharing 

Tongping Liu, Emery Berger 



Thread 1 Thread 2 

Cache  Cache  

Invalidate 

Sharing cache lines causes false sharing problems 

Main Memory 

Core 1 Core 2 

Key Observation 



Key Idea: Make Different Threads  

Access Different Cache Lines 

Thread 1 Thread 2 



“Thread” 1 “Thread” 2 

Global State 

Main 

Memory 

Cache  Cache  

Core 1 Core 2 

“Thread” 1 

“Thread” 2 

Prevent False Sharing by Isolation 



shared address space disjoint address spaces 

Processes-As-Threads 

Threads Processes 



Pthreads SHERIFF 

1: Lock(); 

 

2: XX; 

 

3: Unlock(); 

 

4: YY; 

 

5: Lock(); 

Begin_isolated_execution 

Commit_local_changes 

XX;    //isolated execution 

SHERIFF: Isolated Execution 

Lock_Process_Based(); 

Begin_isolated_execution 

Commit_local_changes 

YY;    //isolated execution 

Unlock_Process_Based(); 

Lock_Process_Based(); 



Snapshot and Diffing: Find Local Changes 

Snapshot 

Working 



Begin 

Global 

State 

“Thread” 

Local State 

Time 



Detailed Memory Layout 

Global Heap 

Global State 

Global Heap 

Thread Local State 

• Local (private)  global (shared): connect via file 

 

• Applications only access thread local state (read-
only initially, writable, read-only) 

 



Time 

Global 

State 

Begin 

Working 

Snapshot 

Execution 

“Thread” 

Local State 



End 

Time 

Diff 

Commit 

Snapshot Snapshot 

Global 

State 

Begin 

Working 

Execution 

“Thread” 

Local State 
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pthreads SHERIFF 

SHERIFF automatically boosts the 

performance of  applications with false sharing 



A Complete Solution for Parallel  

Applications with False Sharing  

• First tool to pinpoint false sharing correctly and 
precisely 

–  User can fix problems using padding or thread-local 
variables 

• First generalized system to eliminate false sharing 

– Automatically boost performance without programmer 

intervention 



Reliability 

SHERIFF:            [Liu, OOPSLA’11] 

 

  Detecting and Tolerating False Sharing 

Performance 

DTHREADS:         [Liu, SOSP’11] 

 

  Efficient Deterministic Multithreading 

DOUBLETAKE:   [Liu, Submission] 

 

  Evidence-Triggered Dynamic Analysis 

PREDATOR:        [Liu, PPOPP’14] 

   

  Predictive False Sharing Detection 

Research Focus: Parallel Computing 



    DTHREADS:  

Efficient Deterministic Multithreading 

Tongping Liu, Charlie Curtsinger, Emery Berger 

Citation: 101,  4th of  28 papers in SOSP 2011  

 



DTHREADS Enables… 

Deterministic executions 

Replay w/o logging 

Replicate applications 

on different machines 

DTHREADS is the new basis  

of  Deterministic Multithreading 



“Thread” 1 

“Thread” 2 

“Thread” 3 

Parallel Serial Parallel 
mutex_lock 

cond_wait 

pthread_create 

Isolated 
Memory 

Access 

Isolated 
Memory 

Access 

Deterministic memory 
commits & syncs 

Dthreads Overview 



DOUBLETAKE:  

Evidence-Triggered Dynamic Analysis 

Tongping Liu, Charlie Curtsinger, Emery Berger 



Heartbleed OpenSSL Problem:  
“This vulnerability is due to a missing bounds 

check in the handling of the Transport Layer 

Security (TLS) heartbeat extension” 



Detecting Buffer Overflows 

8 10 2 9 3 4 5 1 7 

Red = 
possible 
bad 
object 

Blue = 
not 
bad 
object 

• Canaries in freed space detect corruption 

known random value dead canary = corruption 

# = object id (allocation time) 

Precise detection:  

instrument every memory read/write access 

Imposing 33% overhead for common path! 



Snapshot 

Normal execution 

Irrevocable   

system calls Snapshot 

Error 

detected 
Rollback 

Instrumented re-execution 

Report errors 

Check errors 

Time 



DOUBLETAKE: Efficient  

Memory Error Detection 
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DOUBLETAKE:BO 

DOUBLETAKE:BO+ML 

DOUBLETAKE: BO+ML+DP 

AddressSanitizer: BO+DP 

BO: Buffer Overflow  

ML:  Memory Leak 

DP:  Dangling Pointers (use-after-

free) 

 

BO+ML: only introduces 3% overhead 

It is ready for the real deployment!  



Future Work (short-term) 

• Complete false sharing solutions 
– Other languages: Java 

– Other software stacks: kernel, hypervisor  

– Improve performance using hardware-based approaches 

– Automatically fixes 

 

• Other performance issues 
– lock granularity, thread model, scheduling 

 

• Detect and prevent concurrency errors 
– Deadlocks, races, etc. 

 

 
 



• Emerging hardware 
– NUMA: unpredictable performance,  data sharing, efficient 

memory allocator 

– Heterogeneous systems (Start at NEC intern) 

– Non-volatile memory 

 

 

• Cloud computing and BIG DATA systems 
– Quality of  service (Related to Redline) 

– Performance of  BIG DATA systems (Started at IBM intern) 

– Improve reliability (In study) 

– Energy efficiency (In study) 

Future Work (long-term) 



 Efficiently detecting memory errors 

Conclusion and Future Work 

Operating Systems 

[Redline, 

 OSDI’08] 

Runtime Systems 

[DTHREADS, SOSP’11] 

[Grace, OOPSLA’09] 

[SHERIFF, OOPSLA’11] 

[DOUBLETAKE] 

Compiler 

[PREDATOR,  

  PPOPP’14] 

      Performance 

Reliability       

Main Contributions: 

Time 

Future  

Work 

1. False sharing 

2. Concurrency errors 

3. Other performance problems 

 

1. Emerging hardware 

2. Cloud computing 

3. BIG DATA  

 

 New basis for deterministic multithreading 

 Detecting and tolerating false sharing 

Want real impact, work with me! 



 



Performance Overhead of  DOUBLETAKE 
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DOUBLETAKE:BO 

DOUBLETAKE:BO+ML 

DOUBLETAKE: BO+ML+DP 

AddressSanitizer: BO+DP 

BO: Buffer Overflow  

ML:  Memory Leak 

DP:  Dangling Pointers (use-after-free) 

 

BO+ML: only introduces 3% overhead 

 

It is ready for the real deployment.  



Detailed Prediction Algorithm 

1. Find suspected cache lines  



Detailed Prediction Algorithm 

1. Find suspected cache lines  

2. Track detailed memory accesses 



Detailed Prediction Algorithm 

1. Find suspected cache lines  

2. Track detailed memory accesses 

3. Predict based on hot accesses 

Y X 

d 

  d < sz && (X, Y) from different threads, 

potential false sharing 



4: Tracking Cache  
Invalidations  on the Virtual Line 

d 
Y X 

(sz-d)/2 (sz-d)/2 

Tracked virtual line 

Non-tracked virtual 

lines 


