UTSA

Systems Research Group

Tongping Liu

http:/ /www.cs.utsa.edu/ ~tongpingliu/

UNIVERSITY OF Texas at San Antonio » Department of Computer Science 3

Broad Research Field

oMY MISSION: help programmers design correct and efficient software systems

Single System Distributed System

""""""""""""""""""""""""""""""""

Hypervisor

UTSA

Performance Improvement
for Parallel Applications

Tongping Liu

http:/ /people.cs.umass.edu/ ~tonyliu

UNIVERSITY OF Texas at San Antonio » Department of Computer Science 3

Parallelism 1s Important

* Multicore 1s the standard
— smart phones, tablets

— laptops, workstations

— supercomputers, data centers

Multicore drives parallel computing

Parallel Computing is Challenging

* Efficiency Problem
— Algorithm, data structure

— Type and distribution of workload (parallelizable

percentage, task granularity, load balance, thread
model)

— Hardware effect

* Reliability Problem

— Input dependent
— Timing dependent

Parallel Computing is Challenging

* Efficiency Problem
— Algorithm, data structure

— Type and distribution of workload (parallelizable
percentage, task granularity, load balance, thread
model, locality)

— Hﬂdeﬂf@ €ff€Ct % False sharing on cache lines: SHERIFF, PREDATOR]

* Reliability Problem

— Iﬂpllt dependent % Memory error: DOUBLETAKE]

—_ Tlmlng dependent % Deterministic Multithreading: DTHREADS]

Research Focus: Parallel Computing

Performance

SHERIFF: [Liu, OOPSLA'11]

Detecting and Tolerating False Sharing

Reliability

DTHREADS: [Liu, SOSP’11]

Efficient Deterministic Multithreading

PREDATOR: [Liu, PPOPP’14]

Predictive False Sharing Detection

DOUBLETAKE: [Liu, Submission]

Evidence-Triggered Dynamic Analysis

Outline

False Sharing: Background & Motivation
Correctly and Precisely Detect False Sharing
Automatically Eliminate False Sharing
Other Contributions

Future Work

False Sharing vs. True Sharing

Cache Line
A

False Sharing vs. True Sharing

Task 1 Task 3
False
Sharing
Task 2 Task 4
Task 1
True
Sharing

Task 2

False Sharing can dramatically degrade performance

Parallelism: Awesome Expectation

Parallel Program

int count[8];

int W; ” hxpectauon

void increment(int S) 80
{ 70
for(in=S; in<StW; i” False
for(j=0; j<1IM;] hati
count[in]++; lniernloly
} e 30 -
int main(int THREADS) { 10 1 l -
W=8/THREADS; 0

for(i=0; 1<8; i+=W)
spawn(increment,i); Number of threads
}

count[O]~count[3] count[4]~count[7]

Parallelism: Awful Reality

Parallel Program

140

120

=
o
o

Runtime (s)
& 3

B Reality B

Expectation

0]
o
|

N
o
|

o
|

1 2 4 8
Number of threads

False sharing slows the program by 13X

False Sharing in Real Applications

@ safari File Edit View History Bookmarks Window Help V14 <> = O £ 4 Eus. (=1 (99% Sat 8:11 AM tongpingliu Q
e 00 Mikael Ronstrom: MySQL team increases scalability by >50% for Sysbench OLTP RO in MySQL 5.6 labs release april 2012 ol
[s o) G mikaelronstrom.blogspot.com

#E crimereports ¥ Gmail - Re:...u@gmail.com Google Advanced Search Gmail google ¥ Google Maps YouTube Wikipedia News Y Popular ¥

My name is Mikael Ronstrom and | work for Oracle as

statements and opinions expressed on this blog are
Corporation ‘%

TUESDAY, APRIL 10, 2012 INSPIRATIONAL MESSAGES OF THE
WEEK

MySQL team increases scalability by >50% for Sysbench OLTP RO in Achieving Perfection
MySQL 5.6 labs release april 2012

A MySQL team focused on performance recently met in an internal meeting to discuss
and work on MySQL scalability issues. We had gathered specialists on InnoDB and all
its aspects of performance including scalability, adaptive flushing and other aspects of
InnoDB, we had also participants from MySQL support to help us understand what our k

Christmas Spirit

customers need and a number of generic specialists on computer performance and in
particular performance of the MySQL software.

False sharing slows MySQL by 50%

Resource Contention at Cache Line Level

False Sharing Causes Performance Problems

Core 1 Core 2

Task 1 Task 2

* Invalidate

/ Cache f > Cache

Main Memory

Cache line: basic unit of data transfer

False Sharing Causes Performance Problems

Core 1 Core 2

Task 1 Task 2

Invalidate .::‘
Cache Z x Cache

Main Memory

Interleaved accesses cause cache invalidations

False Sharing 1s Hard to Diagnose

® sSafari File Edit View History Bookmarks Window Help <> = O f 4 BEsus. (= (99% Fri2:09PM tongpingliu
e 00O Mikael Ronstrom: MySQL team increases scalability by >50% for Sysbench OLTP RO in MySQL 5.6 labs release april 2012
| + G mlkaelronstrom blogspot com/2012/04/mysq calability-by-50.htm [\l Reader @[

'.,-iu‘_-._ ...‘“_,......,,,.w SO0 __W,...‘.._-_ﬁ Gmail google ¥ Google Maps YouT Tube Wikipec

MySQL team increases scalablllty by >50% for SysbenchOLTP RO in “ Achieving
MySQL 5.6 labs release april 2012

A MySQL team focused on performance recently met in an internal meeting to discuss
and work on MySQL scalability issues. We had gathered specialists on InnoDB and all
its aspects of performance including scalability, adaptive flushing and other aspects of
InnoDB, we had also participants from MySQL support to help us understand what our
customers need and a number of generic specialists on computer performance and in
particular performance of the MySQL software.

Christmas

The fruit of this meeting can be seen in the MySQL 5.6 labs release april 2012 released FOLLOWE
today. We have a new very interesting solution to the adaptive flushing problem. We also —

Multiple experts worked together to
diagnose MySQL scalability issue (1.5M LOC)

: - : W > : i
. DA)
mEMTIR
MW o

PREDATOR: Predictive
False Sharing Detection

Tongping Liu, Chen Tian, Ziang Hu, Emery Berger

Interested by Many Companies

“Here IBM has this power plattorm with
different settings from X86. I'm thinking
about techniques that can detect false
sharing on Power, and your solution is
quite relevant on this aspect.”

* IBM, Intel, Huawei, SAS, Mathworks

Related Work

e S.M.Gunther et.al. WBIA 2009.

Reports false sharing counters on physical addresses.(120X slower)

e (C.Liu. Master thesis 2009.

Reports false sharing miss ratio. (> 100X slower)

* Q.Zhao et.al. MIT. VEE2011.

Reports cache miss ratio and cache invalidation ratio. (6X slower)

1. False positives
2. Cannot pinpoint the exact
cause of false sharing

Intel Performance Tuning Utility

Basic Data Access Profiling {2010-07-12-09-33-05) Granularity |Cachelines v
Cacheline Address / Offset / Threa... | Coll...Refs +| LL..s | A..y| T...y| Contention INST_R... refs) [M...5 | MEM_LOAD ...L2_MISS Contributors
b Oxef35f340 15 0 3 45 0 15 0 0 Offsets: 3 Threas
Ik Oxed55c340 3 45 0 Offsets: 3 Threa
|mm~~m~
v Offset Ol 4 0 0 0 4 0 Threads: 1
hread:00004598(0011) 4 0 10 40 0 0 4 0 Functions: 1
wordcount_reduce h 4 0 10 40 0] 4]
= Offset:0x18 2 0 3 13 0 1 1 0 Threads: 1
+ Thread:0000459¢{0014) p 0 3 13 0 1 1 0 Functions: 1
wordcount_reduce 2 0 3 13 0 1 1 0
b Offset:0x14(20) 2 0 3 13 0 1 1 0 Threads: 1
I Offset:0x0c(12) 2 0 3 13 0 1 1 0 Threads: 1
b Offset:0x1c(28) 1 0 10 10 0 0 1 0 Threads: 1
b Offset:0x10(16) 1 0 10 10 0 0 1 0 Threads: 1
'Too many false positives .

intel.

Existing ‘Tools vs. PREDATOR

False posittves

Cannot pinpoint
where are problems

Only detect observed
false sharing

No false positives

Precisely pinpoint false
sharing problems

Predict potential false
sharing without occurrences

False Sharing Causes Performance Problems

Core 1 Core 2

Interleaved accesses
Task 1 Task 2 u

Invalidat . . .
4——'::‘ Cache invalidations

i ;

Performance problems
Main
Memory

Detect false sharing causing performance problems ;>

Find cache lines with many cache invalidations

Find Cache Lines with Many Invalidations

Memory: Global, Heap

Track cache invalidations on each cache line

Track Invalidations Based on Memory Accesses

Two-entries-history-table # of invalidations

O O 0

Track Invalidations Based on Memory Accesses

Two-entries-history-table # of invalidations

[[:

r [] w e v - N

T

* Assumptions

1. Each thread runs on a core with its private cache

2. Infinite cache capacity

* Scalable (based on tid)
* Portable (software-only approach)

PREDATOR Components

. Compiler
| Instrumentation |

| Runtime System |

Detect Problems Correctly & Precisely

Task 1 Task 3

False
Sharing
* Correctly: * *

T Task 4
— No false alarms aske 2 as

Task 1

Track memory accesses
True
on each word Sharing

Task 2

* Precisely
— Global variables: names

— Heap objects: calling context of memory allocation

Why do we need prediction?

Necessity ot False Sharing Prediction
Thread 1 Thread 2

Cache line 1 Cache line 2

Cache line 1 Cache line 2

Cache line 1

False Sharing 1s Sensitive to Dynamic Properties

* Change of memory layout

< 32-bit platform € =2 64-bit platform
< Different memory allocator
< Different compiler or optimization

< Different allocation order by changing the code

* Change of cache line size

False Sharing 1s Sensitive to Memory Layout

o

(6]

N

N

=

Runtime (Seconds)

o
!

% % //\b P2 v X P /f’b
§é{°© (é@@ %‘o@\, k&_g}/ ({o@& %%e}, g{o@& %‘06‘\/
O @) O% O‘& Ok’ Ok O‘& O‘s

PREDATOR avoids the predicament of testing

Memory

1

BN . -

1

N . -

B Colors represent threads

Prediction Based on Virtual Cache Lines
Thread 1 Thread 2

I rcol casc

| Cache line 1 | Cache line 2 |

Prediction 1

Virtual cache line 1 Virtual cache line 2

Prediction 2

Virtual cache line 1

Determine Virtual LLine by Memory Accesses

OSSO SVRS————— . | Non-tracked virtual lines

Tracked virtual line

(slz_—'?’d)/ 2 (s‘z_—';}/ 2

< d < the cache line size - sz
< (X,Y) from different threads && one of them is write

Detection Results on Phoenix and PARSEC

Benchmarks Performance Improvements
(after fixes)

Histogram 46%
Linear_regression 1207%
Streamcluster-1 4.77%
Streamcluster-2 7.52%
4 D

Need prediction to detect
false sharing of Linear_regression)

Detection Results on Real Applications

* MySQL
— Problem: different threads update the shared bitmap

simultaneously

— Pertormance improves 180% after fixes

* Boost library:
— Problem: “there will be 16 spinlocks per cache line”

— Performance improves about 100%

Caveats of Fixes

Unavailable source code
— Infeasible to fix

No performance improvement

Quote from the MIT’s VEE2011 paper:

“We added padding between the data but the
runtime actually increased because of lost cache
locality.”

COPELA IS HOW PART OF SPLASH

B spLASY

OCTOBER 22.27

SHERIFF: Precise Detection
& Automatic Mitigation of False Sharing

Tongping Liu, Emery Berger

Key Observation

Core 1 Core 2

Thread 1 Thread 2

Invalidate .::‘
Cache Z X Cache

Main Memory

Sharing cache lines causes false sharing problems

Key Idea: Make Different Threads
Access Ditterent Cache Lines

Threa Thread 2

Prevent False Sharing by Isolation

Core 1 Core 2

“Thread” 1 “Thread” 2

a

Z X Cache A Cache
“Thread” 1 h
Main
“Thread” 2 Memory

Global State

Processes-As-Threads

Processes

Threads

shared address space disjoint address spaces

?

HERIFF: Isolated Execution

4

Pthreads SHERIFF

1: Lock(); Lock_Process_Based();
Begin_isolated_execution

2: XX; XX [/ /isolated execution
Commit_local_changes

3: Unlock(); Unlock_Process_Based();
Begin_isolated_execution

4:YY; YY; //isolated execution

Commit_local_changes

5: Lock(); Lock_Process_Based();

Snapshot and Ditting: Find Local Changes

4 il
y 5 =g 0
- » vty sl .
= ke <3 R L 7
7 R “w Ry

RO

IST,, Z

Lic

N
A\ -
A
- 3 c

| =

|

“ &0

' D)

- O =
o
= < N

L v v

N S|y
= S =S
O n = 3
pA—-

Time

Detailled Memory Layout

Thread Local State Global State

Global Global

* Local (private) €2 global (shared): connect via file

* Applications only access thread local state (read-
only initially, writable, read-only)

Global
State

“Thread” " .

Local State -

Begin

Working

]

Snapshot

Execution

Time

Commit

Snapshot
End

Begin

“Thread”

Local State _

Global
State

Time

Normalized Execution Time

® pthreads B SHERIFF

SHERIFF automatically boosts the
performance of applications with false sharing

A Complete Solution for Parallel
Applications with False Sharing

* First tool to pinpoint false sharing correctly and
precisely

— User can fix problems using padding or thread-local
variables
* First generalized system to eliminate false sharing

— Automatically boost performance without programmer
intervention

Research Focus: Parallel Computing

Performance

SHERIFF: [Liu, OOPSLA'11]

Detecting and Tolerating False Sharing

Reliability

DTHREADS: [Liu, SOSP’11]

Efficient Deterministic Multithreading

PREDATOR: [Liu, PPOPP’14]

Predictive False Sharing Detection

DOUBLETAKE: [Liu, Submission]

Evidence-Triggered Dynamic Analysis

‘T{-"."T'-‘;';"Er 7o) ? S S P

1)/ . L " E -
t ; 23rd ACM Symposivm on Operating Systems Principles
: _.}'V October 2011, Cascais, Portugal

DTHREADS:
Efficient Deterministic Multithreading

Tongping Liu, Charlie Curtsinger, Emery Berger

Citation: 101, 4% of 28 papers in SOSP 2011

DTHREADS Enables...

Deterministic executions

/@ Replay w/o logging

ISR ROR RO Replicate applications

\”'\' d ‘/ﬂ \f'\’ d \“}T\h v’ d "‘}7‘\1 . .

4 s S on different machines
@“d@/ @}«d*“fu\/ @*d ()

DTHREADS is the new basis
of Deterministic Multithreading

Dthreads Overview

Parallel Serial Parallel

mutex_lock

“Thread” 1
,(\
“Thread” 2 ol
“Thread” 3
Isolated Isolated
Memory Deterministic memory Memory
Access commits & syncs AcCcess

DOUBLETAKE:
Evidence-Triggered Dynamic Analysis

Tongping Liu, Charlie Curtsinger, Emery Berger

Detecting Butter Overtlows

* Canaries in freed space detect corruption

X

O

Red = known random value dead canary = corruption
possible

bad
object

o jol2fo o8] | 8] 8

= object id (allocation time)

Precise detection.
Instrument every memory read/write access

Imposing 33% overhead for common path!

Time

Irrevocable
Snapshot system calls ~ >napshot

Normal execution | Check errors

Rollback]

o
o

Instrumented re-executio :

DOUBLETAKE: Efficient
Memory Error Detection

= DOUBLETAKE:BO

® DOUBLETAKE:BO+ML

® DOUBLETAKE: BO+ML+DP
®m AddressSanitizer: BO+DP

RN Riiffar Mvarflnwe
BO+ML: only introduces 3% overhead

It Is ready for the real deployment!

free)

Future Work (short-term)

* Complete false sharing solutions
— Other languages: Java
— Other software stacks: kernel, hypervisor
— Improve performance using hardware-based approaches
— Automatically fixes

* Other performance issues
— lock granularity, thread model, scheduling

* Detect and prevent concurrency errors
— Deadlocks, races, etc.

Future Work (long-term)

* Emerging hardware

— NUMA: unpredictable performance, data sharing, efficient
memory allocator

— Heterogeneous systems (Start at NEC intern)
— Non-volatile memory

* Cloud computing and BIG DATA systems
— Quality of service (Related to Redline)
— Performance of BIG DATA systems (Started at IBM intern)
— Improve reliability (In study)
— Energy etficiency (In study)

Conclusion and Future Work

.Peffomflalilce Operating Systems Runtime Systems Compiler

, Want real impact, work with me!
Main Cont..cuuvas.

< Detecting and tolerating false sharing (D)

< Efficiently detecting memory errors J pone'
< New basis for deterministic multithreading .&

(@ @
Future 51, False sharing 91, Emerging hard.ware
2. Concurrency errors 2. Cloud computing
Work 3. Other performance problems | 3. BIG DATA
9, - Time

Performance Overhead of DOUBLETAKE

m DOUBLETAKE:BO

E DOUBLETAKE:BO+ML

®E DOUBLETAKE: BO+ML+DP
B AddressSanitizer: BO+DP

BO+ML: only introduces 3% overhead

It is ready for the real deployment.

Detailed Prediction Algorithm

u 1. Find suspected cache lines

Detailed Prediction Algorithm

i: 1. Find suspected cache lines
i: 2. Track detailed memory accesses

Detailed Prediction Algorithm

1. Find suspected cache lines

-
-
-

d <sz && (X, Y) from different threads,
potential false sharing

2. Track detalled memory accesses

3. Predict based on hot accesses

4. Tracking Cache
Invalidations on the Virtual Line

———————————————————————————————

S Ay lines
Tracked virtual line

(sz-d)2 (sz-d)2

