

1

CS 1713 Introduction to Programming II

Spring 2014 – Midterm 2 -- April 24, 2014
You have 75 min. Good luck.

You can use the 2-page C reference card posted in the class web page.

Name:……………………… Score: ……./100

Background Survey (5pt bonus credit)

A. Please complete the below table for the computer-programming-related courses that you

have taken before Spring 2014.

Programming courses
TAKEN AT
UTSA,
(Yes / No)

If you have taken equivalent courses from a different
school, please give the school name and the
programming language used.

CS 1063 Intro to Comp Prog I (in Java)

CS 1713 Intro to Comp Prog II (in C)

(Say NO if this is the first time you are taking it)

B. How would you evaluate your programming skills and background? (circle one)

5: excellent, developed some programs, received A in all Intro programming courses.

--

4: good, developed a few programs, received B in Intro programming courses.

--

3: fair, developed very simple programs, received C in Intro programming courses

--

2: beginner, have not take any programming course, never wrote any program.

--

 1: What is "programming"?

C. Do you think you had sufficient background to take cs1713?

Definitely. Somewhat. I don't know. Not really. Definitely not.

D. If you feel that you had (or did not have) sufficient background, what should be done

(both on your part and in the curriculum) so that you can be successful in cs1713? (Please

comment)

2

Name:_____________________

1. (20 pt) Trace the following program, show how values change in the memory, and give the

output.

name
Add

ress
Content/Value

x 12

y 16

z[0] 20

z[1] 24

z[2] 28

p1 32

p2 36

 …

 100

a 104

b 108

c 112

d 116

x 120

y 124

 128

#include <stdio.h>

main()

{

 int x, y, z[3]={8,5,4}, *p1, *p2;

 p1 = &x;

 *p1 = 9;

 p2 = z + 2;

 y = *p2--;

 *(p2-1) = 7;

 *++p2 = 3;

 printf("%d %d %d %d %d \n",

x, y, z[0], z[1], z[2]);

 y = f1(&x, *p1, p2-1, &p2);

 printf("%d %d %d %d %d \n",

 x, y, z[0], p1, p2);

 printf("%d %d \n", *p1, *p2);

}

int f1(int *a, int b, int *c, int **d)

{

 int x=5, y=7;

 *a = y % x;

 *d = c-1;

 **d = *a + b;

 return **d + *a;

}

MEMORY

OUTPUT:

3

Name:…………………………

2. (20pt) You are asked to implement the following function using pointers and pointer arithmetic

int substrindex(char *str, char *substr); which returns -1 if substr is not

in str; otherwise, it returns the index value for the first appearance of substr in str. You can

assume that both str and substr are NULL terminated strings. For example,

 substrindex("abcabcdef", "abc") returns 0,

 substrindex("abcabcdef", "abcde") returns 3,

 substrindex("abc", "xy") returns -1

int substrindex(char *str, char *substr)

{ /* FOR FULL CREDIT DON'T USE ARRAY NOTATION!

 * IF YOU SOLVE IT USING ARRAY NOTAION, YOUR MAX WILL BE 10Pt

 */

4

Name:…………….

3. (20pt) Develop a function char *my_concat(char *s1, char *s2); that concatenates

two strings by joining them end to end. This function should dynamically allocate the memory

for the new string and copy the original strings end to end into the new string.

For example, after calling s = my_concat("ABC", "DE"); s should be pointing to a new

string "ABCDE".

If needed, you can use the standard string functions from <string.h> library.

char *my_concat(char *s1, char *s2)

{

5

Name:.........................

4. (20pt) Suppose we have the following structure and variable declarations.

typedef struct {

 int x;

 int y;

} myDataT;

myDataT a, *b, **c;

a) (2pt) Set all the fields of variable a to 0.

b) (3pt) Let b = &a; Then through pointer b set all the fields to 1.

c) (5pt) Allocate an array of 50 pointers to myDataT and save the address of that array into c.

d) (5pt) Suppose the memory allocation in part (c) is successful and c is now the array of 50

pointers to myDataT. Now, dynamically allocate an actual myDataT structure for each

element of the array c and save its address in c[i].

e) (5pt) Free all the memory that you allocated in part (c) and part (d).

6

Name:................

5. (20pt) We maintain two files to store the IDs and homework grades of the students in two

sections. At the end of the semester, I need to merge these two files into a single file. Each

student has nine homework grades after his/her ID, but the number of students in a file could be

anything! Also the IDs in the input files are already sorted.

Now you are asked to write a program that takes three file names as command line arguments,

and merges the data in the first two files into the third file while keeping the IDs sorted.

Here is an example.

Suppose we have the following two files: section1.txt and section2.txt

When we execute your prog as follows

> prog section1.txt section1.txt section-all.txt

it should print out the following lines into section-all.txt

Implement your program by completing the following program also use the next page.

#include <stdio.h>

int main(int argc, char *argv[])

{

 FILE *infp1, *infp2, *outfp;

 int id1, id2,

 …………………………………………………………………………………………… /* if you need, declare more var */

 if (argc!=4) {

 printf("you need to give three file names\n"); return -1;

 }

 if ((infp1=fopen(………………………………, …………)) == NULL ||

 (infp2=fopen(………………………………, …………)) == NULL ||

 (outfp=fopen(………………………………, …………)) == NULL){

 printf("some files cannot be opened\n"); return -1;

 }

12 3 5 2 5 3 5 2 5 3

18 5 2 5 3 3 5 2 5 3

25 3 5 2 5 3 2 5 3 5

14 3 5 2 5 3 5 2 5 3

17 5 2 5 3 3 5 2 5 3

22 3 5 2 5 3 2 5 3 5

30 5 3 3 5 2 5 3 5 2

12 3 5 2 5 3 5 2 5 3

14 3 5 2 5 3 5 2 5 3

17 5 2 5 3 3 5 2 5 3

18 5 2 5 3 3 5 2 5 3

22 3 5 2 5 3 2 5 3 5

25 3 5 2 5 3 2 5 3 5

30 5 3 3 5 2 5 3 5 2

7

/* Name:……………… */

