
CS xyz3-001 Foundations of Programming and Data Structures 
   

Instructor Dr. Turgay Korkmaz  

 

Homework 05 

Due date: check  BB 

!!!!  NO LATE HOMEWORK WILL BE ACCEPTED  !!! 

 

 A word search is a game where letters of words are hidden in a grid (2D char array), that usually 

has a rectangular or square shape. The objective of this game is to find and mark all the words 

hidden inside the grid. The words may be hidden horizontally (left-to-right →), vertically (top-to-

bottom ↓) or diagonally (left-top-to-right-bottom ↘). 

  

You are asked to implement a program that perform horizontal, vertical, and diagonal search.  

 The 2D char array can be read from a file. But since we didn't see files yet, we want you to 

just declare a 2D char array and initialize it in your program. Here is an example: 
 /* yourprog.c */ 

 #define ROW 3  /* these numbers will be larger */ 

 #define COL 4  /* in an actual program */ 

 

 main() 

 { 

   char g[ROW][COL] = { {'a','b','c','d'},  

     {'d','c','b','a'},  

     {'x','y','z','d'}};  

    ... 

 The words that a user wants to search will be given as command line arguments. User can 

give as many words as he/she wants. For example,  

 
> yourprog  bcd  bd cy abcdef 

 

 As the output, your program will try to find out if each of the words given in the command 

line argument appears horizontally, vertically, or diagonally in the given grid g (which is 

just a 2D array of characters,  rows or columns are NOT null terminated). If a word appears 

in the grid then your program should print how it appears as well as the index values for the 

beginning row and column of the word in the grid. A word may appear more than once, just 

print the information about first appearance. 

 

 For the above example, your program should generate the following output 
bcd appears horizontally starting at g[0][1] 

bd appears diagonally starting at g[1][2] 

cy appears vertically starting at g[1][1] 

abcdef does not appear in g 

http://www.cs.utsa.edu/~korkmaz


 

 

 

What to do and return:    !!!!  NO LATE HOMEWORK WILL BE ACCEPTED  !!! 

1. Create a directory abc123-hw05, using your own abc123. Do all your 

work under that directory. 
 

2. Follow the problem-solving methodology to solve the problem(s). Then convert your 

solution(s) to a C program. You can name your program here as hw05.c    

/*    

 * Don’t forget to include comments about the  

 * problem, yourself and each major step in your  

 * program! so that we can understand your  

 * solution(s).  

 */ 

3.  Compile and run your program. Copy/paste the results in an output file, which you 

can name as hw05-out.txt.     

4.  Zip the whole directory abc123-hw05 as abc123-hw05.zip  

5. Go to BB Learn (http://learn.utsa.edu/) , login using your abc123 

6. Submit your abc123-hw05.zip for hw05 under Assignments  

_______________________________________________________________ 

You must submit your work using Blackboard Learn and respect the following rules:  

1) All assignments must be submitted as either a zip or tar archive file unless it is a single pdf file. 
2) Assignments must include all source code. 
3) Assignments must include an output.txt file which demonstrates the final test output run by the 

student. 
4) If your assignment does not run/compile, the output.txt file should include an explanation of 

what was accomplished, what the error message was that prevented the student from finishing 
the assignment and what the student BELIEVES to be the underlying cause of the error. 

_______________________________________________________________ 

http://learn.utsa.edu/

