CS 1713
Introduction to Computer
Programming 11

Ch 2 — Overview — C programming Language
Data types — Pointers — Arrays - Structures

Turgay Korkmaz

Office: SB 4.01.13
Phone: (210) 458-7346
Fax: (210) 458-4437
e-mail: korkmaz@cs.utsa.edu
web: www.cs.utsa.edu/~korkmaz

http://www.cs.utsa.edu/~korkmaz

Built-in Atomic Data Types in C

Character ASCII Code Integer Equivalent
char newline, \n 0001010 10
% 0100101 37
3 0110011 51
A 1000001 65
numeric data types d e 4
b 1100010 98
C 1100011 99
Integers
short Maximum = 32,767
int Maximum = 2,147,483,647
Tong Maximum = 2,147,483,647
integers floating-point values Floating Point
float 6 digits of precision

Maximum exponent 38
Maximum value 3.402823e+38

double 15 digits of precision
Maximum exponent 308
Maximum value 1.797693e+308

Tong double 15 digits of precision
Maximum exponent 308
Maximum value 1.797693e+308

short int Tong float double Tong double R

Define a new type, rename an old type

using typedef

= What is the difference between
int partNumberT, seriallNumberT;
typedef int partNumberT, serialNumberT;
partNumberT x, vy; vs. int x, vy;

=« New types may provide more information

= Easily change the underlying representation
typedef long partNumberT;

i New Atomic Data Types in C

= C allows to define new atomic types called
enumeration types

typedef enum { element-list } type name;

= For example:
typedef enum ({

North, East, South, West
} directionT;
directionT dir;/* declare a variable */

Internal representation of
i enum types

= Stored as integers starting with O
s North=0, East=1l, South=2, West=3.

= We can change these values
typedef enum {

Penny=1, Nickle=5, Dime=10, Quarter=25,
HalfDollar=50

} coinT;

typedef enum ({

#define January 1

January=1, February, March .. #def%ne February 2
#define March 3
} monthT;

i Scalar types

= enum types, char, and int, short, long etc
are called scalar type and automatically
converted to integer

= S0 any operations on scalar type are the
same as for integers

directionT RightFrom (directionT dir)

{
return ((dir+1)%4);

}
for (m=January; m <=December; m++)

i Scalar types (cont’d)

= YOU can use scalar types as integers
printf(“direction is %d\n”, North); will print O

= If you need to print the name itself you
need a function like the following

String DirectionName (directionT dir)

{
switch (dir) {

case North:

case Fast:

case South:

case West:

return
return
return
return

(
(
(
(

North”) ;
East”) ;
South”) ;
West”) ;

!'_ Data and Memory

> How is the information stored in a computer?
> RAM -- Random Access Memory
> BitS, bYteS, words (size required to hold int, could be 16, 32 or 64 bits)

> Memory addresses
» silzeof (type name) sizeof var name

Memory addresses

i Name Address Content/data
0

= Every byte is identified by a 1
numeric address ch 7 65

= Each byte of memory holds
one character (8-bit info)

= Values larger than char are

stored in consecutive bytes X 1000
= Identified by the address of 1001
the first byte 1002
= Suppose we declare 1003
N7 .
char ch = "A%; 4194303

int x = 305; Suppose we have 4MB memory

>

>

>

>

>

>

Name Address
0,

P 4
q 1000,

Pointers

A pointer is a variable that contains the address of a variable.

Addresses are used as data values

Content/data

1000

Using pointers, we can directly access memory at this

address and update its content
Why not just use the variable name!

Java hides pointers from the programmer...
One of the key concepts that we MUST know!

10

i Why do we need pointers?

= To refer to a large data structure in a
compact way

= Facilitate data sharing between different

par

s of the program

= Make it possible to reserve new memory
during program execution

= Allow to represent record relationships
dmong data items (data structures: link list, tree etc...)

11

Addresses and Pointers

Recall memory concepts
name address Memory - content
char ch=‘A’; 4
j_nt X:I_:]_, X2:7; ch 8 01000001
1 =

double dlstance; x1 12 oooooooooooooooo | fonooeao og0ann
- 2 16 | e L e oo
int *p; X

; 20 ? = arbitrary
: distance 24 17s and 0's —
int g=8; . . :

_ ias | 2 T

p = & oy g —
HOW abOUt char *pc; q 32 00000000 ; 00000000 ; 00000000 ; 00001000

double *pd;

12

Name Address Content/data

What is a

i Pointer? R /3

q 1000, 1001,
1002, 1003

= A pointer is a variable that holds the
address of a variable (memory location)

= [f a variable p holds the address of
variable g, then p Is said to point to g

= [f g IS a variable at location 1000 In
memory, then p would have the value
1000 (g’'s address)

13

i How to declare a pointer variable

= Pointer variables are declared using
an asterisk * before the pointer
Nname. int a, b, *ptr;

= a and b are integer variables

m ptr is a pointer that can store the address
(which is an integer value) of another integer variable

double c, *pl;

14

i Declaring pointers

= When using the form int *p, qg;

the * operator does not distribute.

= In the above example
= p IS declared to be a pointer to an int var
= (IS declared to be an int var

= [f you want both to be pointers, then
use the form int *p, *qg;

15

i Address Operator: &

= A variable can be referenced using
the address operator &

= For the example in slide 12;
&x1 is the address of x1

printf (“$d”, &x1); = will print 12 (address)
printf (“$d”, x1); -2 will print 1 (content)

16

i * Value-pointed-to

= * has different meanings in different contexts

= 1nt a, b, c;

ma = X * y; - Multiplication

= int *ptr; - Declare a pointer
m ptr = &y

ma = x * ‘*ptr; - Value-pointed-to

= * before pointer name in C statements is
used as indirection or de-referencing
operator

17

Example:

Pointers, address, indirection

int a, b;
int *c, *d;

a=2>5;

c = &a;

d = &b;

*d = 9;
print c, *c,
print a, b

&C

name address memory

38
a 12 >
b 16 9
C 20 12 —
d 24 16—
c=12 *c=5 &c=20

18

Exercise:

Trace the following code

name

x =3 + 4;
y=x/ 2 + 5;
Pl = &y;
p2 = &x;

X 512]:
y 516]
pl 520]:
p2 524|:

address memory

=)

19

i Pointers to Pointers

int 1I;

int *pi;
int **ppi;
1=5;
ppi=π
*ppi = &i;

Can we have
int ***p;

i 444

Di 448

ppi 452

]

=

What will
happen now
1=10;
*pi=20;
**ppi = 30;

20

+

MORE ABOUT POINTERS

NULL

ASSIGNMENT,
COMPARISON,

TYPE,

POINTER ARITHMETIC,
FUNCTION PARAMETERS,
POINTERS TO POINTERS,

21

i NULL pointer

= A pointer can be assigned or compared to
the integer zero, or, equivalently, to the

symbolic constant NULL, which is defined
In <stdio.h>.

= A pointer variable whose value is NULL Is

not pointing to anything that can be
accessed

22

Assigning values to a pointer

int a, b=2;
int *iPtrl, **iPtr2;

= the assignment operator (=) is defined for pointers

= the right hand side can be any expression as long as it
evaluates to the same type as the left

iPtrl = &a;

iPtr2 = &iPtrl; // iptr2 = ga;
*iPtrl = b+3;

*1Ptr2 iPtrl;

23

i Pointer Initialization

] IPtr

int *1Ptr=0;
char *s=0;
double *dPtr=NULL; - dPtr

Il When we assign a value to a pointer during it is
declaration, we mean to put that value into pointer
Vd I‘Ia ble (nO |nd | I‘eCtIOn)| Same when calling functions with ptr parameters

int *iPtr=0; // IS Same as
int *1Ptr;
iPtr=0: // notlike *xiptr = 0;

[] S

24

i Exercise

Give a memory snapshot after each set of
assignment statements

int a=3, b=2;

int *ptrl 0, *ptr2=&b;

ptrl = &a;
a = *ptrl * *ptrZ;
ptrl = ptr2;

*ptrl = a+b;

a 100

b 104

ptrl 108

ptr2 112

25

i Many-to-One Pointing

A pointer can point to only one location at a time, but
several pointers can point to the same location.

/* Declare and
initialize variables. */

int x = -5, y = 8;

int *ptrl, *ptr2; X 444 B

/* Assign both pointers y 448 8
! *

to point to x. / Ptrl1 452 444

ptrl = &x; _—

ptrz = ptrl; pr2 456 | 444 _—

The memory snapshot after
these statements are executed

26

Exercise

Show the memory snapshot after the following operations

int x=2, y=5, temp;

int *ptrl, *ptr2, *ptr3;

// make ptrl point to X
ptrl = &x;

// make ptr2 point to vy
ptr2 = &y;

Exercise

temp

ptr2

ptr3

27

Exercise

Show the memory snapshot after the following operations

// swap the contents of
// ptrl and ptr2 2 5 ?

ptr3 = ptrl;

ptrl = ptr2;
ptr2 = ptr3;

28

Exercise

Exercise

Show the memory snapshot after the following operations

// swap the values pointed
// by ptrl and ptr2 5 2 5

temp = *ptrl;
*ptrl = *ptr2;
*ptr2 = temp;

29

Exercise

i Comparing Pointers

= YOU may compare pointers using >,<,== etc.
= Common comparisons are:

= check for null pointer if (p == NULL)

= check if two pointers are pointing to the same location
C1f (p == q) .. |s this equivalent to
S 1f (*p == *Qq)

= Thenwhatis if (*p == *q)

= compare two values pointed by p and q

30

i Pointer types

= Declaring a pointer creates a variable
that is capable of holding an address

= Addresses are integers!

= But, the base type we specify in the
declaration of a pointer Is the type of
variable to which this pointer points

= !l1 @ pointer defined to point to an integer variable cannot also point
to a float/double variable even though both holds integer address
values ! WHY?

31

Example: pointers
i different types

with

a 100
int a=5; b 104
double b=23.452;
int *iPtr; IPtr 112

double *dPtr; dPtr 116

i1Ptr = &a;
dPtr = &b; // dPtr=za;

120

NS

= the variable IPtr is declared to point to an int
= the variable dPtr is declared to point to a double

32

i Pointer Arithmetic

= Four arithmetic operations are supported
m +, -+ -
= only integers may be used in these operations

= Arithmetic is performed relative to the variable type being
pointed to
Example: p++;
= if pis defined as int *p, p will be incremented by 4 (system dependent)

= if pis defined as double *p, p will be incremented by 8(system dependent)
= Wwhen applied to pointers, ++ means increment pointer to point to next value in memory

= MOSTLY USED WITH ARRAYS (as we C later)

33

Pointers in Function References
i ('IMPORTANT!)

= In C, function references are call-by-value

= To modify a function argument, a pointer to the
argument must be passed (call-by-reference)

scanf (“3f£”, &X);

This statement specifies that the value read is to be stored at the
address of X

= The actual parameter that corresponds to a pointer
argument must be an address or pointer.

34

Call by Value

volid swap (int a,int b)

{

int temp;

temp = a;
a = b;
b = temp;

return;

mailn ()

{

int x = 2,
printf ("%

y = 37

sd\n“, x,y) ;

swap (x,y)

printf ("%
}

sd\n“, x,y) ;

Changes made in function swap are lost when the function execution is over

35

Call by reference

void swapZ (1nt *aptr,
int *bptr)

int temp;

temp = *aptr;
*aptr = *bptr;
*bptr = temp;

return;

mailn ()

{
int x = 2, y = 3;

printf ("$d %d\n“, x,vVy);
swap2 (&x, &y);
printf ("$d %d\n“, x,vVy);

}

Changes made in function swap are done on original x and y.
So they do not get lost when the function execution is over

Pointers allow us to get more
ithan one value from a function

= Write a function to compute the roots of quadratic equation ax2+bx+c=0. How to return two roots?

void comproots(int a,int b,int c¢,double *dptrl, double *dptr2)
{

*dptrl = (-b - sqrt(b*b-4*a*c))/(2.0%*a);

*dptr2 (-b + sgrt(b*b-4*a*c))/(2.0%*a);

return;

}

main ()

{

int a,b,c;

double rootl,rootz; For complete program, See quadeq.c
Figure 2-1 in the textbook

printf ("Enter Coefficients:\n");
scanf ("%d %d %d", &a, &b, &c) ;

computeroots(a,b,c, &rootl, &root2) ;

printf ("First Root = %1f\n",rootl);
printf ("Second Root = %1f\n",root2); 37

Trace a program

main ()

{

int x, y;

max min (4,

3, 5,

prthf(“ First: %d

max min(x, y, 2,

pri;tf(“Second: sd

}

&x,

&x,

&y) ;

xd”, x, y):;

&y) ;

xd”, x, y):;

void max min(int a, int b, int c,
int *min)

{

*max =
*min =

if
if
if
if

printf (“F:

}

Exercise

(b >
(c >
(b <
(c <

int *max,

*min)

sd

*max =

*max
*min
*min

sd\n”

name

Addr

Value

100

104

108

112

400

404

408

maX

412

min

416

38

i Pointers to Pointers

main()

) {int *pi;

/) 1:(.&pi) ;
y

int f(int **p)

{
*pp=New(int);

}...)

Exercise: swap pointer variables

= Implement and call a function that can exchange two pointers such
that if p1 is pointing vl and p2 is pointing v2 then (after calling your
function) p1 must point to v2 and p2 must point to v1.

/* give a prototype for your function here */
volid main () {

int vl = 10, v2 = 25;

int *pl = &vl, *p2 = &v2;

/* call your function here */

40

Pointers to functions

Int f(); // fis a func returning an int

int *f(); // fis a func returning ptr to an int

int (*f)(); //fis a ptr to a func that returns int

int *(*f)(); //fis a ptr to a func that returns ptr to int

int *f[]: //fis an array of ptr to int
int (*f[])(), // fis an array of ptr to functions that return int

int f(int) {3
int (¥pf)(int) = &f;
ans = f(25); ans =(*pf)(25); ans=pf(25);

There is a program called cdec1 that explains an existing C declarations (you may find it on Internet)

41

!'_ Arrays

> Collection of individual data values
~ Ordered (first, second...)
> Homogenous (same type)

42

i One-Dimensional Arrays

= Suppose, you need to store the years of 100
cars. Will you define 100 variables?
int v1, v2,.., y100;

= An array is an indexed data structure to

represent several variables having the same
data type: int y[100];

y[0] vy[1] vy[2] .. ylk1] y[k] vy[k+1] ... y[98] y[99]

43

One-Dimensional Arrays
(cont'd)

= An element of an array is accessed using the

array name and an index or subscript,
for examp/e.' v [5] which can be used like a variable

= In C, the subscripts always start with 0 and
increment by 1, so y[5] is the sixth element

= The name of the array is the address of the
first element and the subscript is the offset

y[0] vy[1] vy[2] .. ylk1] y[k] vy[k+1] .. y[98] Yy[99] .

The name of the array is
constant showing the address
of the first element, Or pointer
to the first element

i Exa m p I = /Blist is a constant

list[0]

list[1]
list[2]

#define NE 5 Ei
int list[NE];

= allocates memory for 5 integer variables
= subscript of first element is 0
= subscript of last element is 4

45

i Definition and Initialization

= An array is defined using a declaration
statement.

data type array name[size];

= allocates memory for size elements

= subscript of first element is 0
= subscript of last element is size-1

= size must be a constant

46

i Initializing Arrays

= Arrays can be initialized at the time they
are declared.

= Examples:
double taxrate[3] ={0.15, 0.25, 0.3};
char list[5] = {‘h’, 'Te’, 1", 1", "o'};

double vector[100] = {0.0}; /* assigns
zero to all 100 elements */
int s[] = {5,0,-5}; /*the size of s 1is 3*/

47

i Assigning values to an array

For loops are often used to assign values to an array

list[0]

list[1]

Example: list[2]

| | | list[3]

int list[5], 1i: list[4]
for (1=0; i<5; 1i++) {

list[i] = 1i;

\ 0 list[0]

OR 1 list[1]

s e 5 list[2]

for (i=0; .l<_4'. 1++) o 3| list[3]

list[1] = 1; 4 list[4]

}

i Assigning values to an array

Give a for loop to assign the below values to list

int list[5], 1;

list[3]
list[4] }

4 list[0]

3 list[1] for (1=0; 1 < 5; 1i++){
% list[2] list[i] = 4-1i;

0

s Cdoes not check bounds on arrays

O |iSt[6] = 8; /* may give segmentation fault or
overwrite other memory locations*/

49

int rand int(int a,int Db)

{

. return rand ()% (b-a+l) + a;
Exercise |

= int data[100], 1i;
= Store random numbers [0,99] in data
for (i=0; 1<100; i++)
datal[i] = rand() % 100;

= Store random numbers [10,109] in data
for (i=0; 1i<100; 1i++)
datal[li] = (rand() % 100) + 10;
OR
for (i=0; 1<100; i++)
data[i] = rand 1nt(10,109);

! Computations on one-D arrays

51

Find Maximum

Exercise

= Find maximum value in data array
int datal[l1l00], max, 1;
for (i=0; i<100; i++)
datal[1] = rand 1int(10,109);
max = datal[0];
for (i=1; 1<100; 1i++){
if (data[i] > max)
max = dataf[i];
}

printf ("Max = %d\n",max) ;

52

i Find average

= Find average of values in data array
int data[100], sum, 1, avg;
for (i=0; 1i<100; i++)
datali] = rand int (10,109);
sum = 0;
for (1=0; 1<100; 1i++) {
sum = sum + datal[i];

}
avg = (double)sum/100;
printf (YAvg = $1f\n", avqg);

Exercise

Number of elements greater
i than average

= After finding the average as shown in
previous slide, use the following code

count = 0;
for (i=0; 1i<100; i++) {
1f (datal[i] > avg)
count++;
}
printf (“sd elements are ©“
“greater than avg”, count);

54

Copy arrayl to array?2 in
i reverse order

arrayl

array?2

6

3

1

55

i Find pair sum

= Find sum of every pair in data and write into pair array

ata

0.

ata[1

ata

C
C
C
C

1
2]
ata[3]

data[98]=3

_|data[99]=12

pair[0]=12

pair[1]=20

| —
}.//

pair[49]=15

56

i solution

int data[l100], pair[50], 1;

for (i=0; i<100; i++)
data[1] = rand int(1,100);

for (i=0; i<50; i++) {
pair[i]= data[2*i] + data[2*i+l1];
J

57

Randomly re-shuffle numbers

data[98]=3
data[99]=12

ata

atal

d
data
d
d

W IN |- O
1
@

ata[

data[98]=3

data[99]=5

58

solution

int data[100], 1, 73, k, tmp;
for (i=0; 1i<100; 1i++)

data[1] = rand int(1,109);

for (n=0; n<30; n++) {
1=rand int (0, 99);
j=rand int (0, 99);
tmp = data[i];
data[i] = datal[j];
data[j] = tmp;

59

Print sum of top-bottom pairs

A[0]=3

A[1]=6 \
A.[49]=5 \

A[50]=3 >®/@ (+)
A[98]=4

A[99]=5

Random numbers from an
i irreqular range

= Suppose you want to generate 50
random numbers, but you want to
chose them uniformly from a set of
given numbers like 52 67 80 87 90 95

= Can you do this using arrays?

61

Arrays as

!'_ Function Arguments

62

Function Arguments

Passing individual array elements

Like a regular variable, we can pass an individual array
element (call-by-value) or

= We can pass the address of the individual array element
(call-by-reference) to a function
vold donothing(int a, int *b)

{ .}

int main (void)
{
int x=3, y=b5, arrayl[5] = {1,2,3,4,5};

donothing (x, &vy);
donothing(arravI[2], &arrav[3]);

// Calls donothing(3, address of array +12);

} 63

Passing whole array

‘_L Function Arguments

= Arrays are always pass by reference
= Maodifications to the array are reflected to main program

= The array name is the address of the first element
(POINTER) but like a constant so it cannot be changed to
point another location

= The maximum size of the array must be specified at the
time the array is declared.

= The actual number of array elements that are used wiill
vary, so the actual number of the elements in the array is

usually passed as another (call-by-value) argument to the

function
64

main ()

{ Exerc

int a[100]={3, 5,..};
a

H

50);*\\\\\\%

int c;

C

}
int sum arr(int b[], int n)

//int sum arr(int *b, int n)\

sum_arr (a,

{
int i, sum=0;
for(i=0; i < n; i++)

sum sum + b[i];

return (sum) ;

Ise

y

a[0]=3

a[1]=5

C= ? Sum of first 50 elements

b=

n=50

=0 1 2 ...
sum=0 3 8 ...

65

main ()

{

}

{

Exercise

int a[l100]={3, 5, ..};

int c; CH I

c = sum_arr(a, 2) ‘\\\\\\/\\

[“a[O]=3 20 25
int sum arr(int b[], int n) a[1]=5
int i1, sum=0; —
for (i=0; i < n; i++) \C=? 8
sum = sum + b[1i]; b=.
b[0] = 20; n=2
*b=25; i=0 1 2

return (sum) ;

sum=0 3 8

66

Xercise

Write a function to find maximum value in the array data

int main ()

{

int data[1l00],1, max;

for (1=0; 1<100; i++)

datal[i] = rand() % 100;
max = maximum(data,100) ;
printf ("Max = %d\n",max) ;
return (0) ;

}

Exercise

int maximum(int fdatal],

int n)
{
int i1, fmax;
fmax = fdata[O0];

for (i=1l; 1 < n; 1i++)

if (fdata[i] > fmax)

fmax = fdatal[i];
return (fmax) ;

67

int main ()

{

)

int data[1l0];

for (1i=0; 1<10; i++
data[i] = rand()

print (data, 10) ;
modify (data,10) ;

print (data, 10) ;

return (0) ;

Exercise

Exercise

What is the output of the following program?

)
5 100;

void print(int pdata[], int n)
{
int i;
for (i=0; i<n; i++)
printf ("data[%d]=%d\n",
i,pdatal[i]);
return;

}
void modify (int fdata[], int n)

{
int 1i;
for (i=0; i<n; i++)
fdata[i] = 1;

return;

More Examples of one

!'_ dimensional arrays

69

Trace a program

= [race the following program and show how

variables change in memory.

int main ()

{
int x[5]1={3, 5, 3, 4, 5};

X
o

b
'_\

int i, j, count;

for(i = 0; i < 5; i++){
count = 1;

X
w

— — | — — | —
N
f— | — |

IaN

for(j = i+l; j < 5; J++){

H]X

D ol [Ny w @) w

if (x[i] == x[]j]) count++;

}]

printf (*%d %d \n”, x[i], count); |count

}
}

Exercise

70

i Search Algorithms

s Unordered list
= Linear search

= In a loop compare each element in array with
the value you are looking for

s Ordered list

= Linear search

= A better solution is known as Binary search
(but we will skip it this time, it is like looking
for a word in a dictionary)

/1

i Unordered list — linear search

int searchl (int x[], int n, int wvalue)

{

int 1;
for(i=0; i < n; i++) {
if (x[i]== wvalue)

return 1i;

}

return(-1) ;

}

72

i Ordered list — linear search

int search2(int x[], int n, int wvalue)

{

int 1;
for(i=0; i < n; i++) {
if (x[i]== wvalue)

return 1i;
else 1f (x[1] > walue)
break;

}

return(-1) ;

}

Exercise

73

0 1 2 3 4 5

iSorting an array

74

*Selection Sort (solution 1)

volid selection sort(double x[], int n)

{
int k,j,m;
double temp;

for (k=0; k<=n-2; k++) {

}
chercse

m = find min pos(x, n, k);

swap(x, k, m);

75

iSeIection Sort (solution 2)

void selection sort(double x[], int n)

{

int k, m;

for (k=0; k<=n-2; k++) {
m = find min pos(x, n, k);
swap(x, k, m);
}
}

76

iSeIection Sort cont’'d

int find min pos(double fx[], int fn, int fk)
{
int j;
int m=fk;
for (j=m+l; i<=fn-1; J++)
if (£x[j] < £x[m])
m= 7j;

return (m) ;

77

i Selection Sort cont'd

void swap (double sx[], int sk,
{

double temp;

temp = sx|[sk];

sx[sk] = sx[sm];

sx[sm] = temp;

return;

int sm)

78

i Merge two sorted array

= Assume we have A and B arrays
containing sorted numbers

= For example
«A={3,5,79, 12}
= B={4,5, 10}

= Merge these two arrays as a single
sorted array C, for example
«C={3,4,5,5,79, 10, 12}

79

ilntersection Set

= Suppose we have two sets (groups) represented
by A and B

= E.g., Ais the set of students taking Math,
B is the set of students taking Science.

= Find set C, the intersection of A and B, i.e.,
students taking both Math and Science

For each element ID in A

Search that ID in B
1if found, put ID into C

80

Use arrays to represent A and B
‘LHand example

s 1 [s |7 8 s[4
N N N N N

=2

i=3 i=4 i=5i=6 j=0 j=1
k=0 k=1 k=2 k=3

| |
c Bl [z

81

Solution
int intersection(int A[],int B[],

int C[], int n)
{
int i=0, j=0, k=0;
for(i=0; 1 < n; i++) {
for(j=0; j < n; J++) {
if (A[1]==B[]]){

Cl[k]=A[1];

k++;

break;

} III 3 | 11] 97

}

}

1 2

4
return (k) ;
}xercise -

Another Solution
int intersection(int A[], int B[],

int C[], int n)

int i=0, k=0, elem;
while (i < n) {
elem = A[i];
if (find count(B,n,elem) == 1) {
C[k] = elem;
k =k + 1;

}
} i=14+1; III - YRR

return (k) ;

1 2

4
Exercise -

83

i What if A and B were sorted?

1 2 3 6 7/ 9 1 2 4 5 6 8

= Will the previous solution work?

= Yes, but we could find intersection set faster!
= How?

= See next slide

84

int sorted intersection(int A[],int BI[],
int C[], int n)
{
int i=0, j=0, k=0;
while(i < n & j < n) {
if (A[1]==B[]]){
Clk]=A[1];
k++; 1++; J++;
} else if (A[i] < B[j]) {
1++;
} else { /* A[i] > B[j] */
J++;
}
}

return (k) ;

} Exercise

i Exercise: union or difference

= As in previous example suppose two
sets are given as arrays.

= Find union and difference

= For example
= A={3,4,5} and B={2,3,5,7}
= AUB ={2,3,4,57}
O A — B — {4}
s B-A= {2,7}

86

i Exercise: Histogram

Suppose somehow we read npts integer
numbers from a file into an array declared by
Int x[100]. We know that all the values are
integers between 0 and 10. Now suppose we
want to find how many 0’s ,1’s, ..., 10’s exist in
the array x.

= Write a function that will take x and npts as
the parameters and prints out the number of
0’s ,1's, ..., 10’s that exist in the array x

87

solutions

void my_function(int x[], int npt)

{

int v, I, count:

for(v=0; v < 11; v++){
count=0;
for(i=0; i < npt; i++){
if (v==x[i]) count++;

}
printf(“%d appears %d times\n”,
v,count);
}
return;
}

void my_function(int x[], int npt)

{
int v, i, hist[11]={0};

for(i=0; i < npt; i++){
hist[x[i]]++;
)
for(v=0; v < 11; v++)
printf(*%d appears %d times\n”,
v, hist[v]);

return;

Exercise

88

+

STRINGS:

1D ARRAY OF CHARACTERS
TERMINATED BY '\0’

89

i Character representation

= Each character has an integer representation

a'|'b'|'c|d e | ...]|
97 98 99 100101 ..o 112
AI'B'|'C"|D'|'E| .|| ||
65 66 67/ 68 69 ...ceoiiiiiii 90

IOI l1l l2l |3l |4l |5l |6| |7| l8l l9l
48 49 50 51 52 53 54 55 56 57

I\OI I\nl
0 10

Strings: Array of Characters

= A'string is an array of characters

= char data[l0] = "Hello'";

= char data[l10] = {‘H’, ‘e’, ‘17, “1’, ‘o', “\0'};
= Can be accessed char by char

« data[0] is first character, String ends with *\ 0~ " end of Sima Symbol

data _ __——
‘ \H’ \e’ \I’ \I’ \O’ \\0’
\— 01 2 3 456 78 9

= Use printf/scanf to print/input strings
= printf (“"%s”, data);
scanf (“%s”, data); //ifyouenter aaa bbb, it gets aaa. Dangerous
gets (data) ; // gets whole line, but dangerous too
fgets (data, 9, stdin); // gets whole line including \n, safer
sprintf (data, “sd ”, X); sscanf (data, “sd "7, &X); o1

Strings: Array of Characters
vS. Character pointer ave memoy

layout
= A string is an array of characters
= char datal[l0] = "Hello"; // datal i1s a constant !
= char datalf[10] = {'H', ', "1', '1', o', "\0'};
VS
s char data2[] = "Hello";
= char data2[] = {'H', ', '1', '1', ‘o', "\0'};
= Character pointer
= char *data3 = "Hello": // “Hello” is a constant !
m char *datab;
s data5 = "Hello";
|
m datad4 = GetLine () ; //gets whole line; safe; and dynamically

allocates enough memory; you can implement such a function too!

92

Difference between

char s1[5]

i char *sl

= "ABCD" and
="ABCD"

char s1[5]="ABCD";

printf("%s\n", s1);
printf("%c\n",s1[2]);
s1[2] = 'E";
printf("%s\n", s1);

s1="XYZ":

char *s1;

s1="ABCD",
printf("%s\n", s1):
printf(*%c\n”,s1[2]);
s1(2] = 'E;
Prlntf(“%s\nn s1);
s1="xyz";

As we see later, we can fix this
s1= malloc(5); strcpy(s1,”ABCD");
93

char s1[5]="ABCD"”; // is the same as
char s1[5]={A, ‘B, 'C’, 'D’, "\0; };

Exercise

+

= Write a function to count the number of characters in
a string.

= Idea: count the number of characters before \0

Hie|l |l]|]o]|\O

94

Solution

+

int count letters(char cdatal])

{

int i=0;

while (cdata[i] '= '\0')
i=1++1;

return (1) ;

95

+

Exercise

Exercise

= Write a function that prints a string in reverse

= Idea: find the end of the string and print the
characters backwards.

Hie|l ||l]o|\O

Output: olleH

96

Solution

void print reverse (char pdata[])
{
int size,position;
size = count letters(pdata);
position = size - 1;
while (position >= 0) ({

printf ("%c" ,pdata[position]) ;

position = position -1;

}
printf ("\n");
return;

Exercise

97

Exercise

= Write a function that compares 2 strings S1 and S2

using lexicographic order.

= Idea: compare character by character
= Return

Exercise

= anegvalueif S1 < S2,
= 0 if S1==52
= aposvalue if S1 > S2

Hie|l|o|o]|\O

| < 0 in lexicographic order

98

i Solution (incomplete)

int compare (char cdatal[], char cdata2[])

{

int i= 0;

while (cdatal[i] == cdata2[i]) {
i=31i+4+1;

}

return (cdatal[i] - cdata2[i]);

}

99

i Solution (complete)

int compare (char cdatal[], char cdata2[])

{

int i= 0;
while (cdatal[i] && cdata2[i]
&& cdatal[i] == cdata2[i]) {
i=1i+4+1;

}

return (cdatal[i] - cdata2[i]);
}

100

i Exercise: strings (char array)

= Write a function to check if string s1
appears in string s2? If so return 1,
otherwise return 0;

= For example,

If si="abcd” and s2="xyzaabbabcdxyz”,
then yes return 1.

101

Common Functions exported
i by standard string.h

size t strlen(const char *str);

char *strcpy(char *dest, const char *src);

char *strncpy(char *dest, const char *src, size t n);
char *strcat(char *dest, const char *src);

char *strncat (char *dest, const char *src, size t n);
int stramp (const char *strl, const char *str2);

int strncmp (const char *strl, const char *strZ,size t n);
char *strchr (const char *str, int c);

char *strstr(const char *strl, const char *str2);

.. more ...

102

Client program: Convert an English word
i to PigLatin by applying the following rules

= If the word contains no vowels, no translation is done,
which means that the translated word is the same as the
original.

= If the word begins with a vowel, the function adds the
string "way" to the end of the original word. Thus, the Pig
Latin equivalent of any /s anyway.

= If the word begins with a consonant, the function extracts
the string of consonants up to the first vowel, moves that
collection of consonants to the end of the word, and adds
the string "ay". For example, the Pig Latin equivalent of
trash /s ashtray.

103

Home Exercise

{

PigLatin using string.h

static void PigLatin(char *word, char buffer[], int bufferSize)

char *vp;
int wordLength;
vp = FindFirstVowel (word) ;
wordLength = strlen(word);
if (vp == word) {
wordLength += 3;
} else 1f (vp != NULL) {
wordLength += 2;
}
1if (wordLength >= bufferSize)
Error ("Buffer overflow");
if (vp == NULL) {
strcpy (buffer, word);
} else if (vp == word) {
strcpy (buffer, word);
strcat (buffer, "way"):;
} else {
strcpy (buffer, vp);
strncat (buffer, word,

strcat (buffer,

vp - word);
"ay") ,.
}

} Home Exercise

static char *FindFirstVowel (char *word)

{

char *cp;

for (cp = word; *cp != '\0'; cpt++) {
if (IsVowel (*cp)) return (cp);
}
return (NULL);
}
static bool IsVowel (char ch)
{
switch (ch) {
case 'A': case 'E': case 'I':
case 'O': case 'U':
case 'a': case 'e': case 'i':
case 'o': case 'u':
return (TRUE)
default:
return (FALSE) ;
}
}
104

BACK TO POINTERS:

Pointers and Arrays, and
!'_ Pointer Arithmetic

105

Pointers and Arrays

¥ e name of an array is the address of the first element
(i.e., a pointer to the first element in the array)

= The array name is a constant that always points to the first element of

the array and its value cannot be changed.
= Array names and pointers may often be used interchangeably.

Example

int num[4]

e
P = num; /* same as p =
printf (“%1”, *p); //
printf (“%i”, *(p+2)); //
printf (“%i”, pl2]); //
o+ ;

printf (“%1”, *p); //

&num[O0] ;
print num
print num

/
0]
2
print numl[2

[
[
[2]

print num[1]

[
>

A ITWIN| =

106

i Recall: Pointer Arithmetic

= Four arithmetic operations are supported
s+, -+ -
= only integers may be used in these operations
= Arithmetic is performed relative to the variable type being pointed to

Example: p++;

« If p is defined as int *p, p will be incremented by 4 (system
dependent)

= If p is defined as double *p, p will be incremented by 8 (system
dependent

« when applied to pointers, ++ means increment pointer to point to
next element in memory

= MOSTLY USED WITH ARRAYS (as we C now)
107

Pointer Arithmetic (con't)

int arr[(10];
int *p;
p = &arr[0]; //or p = arr;

= Suppose p is a pointer to arr[0] and k is an integer
= p and arr have the same value (p is a variable but arr is a ?)
= pt+k is defined to be sarr[k]

= In other words, p+k computes the address of an array element
located k elements after the address currently indicated by p

= Similarly, p-k computes the address of an array element
located k elements before the address currently indicated by p

= Suppose p=s&arr[5];
p++ and p—-- would be the address of arr[?] and arr[?]
p+2 and p-3 would be the address of arr[?] and arr[?]

= Suppose pl=sarr[5]; p2=sarr[8];
pl — p2 expression has the value ? 108

Operator Description Associativity
0 Parentheses (function call) (see Note 1) left-to-right
[] Brackets (array subscript)
. Member selection via object name
-> Member selection via pointer
++ -- Postfix increment/decrement (see Note 2)
++ -- Prefix increment/decrement (see Note 2) right-to-left
+ - Unary plus/minus
I ~ Logical negation/bitwise complement
(type) Cast (change type)
* Dereference
& Address
sizeof Determine size in bytes
* [% Multiplication/division/modulus left-to-right
+ - Addition/subtraction left-to-right
<< >> Bitwise shift left, Bitwise shift right left-to-right
< <= Relational less than/less than or equal to left-to-right
> >= Relational greater than/greater than or equal to
== I= Relational is equal to/is not equal to left-to-right
& Bitwise AND left-to-right
N Bitwise exclusive OR left-to-right
| Bitwise inclusive OR left-to-right
&& Logical AND left-to-right
11 Logical OR left-to-right
2: Ternary conditional right-to-left
= Assignment right-to-left
= -= Addition/subtraction assignment
= [= Multiplication/division assignment
%= &= Modulus/bitwise AND assignment
A= = Bitwise exclusive/inclusive OR assignment
<<= >>= Bitwise shift left/right assignment

Comma (separate expressions)

left-to-right

Note 1: Parentheses are also used to group sub-expressions to force a different precedence; such parenthetical expressions can be nested and are evaluated
from inner to outer. Note 2: Postfix increment/decrement have high precedence, but the actual increment or decrement of the operand is delayed (to be
accomplished sometime before the statement completes execution). So in the statement y = x * z++; the current value of z is used to evaluate the
expression (i.e., z++ evaluates to z) and z only incremented after all else is done.
ICompiler dependent side effects: printf("%d %d\n”, ++n, pow(2,n)); or A[i] = i++;
Avoid side effects! If you are not sure about side effects, you wont take advantage of idiomatic expressions of C.

109

One of the most common
idiomatic expression: *p++

*and ++ are unary operators competing for operant p
(Recall: Right-to-Left Rule)

So, ++ takes precedence over *

*p++ is the same as *(p++)
« Recall: Postfix ++ increments the value of p but returns the value

that p had prior to the increment operation:

k lvalue: internal memory location capable of storing Data. The /at the beginning
SOI p+ + Means [shows that /values can appear on the left side of assignment statement in C.

“Dereference the pointer p as an lvalue object to which it currently points. As a side

effect, increment the value of p so that, if the original Ivalue was an element in an array,
the new value of p points to the next element in that array”

How about *++p, ++*p
How about *p+1, *(p+1)

110

Relationship between
i Pointers and Arrays

= Index a pointer using array notation

char mystring[] = “This 1s a string”;

char *str;

int 1;
str = mystring;
for(i =0; str[i]l!'=*\0'"; i++)

printf (“sc”, strl[i]):

111

Previous example with
i polnter arithmetic

char mystring[] = “This 1s a string”;
char *str;
for (str = mystring; *str!='\0'; str++)

W\ O

printf (“sc”, *str);

= Will the following do the same thing?

for(str = mystring; *str; str++)

W\ O

sc”, *str);

= How about the following?

str = mystring;

printf (

\ O 144

while (*str++) printf (“%c”, *str); 112

Relationship between

| Pointers and Arrays (cont'd)
in um(int a[], int n) |int Sum(int *ip, int n)

{ {

int 1, sum; int 1, sum;

sum = 0; sum = 0;

for (1=0; i<n; i++) { for (1i=0; i<n; i++) {
sum += a[i]; sum += * (ip+1i);

sum += *ip; 1ip++;

sum += *ip++;

} }

return (sum) return (sum)

} } 113

Another example:
arrays vs. pointers

/* Array implementation */

static int CountSpaces (char str[])
{

int i1, nSpaces;

nSpaces = 0;
for (i = 0; str[i] != '"\0'; i++)
{

if (str[i] == ' ') nSpacest++;
}

return (nSpaces);

/* Pointer implementation */

static int CountSpaces (char *str)

{
int nSpaces;

char *cp;

nSpaces = 0;
for (cp = str; *cp != '"\0'; cp++)
{

if (*cp == ' ') nSpacest+;

return (nSpaces):;

114

i Then what is the difference?

= When the variables are originally declared...
char a[5];// memory is allocated for 5 elements

char *p; // no memory is allocated yet
= We can use p after p=a;

(What is the point? I can simply use a, right?)

= As we C later, pointers are needed for “dynamic
memory allocation”

= p = GetLine(); /] Vvs. sc nf‘%s, ''''' i"7'p) ;

= scanf("%s", a); /] vs. a=Gethe(); 115

i Exercise

= Using pointer arithmetic, re-write the

previously discussed string functions
= a function that counts the number of characters in a string.
= a function that reverses the characters in a string.

= a function that compares 2 strings S1 and S2 using
lexicographic order.

« function that searches string S1 in S2 and returns 1 if S1 is
in S2; otherwise, it returns 0.

Exercise 116

!'_ Dynamic Memory Allocation

117

i Dynamic Memory Allocation

= At runtime, memory can be dynamically
allocated from unused storage called heap

= A program may create as many or as few
variables as required, offering greater
flexibility

= Dynamic allocation is often used to support

data structures such as stacks, queues,
linked lists and trees.

118

Dynamic Memory Allocation

i #include <stdlib.h>

void *malloc(size_t size);
= allocates size bytes of memory

int *ip;

char *cp;

void *vp;

ip = malloc(?);

ip = malloc(sizeof(int));
cp = malloc(10);

cp = (char *) malloc(10);

= void *calloc(size_t nitems, size_t size);
» allocates nitems*size bytes of cleared memory

void free(void * ptr);

= void *realloc(void * ptr, size_t size);
= The size of memory requested by malloc or calloc

can be changed using realloc

119

malloc and calloc

= Both functions return a pointer to the newly
allocated memory

= If memory can not be allocated, the value
returned will be a NULL value

= The pointers returned by these functions are
declared to be a void pointer, WHY?

= A cast operator should be used with the returned
pointer value to coerce it to the proper pointer
type (otherwise, compiler gives warning) 20

Example of malloc and calloc

double *x,
int *p;

/* Allocate
x = (double

/* Allocate
y = (double

/* Allocate
p = (i1nt *)

Var
Y X
Y
P
memory for 1 double. */
*) malloc(sizeof (double));
memory for 3 double. */

*) malloc (3*sizeof (double));

memory for 4 1ntegers. (cleared)
calloc (4, sizeof (int)) ;

*/

addr

/* how can we access these memory locations? */
(01, yI[1], vI2], *y, *(y+1), *(y+2),

*x, x[0], vy
*p, *(ptl),

. pl0], pll],

memory

/.

/.

121

Memory limitation

= Dynamic memory is finite. So,
= We need to check if we really get the memory we want!

char *a; #include <assert.h>
a = (char *) malloc(10);
if (a==NULL) { assert(a '=NULL); // assert(a);

printf (“No memory available”) ;
exit(-1l); // or return(0);
}

= We need to release/free memory if it is not needed anymore
free(a) ; No garbage collection in C

122

Var addr memory

Dynamic arrays a [
(1D array of doubles) <
d1i[0]
= As we saw before, .
we use malloc or calloc (how?)
double *dl; 411491

int n = 50;

dl = (double *) malloc(n*sizeof (double));
1f (d1==NULL) { printf (“No memory available”); exit(-1);}

123

Var addr memory

(1D array of pointers to doubles)-

i Dynamic arrays s </;o

d1p[0]

/.
- - d
« First allocate an array of pointers™™” / +—

then allocate memory for actual
double values

d1p[49
double **dlp; P

int n = 50;

dlp = (double **) malloc(n*sizeof (double *));
1f (dlp==NULL){ printf (“No memory available”); exit(-1);}
for (i=0; 1 < n; 1++) {

dlp[1] = (double *) malloc(sizeof (double));
1f (dlp[1i]==NULL) printf (“No memory available”); exit(-1);}

} 124

Summary
stdlib.h

#inclide <stdlib.h>

a = (char *) malloc(10);

if (a==NULL) {/* Errmsg, Quit */}

char *a;
double *d;
int *1i;

int n = 50;

d=(double *) malloc(n*sizeof (double));

1=(int *) malloc(sizeof (int));

free(a); free(d);

sizeof wvariable
sizeof (type)

125

i Exercise
/*

* Function: CopyString
* Usage: newstr = CopyString(s);

* CopyString copies the string s into dynamically allocated
* storage and returns the new string.

*/
char *CopyString(char *s);

int *CopyIntArray(int a[], int n);
double *CopyDoubleArray(int *d, int n);

126

i Exercise
/*

* Function: SubString
* Usage: t = SubString(s, p1, p2);

* SubString returns a copy of the substring of s consisting of the characters

* between index positions p1 and p2, inclusive. The following special cases apply:
b S

* 1. If plis less than O, it is assumed to be 0.

* 2. If p2 is greater than the index of the last string position, which is

* StringLength(s) - 1, then p2 is set equal to StringLength(s) - 1.

* 3. If p2 < pl, SubString returns the empty string.

*/

char *SubString(char *s, int p1, int p2);
127

!'_ FILE I/O

Get Ch03 slides
Study
Standard File I/0O and Libraries

128

Records (Structures)

> A collection of one or more variables, data
members, grouped under a single name.

~ Unlike arrays, the data members can be of
different types.

~ For example, consider a Payroll system
> Name, title, ssn, salary, withholding ... 196

Defining a new structure type

i (basic style)

= Define a new structure type
= Declare variables of new type

struct employeeRec {
char *name;
char title[20];
field-declarations char ssnum[11];
} double salary;
int withholding;,

struct name {

'

struct name var name;
o struct employeeRec el, e2;

How about memory layout?
sizeof(struct employeeRec)? sizeof el? Rel? 130

Defining a new structure type
‘L (typedef style)

= Typedef a new structure type
= Declare variables of new type

a_name typedef struct %
char *name;
char title[20];

employeeRec

typedef struct ¥

field-declarations char ssnum[11];
double salary;
} nameT; int withholding;

} employeeRecT;
employeeRecT el, eZ2;

namel var namej;

sizeof e1? How about memory layout? 131

Record Selection
i Accessing Data Members

= Suppose we have declared <1 and e2

= We can refer the record as a whole by
using its name: e1 2

= To refer specific field, we write
record name dot field name

el .name

e2.salary

132

Initializing
Structures

we can initialize when we define a variable

struct employeeRec manager = {

char *name;

struct employeeRec {

char title[20];
char ssnum([11];
double salary;
int withholding;,

// OK

“name last”, “partner”, “xxx-xx-xxx”, 250.0, 1

b

Or we can initialize in the program

OK
I'l'l' NOT OK why?
I'l'l' NOT OK why?

!

!

!

!

!

!

el.name = “Turgay Korkmaz”; //
el.title = “Associate Prof”; //
el.ssnum = “XXX-XX-XxXX"; //
el.salary = 999999.99, strcpy (el

strcpy (el

.title, “Associate Prof”);

.8snum, "Xxx-xx-xxx") ;

el.withholding = 2;

133

Initializing Structures

another example

¥

struct Rect

{

b

struct Rect rl = {0,0,’r’,5,10};

double x;
double vy;
char color;
double width;

double height;

ri

5.0

10.0

Can you do the same using typedef?

color

width
height

134

Assignment operator

= Assignment operator is defined for structure of the same type.

struct Rect

{ rl.x = 10.5;
. rl.y = 18.99;
double x; rl.width = 24.2;
double vy; rl.height = 15.9;
char color; rl.color = 'r';

double width; /% C 11 dat
. . opy a ata
double helghtr * from rl1 to r2.

}; */

struct Rect rl, r2; r?2 = rl;

Exercise: how about e2=e1; from previous slides! 135

i Scope of a Structure

= Member variables are local to the structure.

= Member names are not known outside the structure.
struct Rect

{

double x;

double vy;

char color;

double width;

double height;
b

struct Rect rl, r2;

int x;

rl.x = 3.5

x = 4; _ G

y = 2; [/ compiler will give an error 136

Structures as Arguments to Functions

= A structure is passed as an argument to a

function (call-by-value).

= Changes made to the formal parameters do not change the
argument. (see next exercise)

= Functions return type could be struct too... or pointer
tostruct

How can you pass a whole array to a function using call-by-value? 137

Call by Value Example

struct simple

{
int ival;
double dval;
Y

vold funl (struct simple s)

{

s.ival = s.ival + 1;
s.dval = s.dval + 2;

}

int main (void)

{
struct simple sl = {10,
funl (sl) ;
printf (“$i %$1f\n”,

sl.ival , sl.dval

return 0O;

}

1.5};

) ;

Jjval 10 11
dval 1.5 3.5

Jival 10
dval 1.5

We will see 10 1.500000

138

i Exercise

= Write a program using structures that
manipulates pairs.

= Write functions for Addition and multiplication
of pairs that are defined as

(a,b)+(c,d)
(a,b)*(c,d)

(a+c, b+d)
(a*c,b*d)

139

Exercise (cont'd):
i Pair Structure

= Store two integers to represent the first and

second number of pair

struct pair

{
int first;

int second;

typedef struct pair
{
int first;
int second;
} pairT;

140

Exercise (cont'd):

‘L Addition

struct palr add(struct pair pl,
struct pair p2)

struct pair temp;
temp.first = pl.first + p2.fi1rst;
temp.second = pl.second + pZ.second;

return temp;

141

Exercise

Exercise (cont'd):
i Multiplication

struct pair multiply(struct pair pl,
struct pailr p2)

struct pair temp;
temp.first = pl.first * pZ2.fi1rst;
temp.second = pl.second * pZ.second;

return temp;

142

Exercise

Exercise (cont'd):
How to use the functions

Exercise

struct pair mpl,mp2,mp3,mp4;

printf ("Enter first pair\n");
scanf ("5d $d", &mpl.first, &mpl.second)

printf ("Enter second pair\n");
scanf ("sd %d", &mp2.first, &mpZ2.second) ;

mp3 = add (mpl, mp2);

printf ("Addition result =
(%d, $d) \n",mp3.first, mp3.second) ;

mp4 = multiply (mpl,mp2);
printf ("Multiplication result =
($d, 3d) \n",mp4.first,mp4.second);

143

Exercise (cont'd):
i add a new function

= Update the program to support the following on
pairs
c*(a,b) = (c*a,c*b)

struct pair const mult (
double c,
struct pair pl)

{..}

144

!'_ Pointers to Records

Why do we need pointers to records...

> Passing a pointer to a record, functions can
manipulate the fields of that record

> Dynamic memory allocations can be done

> A pointer to a record is usually smaller and more
easily manipulated than record itself

145

Pointers to Records:
declaration

StESEE employeeRec typedef struct employeeRec {
char *name; // same fields
char title[20]; } employeeRecT;
char ssnum/[11]; employeeRecT el, e2;
double salary;
int withholding; employeeRecT *ePtr;
| ePtr = g⪙

struct employeeRec el, e2;
struct employeeRec *ePtr;
ePtr = ⪙

What happens in memory? 146

Pointers to Records:
i Record selection

= How about *ePtr.salary
= Which means * (ePtr.salary) Why?
= We want (*ePtr) .salary Right?

= But this notation is much too cumbersome,
so C defines -> operator

m ePtr->salary has the same effect as
(*ePtr) .salary

m sePtr->salary means what?

147

Operator Description Associativity
0 Parentheses (function call) (see Note 1) left-to-right
[] Brackets (array subscript)
. Member selection via object name
-> Member selection via pointer
++ -- Postfix increment/decrement (see Note 2)
++ -- Prefix increment/decrement (see Note 2) CECECECECECE right-to-left
+ - Unary plus/minus
I ~ Logical negation/bitwise complement
(type) Cast (change type)
* Dereference
& Address
sizeof Determine size in bytes
* [% Multiplication/division/modulus left-to-right
+ - Addition/subtraction left-to-right
<< >> Bitwise shift left, Bitwise shift right left-to-right
< <= Relational less than/less than or e left-to-right
= qual to
> >= Relational greater than/greater than or equal to
== I= Relational is equal to/is not equal to left-to-right
& Bitwise AND left-to-right
N Bitwise exclusive OR left-to-right
| Bitwise inclusive OR left-to-right
&& Logical AND left-to-right
11 Logical OR left-to-right
2: Ternary conditional AL right-to-left
= Assignment CEEECECECE right-to-left
= -= Addition/subtraction assignment
= [= Multiplication/division assignment
%= &= Modulus/bitwise AND assignment
A= = Bitwise exclusive/inclusive OR assignment
<<= >>= Bitwise shift left/right assignment

Comma (separate expressions)

left-to-right

Note 1: Parentheses are also used to group sub-expressions to force a different precedence; such parenthetical expressions can be nested and are evaluated
from inner to outer. Note 2: Postfix increment/decrement have high precedence, but the actual increment or decrement of the operand is delayed (to be
accomplished sometime before the statement completes execution). So in the statement y = x * z++; the current value of z is used to evaluate the
expression (i.e., z++ evaluates to z) and z only incremented after all else is done.

ICompiler dependent side effects: printf("%d %d\n”, ++n, pow(2,n)); or A[i] = i++;

Avoid side effects! If you are not sure about side effects, you wont take advantage of idiomatic expressions of C.

148

i Structures as Arguments to Functions

= A pointer to a structure may also be passed as

an argument to a function (call-by-reference).

= Changes made to the formal parameters also change the
argument.

149

i Call by Reference Example

struct simple

{
int ival;
double dwval;

}; S| Address of S1 o
vold funl (struct simple *s) \

{

s=>ival = s=->ival + 1;
s=>dval = s-=->dval + 2;

} N J

int main (void) ival 10 11

{ struct simple sl = {10, 1.5}; SI= dval 1.5 3.5
funl (&sl) ; T
printf (“%1i %1f\n”,

sl.ival , sl.dval);

return 0; We will see 11 3.500000

150

Arrays of Structures

= Arrays of structures may be declared in the same way as other C
data types.

struct rect rectangles[20];

= rectangles[0] references first structure of rectangles array.
rectangles|[0] .color = ‘r’;

COIOr EEEEEEEEEEEEEEESR
width
height

151

Nested Structures

Structure definitions may contain data members that are other structures:
struct Point/{
double x;
double vy;

I e =
struct Rect?2 P ‘iy
{
struct Point location; | _ E
char color; Iocat-le:n:::...g
double width; o
double height; 1 color
} i .
Struct Point pl; width
struct Rect?2 ril; height
rl.location.x= 2.3 el

rl.location.y=4.5;

rl.color = ‘r’; 152

Nested Structures with
pointers

struct Point/{ struct polybd {
double x; struct Point *p[5];
double vy; char color;

I struct Point center;

Y
struct Point t, *tp;
struct poly5 p, *pp;

Explain the problems (if any) in the following statements and try to fix them...

p.pld] .x=5;
pp = &p;
p->p->x=3;

p—->center.y=5;
p.pl2] = &pp->center;

153

i Self-referential Structures

struct Point({

double x;

double vy;

struct Polnt *next;

by

= Why do we need something like that?
(discussed later in cs2123 DS when we talk
about data structures such as linked lists, trees,
graphs etc.)

154

i Unions

= A union is a variable that may hold (at
different times) values of different types
and sizes in a single area of storage...

union u_ two {
int ival;
double dvalue;

} u, *uPtr;

= Variable u will be large enough to hold
largest of two types u.iva1 OF u.dval

= In case of pointer declaration, uetr->ival

Skip 155

i Bit-fields

struct flags{

unsigned int sync: 1;
unsigned int fin: 1;
unsigned i1nt type: 2;

po£;

f.sync=1;
1f (£.fin == 0 && ..)

Skip

156

Operator Description Associativity
0 Parentheses (function call) (see Note 1) left-to-right
[] Brackets (array subscript)
. Member selection via object name
-> Member selection via pointer
++ -- Postfix increment/decrement (see Note 2)
++ -- Prefix increment/decrement (see Note 2) right-to-left
+ - Unary plus/minus
I ~ Logical negation/bitwise complement
(type) Cast (change type)
* Dereference
& Address
sizeof Determine size in bytes
* [% Multiplication/division/modulus left-to-right
+ - Addition/subtraction left-to-right
<< >> Bitwise shift left, Bitwise shift right left-to-right
< <= Relational less than/less than or equal to left-to-right
> >= Relational greater than/greater than or equal to
== I= Relational is equal to/is not equal to left-to-right
& Bitwise AND left-to-right
N Bitwise exclusive OR left-to-right
| Bitwise inclusive OR left-to-right
&& Logical AND left-to-right
11 Logical OR left-to-right
2: Ternary conditional right-to-left
= Assignment right-to-left
= -= Addition/subtraction assignment
= [= Multiplication/division assignment
%= &= Modulus/bitwise AND assignment
A= = Bitwise exclusive/inclusive OR assignment
<<= >>= Bitwise shift left/right assignment

Comma (separate expressions)

left-to-right

Note 1: Parentheses are also used to group sub-expressions to force a different precedence; such parenthetical expressions can be nested and are evaluated
from inner to outer. Note 2: Postfix increment/decrement have high precedence, but the actual increment or decrement of the operand is delayed (to be
accomplished sometime before the statement completes execution). So in the statement y = x * z++; the current value of z is used to evaluate the
expression (i.e., z++ evaluates to z) and z only incremented after all else is done.
ICompiler dependent side effects: printf("%d %d\n”, ++n, pow(2,n)); or A[i] = i++;
Avoid side effects! If you are not sure about side effects, you wont take advantage of idiomatic expressions of C.

157

+

DYNAMIC RECORDS

158

i Dynamic Records (basic style)

struct employeeRec {
char *name;,
char title[20];
char ssnum[11];
double salary;
int withholding;,
I
struct employeeRec el, e2;
struct employeeRec *ePtr;

ePtr = (struct employeeRec *) malloc(sizeof (struct employeeRec)),
if (ePtr==NULL) printf (“No memory available”);

159

‘L Dynamic Records (typedef style)

typedef struct {
char *name;,
char title[20];
char ssnum/[11];;
double salary;
int withholding;,
} employeeRecT;
employeeRecT el, e2;
employeeRecT *ePtr;

ePtr = (employeeRecT *) malloc(sizeof (employeeRecT));
if (ePtr==NULL) printf(“No memory available”);

160

+

DYNAMIC ARRAY OF
RECORDS AND RECORD
POINTERS

161

Recall dynamic records from previous slides

Dynamic Array of Records (1D)

struct employeeRec {
char *name;
char title[20];
char ssnum/[11];
double salary;
int withholding;
by
struct employeeRec el, e2;
struct employeeRec *ePtr, *eArray;

int n=50;
ebPtr = (struct employeeRec *)

malloc(sizeof (struct employeeRec));
eArray = (struct employeeRec *)

malloc(n * sizeof (struct employeeRec));

// How can we access array elements? * (eArray + 5) vs. eArray[5]
162

Dynamic Array of Record Pointers
(1D) then create records

struct employeeRec {

char *name; How can we access the records

h title[20]; . .
char titlel20] and the fields in them?

char ssnum/[11];
double salary;
int withholding; eArray[1] . or -> salary?
}i
struct employeeRec el, eZ2;
struct employeeRec *ePtr, *eArray, **eArrayPtr;
int n=50, col=40;
ePtr = (struct employeeRec *) malloc(sizeof (struct employeeRec)) ;

eArray=(struct employeeRec *) malloc(n*sizeof (struct employeeRec)) ;

eArrayPtr =(struct employeeRec *¥*)
malloc (n*sizeof (struct employeeRec *)) ;

for (i=0; i< n; i++){

eArrayPtr[i] = (struct employeeRec *) malloc(sizeof (struct employeeRec))

163

!'_ FILE I/O

Get Ch03 slides
Study
Standard File I/0O and Libraries

164

!'_ Matrices (2D-array)

165

i Matrices (2D-array)

= A matrix is a set of numbers arranged in a grid with rows and columns.
= A matrix is defined using a type declaration statement.

= datatype array name[row size] [column size]; 4
= int matrix([3][4]; 1
matrix|[¢ 0
Rw0 —{4 |1 |0 |2 :
matrix[2] ?
Rowl — matrix+2*4
Row 2 — O -1 3 1
matrix[2][3] ? 0
*(matrix+(2*4+3)) |-t
E
Column 0 Column1 Column2 Column3 1

in memory*®®

i Accessing Array Elements

int matrix|[3][4];

matrix has 12 integer elements

matrix[0] [0] element in first row, first column
matrix[2][3] elementin last row, last column
matrix is the address of the first element
matrix[1] is the address of the Row 1
matrix[1] is a one dimensional array (Row 1)

Can we look at a column as one dimensional array?

167

i Initialization

int x[4][4] = { {2, 3, 7, 2},
{7, 4, 5, 9},
{5, 1, 6, -3},
{2, 5, -1, 3}};

int x[][4] = { {2, 3, 7, 2},
{7, 4, 5, 9},
{5, 1, 6, -3},
{2, 5, -1, 3}};

168

i Initialization

int i, j, matrix[3][4];

for (i=0; i<3; i++)

for (j=0; j<4; j++)

matrix[i] [j] =

1;

matrix[i] []

=j;

169

i Exercise

= Write the nested loop to initialize a 2D

array as follow

WIN = O

DI WIN|—=

| A~ WN

int 1, j, x[4][3];

for (1=0; 1<4; 1i++)
for (4=0; j<3; Jj++)

x[1][J] = 1+3;

170

2-Dim Arrays as Arguments to Functions

int i, j, matrix[3][4];
for (i=0; i<3; i++) -
for (j=0; j<4; j++) i \\\\\
matrix[i] [j] = ..; °
print m(matrix, 3, 4); ’
o= T
selection sort int (mat::;j;x (2], 4)
void print m(int m[][4],
int r, int c) p -1
{ /10
int i,3; P L
for (i=0; i < r; i++) { I3
for (j=0; j < c; j++)
printf ("%$2d ", m[i][j]); *(m+i*4d+3); ™ |]
printf("\n"); | 4 1 o 2 I
} c |4

printf ("\n") ;
} 0 -1 3 1 171

! Computations on 2D arrays

Exercise

i Max in 2D

= Find the maximum of /int matrix/3/[4]

3

= —_— - . 2
int max = matrix[0] [0]; o [o]1 o2

for (i=0; i<3; i++)
for (j=0; j<4; J++)

if (matrix[i][]j] > max)

max = matrix[i][j];

173

i Find a value in 2D

= Find the number of times x appears in int matrix/3][4]

int count = 0;
for (i=0; i<3; i++)
for (j=0; 3j<4; Jj++)
if (matrix[i] []]

x)

count = count + 1;

o~

SN

Exercise

174

i Matrix sum

= Compute the addition of two matrices

0 1 2 3 0 1 2 3 0 1 2 3
0 o|1 |0 (2 0 3 (-1|3 0 310 |3 |3
1 112 (4 |3 | + 4 114 (2 (0 = 1 0O(6 |6 |3
2 0-1|3 |1) 211 |1 |3 v 210 |4 |4

175

Exercise

solution

int matrixl1l[3][4],
matrix2[3][4],
sum[3] [4];

// initialize matrixl and matrix?2

for (i=0; i<3; i++)
for (j=0; j<4; Jj++)
sum[i] [J]= matrixl[i] [J]+matrix2[i][]];

176

Exercise

‘L Exchange Two Rows

int A[4]1[3]1={..};
4 6 2 int i, j, k, temp;

1l = ...

J = ...;

O 5 3 T /* excahnge i** and j*® rows of A */

177

Transpose

{

E

4 |2 |6
b

1 4
5 2
3 6

void transpose (int a[NROWS] [NCOLS],

int b[NCOLS] [NROWS])

/* Declare Variables. */
int i, J;

/* Transfer values to the
transpose matrix. */
for (1i=0; i<NROWS; i++) {
for (j=0; jJ<NCOLS; j++) {
b[j][i] = alil[3];
}

return;

i mine sweeper
= 1N m_[ﬁ]ZS] = {{...}, ...};

» If m[i][j] is O, there is no mine in cell m[i][j]
a If m[i][j] is 1, there is a mine in cell m[i][j]
= Print the number of mines around cell m[i][j]

[1][]]

O 1O

179

i mine sweeper (cont’d)

[1-1][3-11| [1-1][3]| [1i-11([3+1.
[1] [J-1] [1]1[]] [1] [J+1]
[1+11[3-11| [1+11[31| [i+1)[F+1

180

Solution (1) - incomplete

count=0;

if(m[i-1][3-1]) count++;
if(m[i-1]11[73]) count++;
if(m[i-1][3j+1]) count++;
if(m[i][7-1]) count++;
if(m[i][3j+1]) count++;
if () count++;
if () count++;

) count++; 181

1f(
Xercise

What if [i][j] is not in the

i middle?
[1]

[J]

182

Solution (1) — complete

NR: is number of rows

NC: number of columns

count=0;

if(i>0 && >0 &&

if (
if (
if (
if (
if (
if (
if (

Exercise

i>0 &s&
i>0 &s&
3>0 &&
j<NC-1
i<NR-1
i<NR-1

i<NR-1

j<NC-1 &&

&&
&& >0 &&
&&

§& j<NC-1 &&

3 8 8 8 8

(1-1][3-1]

i-1][3]

[i-1] [3+1]
4] [3-1]
4] [3+1]

count++;
count++;
count++;
count++;
count++;
count++;
count++;

count++;

SOl Utl O n (2) NR: is number of rows, NC: number of columns

int_r, c, count=0;
for(r=1i-1; r <= i+l; r++) {
if (r < 0 || r > NR) continue;
for(c=j-1; c <= j+1; c++) {
if (¢ < 0 || e¢ > NR) continue;
if (r==1i && c == 7j) continue;
1f(m[r] [c]) count++;

}

Exercise

Example:
i Resize a picture

A b&w picture is usually represented using a two-dimensional array, where
each element (called pixel) of the array is an integer number denoting the
intensity of the light at a given pixel. Suppose we have a b&w picture with
the size of 100x200 pixels and we want to reduce its size to 50x100 pixels.

U For this, we may consider 4 pixels from the original picture and take their

average to create one pixel in the ict or example:
5G| 2\ | 0\
6 1 6 1 2 3 3
>@4 4 3 1
2 10
2 /N_ > P A

4x6 original picture can be reduce 2X3 Tesi picture

0 Write a function that takes orig[100][200] and resized[50][100] as
parameters and determines the values in resized picture as described above.

185

Exercise

Exerc

i Matrix multiplication

double a[3][2], b[2][4], c[3][4];

= Find c=a * b;

+ EE
5 |2 | 2 e g =118 (40 |47 |21
1 |6 | 26 |33 |43 |49
3*%2 + 4%4=22 3*3 + 4*5=29 3*7 + 4¥6=45 3*1 + 4*¥8=35
5*2 + 2*4=18 5*3 + 2*5=40 5*7 + 2*6=47 5*1 + 2*8=21
1*2 + 6*4=26 1*3 + 6*5=33 1*7 + 6*6=43 1*1 + 6*8=49 186

i Matrix Multiplication cont’d
| ; |
0 1 2 3
ey 3 22 [29 [45 [35
s 1o 18 |40 |47 |21
[T |6 > 1226 [33 [43 |49

1= cli] [J] =

1=0

A~ N

ali] [k=0]*b[k=0][J] +
ali]l [k=1]*b[k=1][]]

187

i Matrix Multiplication cont’d

#define N 3
#define M 2
#define L 4
void matrix mul (a[N] [M], int b[M][L], int c[N][L])
{
int 1, j, k;
for(i=0; 1 < N; 1i++) {
for(3j=0; j < L; j++) {
c[i] [jJ] = O;
for(k=0; k < M; k++) {
c[1][J] = cl[1][]J] + ali]l[k] * b[k][]]:
}

return;

}

Exercise

(0]

Exercise: Find possible values
ifor cell s[i][j] in Sudoku

189

Exercise:
‘L Dynamic programming

0 1 2 : ¥ >
! \.i

| :

3

A[[j] = max{A[i-11[j-11, ALi-11[j]+A[i1[j-11} 190

+

Exercise: Walks on 2d Arrays

write a code to print the values in the given order

4

/

/

_

191

!'_ 2D arrays and Pointers

192

Two Dimensional Arrays and Pointers

A two-dimensional array is stored in sequential memory locations, in row order.
int s[2][3] = {{2,4,6}, {1,5,3}};

int *sptr = &s[0]1[0]; // int =sptr = s; //is this OK?

Memory allocation:
s[0][0] 2
s[0][1] 4
s[0][2] 6
s[1]1[0] 1
s[1][1] 5
s[1]1[2] 3

A pointer reference to s[0]J[1] would be *(sptr+1)
A pointer reference to s[1][2] would be *(sptr+1*3+2)
row offset * number of columns + column offset

s[il[j] €= *(sptr + 1*3+j) 193

Array of pointers
‘L Dynamic 2d arrays

= int *s[5];

= int **s;

194

+

DYNAMIC 2D ARRAYS.....

195

Dynamic arrays (2D) - I s menoy

we can use a dynamic 1D array of data items %0
dd[o][1]
double dd[10] [50];
. dd[9][49]
éouble dz2; 0 .
int r = 10, ¢ = 50; ; 10
d2 = (double *) C 50
malloc (r*c*sizeof (double)) ;
if (d2==NULL) Error (“No memory available”); d2[0]
How will you access data item [i][j]? d2[1]
dd[]Lj] or *(dd + 1*50+7)
Will d2 [i’"’] { 3 1 work? why/why not?
How about d2[499]

d2 [i*c+3] Or *(d2 + i*c+j)
/* how will you free all the memory allocated */ 196

Dynamic arrays (2D) — II

we can use 1D array of pointers

and 1D array of data items drp
C
double **dp; |
int r = 10, ¢ = 50, 1i; o
dp = (double **) dpl0]
malloc (r*sizeof (double *)) ; dpl1]
if (dp==NULL) Error (“No memory available”);
for (i=0; i<r; i++) { dp[9]
dpl[i]=(double *)
malloc (e*sizeof (double)) ; dp[0][0]
if (dp[i]==NULL) “No memory available”); dp[0][1]
}
How will you access data ______ |tem[|][J]7 dp[0][49]

Addr

memory

10

50

/* also we should free partially allocated memory in for loop if there is not enough memoary for the rest of the rows */

Dynamic Array of Record Pointers
(1D) to create 2D array of records

struct employeeRec {

Czaf Znif;e[o) How can we access the records
cnar 1 e ; - .
and the fields in them?

char ssnum[11];

double salary;

int withholding; eArray[1] . or -> salary?
}i - ?
struct employecRec o1, e2; eArrayPtr[2][3] . or => salary:
struct employeeRec *ePtr, *eArray, **eArrayPtr;
int n=50, col=40;
ePtr = (struct employeeRec *) malloc(sizeof (struct employeeRec)) ;

eArray=(struct employeeRec *) malloc(n*sizeof (struct employeeRec)) ;

eArrayPtr =(struct employeeRec *¥*)
malloc (n*sizeof (struct employeeRec *)) ; col *

eArrayPtr[i] = (struct employeeRec *) malloc (zeof (struct employeeRec)) ;

198

i Exercise

Suppose you are given int row, col;

= Create a dynamic 2D array of records?

= Create a dynamic 2D array of record
pointers and records?

Suppose you are given int x, vy, z;
= Create a dynamic 3D array of integers

199

2D-char array vs.

!'_ Array of strings (char pointers)

What is the key difference?

200

2D-char array

3

char Cities1[][12] = {
“New York”,
“Los Angeles”,
“San Antonio”,

};

201

char Citiesl[][12] = {

How does it look in| swew vorx-,

“Los Angeles”,

Name Content/data

rv1 “San Antonio”,
e m O erd ress S } ’
100 5 |

1012 | 'L 551024 'gr

104 | o |
Citiesl . 1014 |° '

1026 | '

—>1000 | 'N’ | s

1000 +— -
1001 ‘e’ z W ?

1002 W 'n’

1003 v ‘g’

1004 h '

1005 ‘o’ I

1006 v | ‘e’

1007 | | s’

1008 | "\0' 1023 | o'
1009 ? :

R " 1036

1010 ?

1011 ?

202

i sizeof ...

int n = sizeof Citiesl; // 36
int m = sizeof Citiesl1[0]; // 12
int nCitiesl = n/m;

printf (“%d %s\n”,nCitiesl,Citiesl[1]);

Can we print Cities1[2]1[4]1 [/ yes A’
Citiesl[2][4] = ‘X’; [/ yes we can

203

Array of strings (char pointers)

3

/* instead of
char Citiesl[[12] = {..} */

.. f // té%tbook’s version
char *Cities2[] {| typeder char *string;

“New York”, | o
“ ,, string Cities2t] = {
Los Angeles”, “New York”,

“San AntoniO”, Los Angelgs ,
“San Antonio”,
}; b

204

Memory

Cities?2

100 «

Name Address
100
104
108

1000
1001
1002
1003
1004
1005
1006
1007
1008

= - char *Cities2[] = {
How does it ook in| ssew vorx-,
“Los Angeles”,
“San Antonio”,
};
Content/data
1000 2000 |
2000 2001 | ‘o’
3000 - 2002 | ¢
— 3000 | 'S’ —
3001 | ‘&’
\NI \AI
3002 | 0’
\el \nl
\Wl \gl
\AI
\\ \el
\nl
\YI \II
\tl
\OI \el
\OI
\rl \SI
\nl
\kl \\OI
\iI
\\OI
\OI
o' 205

i sizeof ...

int n = sizeof Cities?; /) 12

int m = sizeof Cities2[0]; // 4

int nCities2 = n/m;

printf (“$d %s\n”,nCities2,Cities2[1]);
Can we print Cities2[2]1[4]1 [/ yes A’
Cities2[2][4] = ‘X’; [/ NO why?

206

i Command-line Arguments

= We can pass parameters to main program
when it begins executing

> myprog parl parZ
mmain(int argc, char *argv[])

= argc is the number of parameters including

program name (so it is at least 1)
in the above example argc is ...

» argv iS the pointer to the array of pointers
representing parameters as strings

207

i Command-line Arguments oo

3 [
o myprog\0
argc argv
. parl\0
. prar2\0
0

= Let's write a program that echoes

command-line arguments (2 versions)

= argv is an array of character pointers, so we can index
the array

= argv is also a pointer to an array of pointers, so we
can manipulate the pointer 208

i Command-line Arguments oo

#include <stdio.h>

main (int argc, char *argv[])

{
int 1i;

for (i=1; 1 < argc; 1i++) {
printf (“%s\n”, argv[i]);

}

return 0;

argvi[z2] [3] =

Can we print argv [2] [3] [/ yes ‘2’

\XI ’.

#include <stdio.h>

maln (int argc, char *argvl[])
{
while (-—argc > 0) {
printf (“%s\n”,

}

return 0;

*++argv) ;

// yes we can. why? 209

Wildcards, Quotes, Back
Quotes and Apostrophes

in shell commands (*?[]" " ")

m prog this is first second
= prog “this is first” second

/* prog.c */
#include <stdio.h>
main (int argc, char *argvl[])

m prog * {
int 1i;
[] prog *,C for(i=1; 1 < argc; i++) {
printf (“%s\n”, argv[i]);
m Prog ?2?.C }

return 0;

m Prog a-d,AX] |
s prog [abc]*[123]2.C | (awosrophe vaka) - o crange.

$HOME 210

Exercise

= Write a program that takes two values and
an operator between them as command-
line arguments and prints the result.

You will need atoi (str) which returns the numeric value for the
string str. For example, atoi (“435”) returns 435

= For example,
> mycal 23 + 45
68
> mycal 10 * 45
450

211

