
1

CS 1713 Introduction to Programming II

Spring 2014 – SAMPLE FINAL EXAM -- May 7, 2014
You have 120 min. Good luck.

You can use the 2-page C reference card posted in the class web page.

Name:……………………… Score: ……./100

1. (10pt) Review Questions

a. (2pt) Explain how the keyword typedef operates and explain what advantages it has.

b. (2pt) Why shouldn't we use & before a variable name in printf("%d ", n)? What

might happen if we put & before a variable name n in this printf statement?

c. (2pt) In the below table, you are given some terms using array or pointer notation to

get/access some information. You are asked to give the corresponding terms using

pointer or array notation so that we can get/access the same information.

 int a[6]={9,4,3,7,5,6};

 /* Array notation Pointer notation and arithmetic */

 a[4]

 &a[3]

 a[1]+2

 *a+5

 *(a+2)

2

Name:.....................

d. (2pt) If the variable p is declared as a pointer to a record/structure that contains a field

called cost, what is wrong with the expression *p.cost as a means of following the

pointer from p to its value and then selecting the cost field? What expression(s) would

you write in C to accomplish this dereference and select operation?

e. (2pt) Based on the following structures and variable declarations, we implemented some

statements. Fix the ones that have some typos/errors so there will be no compiler error.

#include <stdlib.h>

typedef struct point{

 double x, y;

} pointT;

typedef struct shape {

 pointT center;

 int nc; /* number of corner */

 pointT *corner;

} shapeT;

 main() {

shapeT a, *p;

p = (shapeT *) malloc(sizeof(shapeT));

p->corner = (pointT *) malloc(5*sizeof(pointT));

a->center->x = 0.0; a.center.x = 0.0;

p.nc = 5; p->nc = 5;

p.corner.x = 0.0; ... p->corner->x = 0.0;

p->corner[2]->x = 0.0; ... p->corner[2].x = 0.0;

 }

3

Name:_____________________

2. (15 pt) Trace the following program: show how values change in the memory, and give the

output.

name
Add

ress
Content/Value

x 12

y 16

z[0] 20

z[1] 24

z[2] 28

p1 32

p2 36

 …

 100

a 104

b 108

c 112

d 116

x 120

y 124

 128

#include <stdio.h>

main()

{

 int x=5, y=6, z[3], *p1=&x, *p2=z+1;

 *p2 = *p1;

 *(p2-1) = 7;

 y = *p2++;

 *p2 = x / y;

 *--p2 = 4;

 printf("%d %d %d %d %d \n",

x, y, p1, *p1, &p1);

 y = f1(&x, *p1, p2+1, &p1);

 printf("%d %d %d %d %d \n",

x, y, p1, *p1, &p1);

}

int f1(int *a, int b, int *c, int **d)

{

 int x=3, y=8;

 *a = y % x;

 c--;

 *d = c+1;

 **d = *(*d-1) + *a;

 printf("%d %d %d %d %d %d\n",

x, y, d, *d, **d, &d);

 return y - *c / **d;

}

MEMORY

OUTPUT:

4

Name:.....................

3. (15 pt = 10+5) Using Array and Pointer Arithmetic, implement two versions of a function that

removes all the other characters except decimal digits from a given string s. The return value

should be the number of characters that are removed.

FOR EXAMPLE: suppose s is “(210) 458-7346”, after your function, s should

have “2104587346” and your function returns 4.

Note: if needed, you can use isdigit(char ch) function in <ctype.h> It returns 1 if ch

is a digit; otherwise, it returns 0.

int KeepDigitArray(char s[])

{

int KeepDigitPointer(char *s)

{

5

Name:..........................

4. (15 pt) One organization has the following policies for passwords:

 Your Password must be between 8 and 14 characters without a space char.

 Your Password must contain at least one number, at least one English uppercase

character, and at least one English lowercase character.

 Your Password cannot contain a dollar ($) sign.

 Your Password may not have more than two consecutive identical characters

Using POINTER (no array) notation, write a function, int chk_passwd(char *s),

that returns 1 if the given string satisfies the above conditions; otherwise, returns 0.

Checking every condition separately by passing over the string again and again may result in

a simple but long and inefficient implementation.

Write an efficient solution that passes over the string at most once. The functions in

ctype.h (see your cheat sheet) would be useful here. So assume it is included here.

int chk_passwd(char *s) /* use pointer notation */

{

6

Name:…………….

5. (15 pt) Suppose 100 students took a multiple choice test consisting of 50 questions. Students

answered all the questions by selecting one of the 5 choices: a, b, c, d, or e. Suppose

somehow we recorded students' answers in a 2D array of char ans[100][50]. And the

answer key is given as 1D array of char key[50]. So both arrays are filled with lowercase

'a', 'b', 'c', 'd', 'e'. Now you are asked to complete the below program that

summarizes the data in char ans[100][50] as follows.

 - count the number of correct answers that each student gave and save this information

 into int correct[100].

 - count how many students selected a, b, c, d, or e for each question and save

 it into int count[50][5] /* each column represents one choice, respectively */

main()

{

 char ans[100][50] = {{'a', 'b', 'd', ... },

 {'a', 'c', 'e', ... }, ... };

 char key[50] = {'a', 'c', 'a', ... };

 int correct[100]; /* you will compute this */

 int count[50][5]; /* you will compute this */

7

Name:…………….

7. (15 pt) Suppose we have the following structure (record) declaration.

typedef struct {

 int x;

 int y;

} myDataT;

Write a program that dynamically allocates a triangular-like 2D array of the above structure with

the given number of rows denoted by N such that the first row (row 0) will have one record,

second row (row 1) will have two records, and so on. The last row (row N-1) will have N

records. For example, when N is 5, conceptually the 2D array will look like

x=?

y=?

x=?

y=?

x=?

y=?

x=?

y=?

x=?

y=?

x=?

y=?

x=?

y=?

x=?

y=?

x=?

y=?

x=?

y=?

x=?

y=?

x=?

y=?

x=?

y=?

x=?

y=?

x=?

y=?

After allocating then memory, your program should initialize x and y fields in each cell by

setting them to corresponding cells’ row numbers and column numbers, respectively. So after the

initialization, the above array will look like:

x=0

y=0

x=1

y=0

x=1

y=1

x=2

y=0

x=2

y=1

x=2

y=2

x=3

y=0

x=3

y=1

x=3

y=2

x=3

y=3

x=4

y=0

x=4

y=1

x=4

y=2

x=4

y=3

x=4

y=4

Finally, your program should free up (release) the allocated memory.

8

Complete the following C program which (i) dynamically allocates a triangular-like 2D array, as

described in previous page (ii) initialize it, and (iii) free up the allocated memory.

#include <stdio.h>

#include <stdlib.h>

void main(void)

{

 int N, i, j;

 myDataT **a;

 printf(“Enter Number of Rows : “); scanf(“%d”, &N);

typedef struct {

int x;

int y;

} myDataT;

