
JITSU: JUST-IN-TIME
SUMMONING OF

UNIKERNELS
CS 5523 – OPERATING SYSTEMS

Ruta Dandekar

(pcf266/@01614154)

1

Network Latency

• Network Latency is a delay that occurs in data communication over

a network.

• There are many benefits of cloud hosting like, centralised

management, high availability etc. but still it is prone to network

latency.

• The physical separation between data centers imposes network

latency.

• Thus, it can have impact on recent technologies like augmented

reality (e.g. Google Glass) and voice control (e.g. Apple’s Siri).
2

How it can be resolved?

• It can be mitigated by using Just-In-Time Summoning of Unikernel

(JITSU).

• It is a lightweight, multi-tenant isolated, etc. virtual machine (VM).

• It provides a service that launches unikernels in response to network

traffic by limiting boot latency (few hundred milliseconds).

3

WHAT ARE UNIKERNELS?

• It is an executable image.

• It can be executed on a hypervisor without the need for separate

operating system.

• It contains all the operating system functions required by the

operations.

• It contains the collections of system libraries that contains all the core

capabilities and application codes.

• They can boot and respond to traffic in real-time.
4

JITSU System.

• The widely deployed Xen hypervisor enforces isolation between

multiple tenants sharing physical machines.

• It recently added support for building an embedded cloud system of

distributed low-power devices, deployed near users, able to host

applications delivering real-time services directly via local networks.

• Jitsu, a system for securely managing multi-tenant networked

applications on embedded infrastructure.

• Jitsu re-architects the Xen toolstack by overcoming current

limitations that prevent Xen from becoming an effective platform for

building embedded clouds.

5

MirageOS

• In Jitsu they have used the open-source MirageOS written in OCaml,

a statically type-safe language that has a low resource footprint and

good native code compilers for both x86 and ARM.

• A particular advantage of using MirageOS when working with Xen is

that all the toolstack libraries involved are written entirely in OCaml

making it easier to safely manage the flow of data through the

system and to eliminate code that would otherwise add overhead.

6

Xen/Arm Unikernels.

• Bringing up MirageOS unikernels on ARM required detailed work

mapping the libOS model onto the ARM architecture.

• They have described :

 Booting MirageOS unikernels on ARM.

Memory management requirements.

Device virtualization support.

7

Booting MirageOS unikernels on ARM

• Xen Boot Library.: The first generation of unikernels such as MirageOS, OCaml,

were constructed by forking Mini-OS, a tiny Xen library kernel that initializes the

CPU, displays console messages and allocates memory pages. These embedded

libraries are both security-critical (they run in the same address space as the type-

safe unikernel code) and difficult to audit.

• Fast Booting on ARM. : They then ported Mini-OS to boot against the new Xen

ARM ABI. The Xen domain builder allocates a fresh virtual machine descriptor,

assigns RAM to it and loads the kernel at the offset 0x8000 (32KB). Execution

begins with the r2 register pointing to a Flattened Device Tree (FDT). The FDT

approach is much simpler than x86 booting, where it supports multiple modes

(paravirtualized, hardware-assisted and hybrids).
8

Continued….

Some assembler code then performs basic boot tasks:

• Configuring the MMU, which handles mapping virtual to physical

memory addresses.

• Turning on branch prediction.

• Setting up the exception vector table, defining how to handle

interrupts and deal with various faults such as reading from an invalid

memory address.

• Setting up the stack pointer and jumping into the Carch_init function

for the remainder of execution. The final step is to jump into the OCaml

code section and begin executing application logic. 9

Memory management

• Once the MirageOS/ARM unikernels has booted, it runs in a single address space

without context switching. However, the memory layout under ARM is significantly

different from that for x86.

• Under the ARM virtualization extensions, there are two stages to converting a

virtual memory address (used by application code) to a physical address in RAM,

both of which go through translation tables.

• The first stage is under the control of the guest VM, where it maps the virtual

address to what the guest believes is the physical address – the Intermediate

Physical Address (IPA).

• The second stage, under the control of Xen, maps the IPA to the real physical

address.
10

Device Virtualization

• On Xen/x86 it is possible to add virtual devices by two means: pure

PV devices that operate via a split-device model and emulated

hardware devices that use the qemu device emulator to provide the

software model.

• MirageOS includes OCaml library implementations of the Xen PV

protocols for networking and storage

11

The Jitsu Toolstack

Jitsu is described in three phases, each of which progressively reduces end-to-end

latency.

• The traditional Xen toolstack is serialised leading to large boot times due to long

pauses between actual boot activity. They reduce these boot times by reducing

this blocking behaviour and speeding up various boot components.

• They have described optimisation of the inter-VM communications protocol via

conduits, to support direct shared memory communication between named

endpoints. Conduits eliminate the need to use local networking to communicate

between Jitsu and unikernels, further driving down latency.

• They have introduce the Synjitsu directory service that masks boot latency to

external clients by handling the initial stages of TCP handshake.

12

Optimising Boot Times

• Xen’s domain builder creates the initial VM kernel image. Most of its

work is to initialize and zero out physical memory pages, thus guests

with less memory are naturally built more quickly.

• As unikernels require such small amounts of memory to boot (8MB is

plenty), they have an advantage over modern Linux distributions

which typically require at least 64MB and are often recommended

128MB or more.

13

Communication Conduits

• It establishes zero-copy shared-memory pages between peers.

• It helps VMs to assembles in orrder to discover named peers.

• It hooks into higher level name services like DNS.

• Conduit is designed to be compatible with the vchan library for inter-

VM communication.

14

JITSU Directory Service.

• The goal is to ensure that unikernels are launched and halted in real-

time in response to network requests.

• Jitsu VM launches at boot time to handle name resolution.

• When a request arrives for a live unikernel, Jitsu returns the

appropriate endpoint

• If the unikernel is not live, Jitsu boots it, and acts as proxy until the

unikernel is ready

15

Masking Boot Latency

The Jitsu toolstack listens for DNS requests and boots the relevant

unikernel and responds immediately.

16

Continued….

But a fast client might still lose a TCP SYN if unikernel isn’t ready, thus

causing SYN retransmits (slow!).

17

Continued….

Synjitsu responds to requests and serialised connection state until VM

is ready and network plugged in.

18

Continued…

• By buffering TCP requests into XenStore and then replaying, Synjitsu

parallelises connection setup and unikernel boot.

• Jitsu optimisations bring boot latency down to ~30—45 ms (x86) and

~350—400 ms (ARM).

19

Evaluation

• Throughput: They have previously carried out a fuller analysis of unikernel

throughput with various protocol. They found that network throughput remains

acceptable

• Datapath latency: Jitsu minimises excess bridging and latency.

• Power Usage: A key facet of their contribution is that by using ARM-based

devices, power consumption is significantly reduced, to the extent that they

become acceptable to run 24/7 in a domestic environment.

• Security: To evaluate end-to-end security properties they looked for critical

security bugs eliminated by use of isolation via type-I hypervisor and memory-safe

language to build minimal VM appliances.

20

Conclusion

They have presented Jitsu, a low latency toolstack for Xen/ARM that

uses memory-safe unikernels to serve applications with significantly

greater levels of isolation and security than currently achieved on

modern embedded devices.

21

Thank You

22

