
1.1 TS Distributed Systems 

Chapter 8: FAULT TOLERANCE II 

Thanks to the authors of the textbook [TS] for providing the base slides. I made several changes/additions.  
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.  

So I would like to thank him, too.  
Turgay Korkmaz 

korkmaz@cs.utsa.edu 

Continue to operate even when something goes wrong! 



1.2 TS Distributed Systems 

Chapter 8: FAULT TOLERANCE 

 INTRODUCTION TO FAULT TOLERANCE  
 Basic Concepts, Failure Models  

 PROCESS RESILIENCE  
 Design Issues, Failure Masking and Replication  

 Agreement in Faulty Systems, Failure Detection  

 RELIABLE CLIENT-SERVER COMMUNICATION  
 Point-to-Point Communication, RPC Semantics  -- SELF-STUDY 

 RELIABLE GROUP COMMUNICATION  
 Basic Reliable-Multicasting Schemes, Scalability 

 Atomic Multicast  

 DISTRIBUTED COMMIT  
 Two-Phase Commit, Three-Phase Commit  

 RECOVERY  
 Introduction  

 Checkpointing  

 Message Logging  

 Recovery-Oriented Computing 
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Objectives 

 To understand failures and their implications  

 To learn about how to deal with failures 

   
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RELIABLE COMMUNICATION 

In addition to faulty processes, we need to consider communication 

failures… 
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Reliable Communication 

 Previous models equally apply to communication 

channels, too 
 Crash  connection is lost 

 Omission lost or corrupted msg 

 Timing  response outside the expected time frame 

 Arbitrary (both non- and malicious) duplicate packets 

 How can we mask the above errors to provide 

Reliable Data Transfer (RDT) 

 In practice, most techniques focus on crash and 

omission faults 

 TCP tries to hide omission, but it cannot hide crash 

 To hide crash, middleware tries to re-establish 

connections 
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Reliable data transfer: getting started 

send 
side 

receive 
side 

rdt_send(): called from above, 

(e.g., by app.). Passed data to  

deliver to receiver upper layer 

udt_send(): called by rdt, 

to transfer packet over  
unreliable channel to 

receiver 

rdt_rcv(): called when packet 

arrives on rcv-side of channel 

deliver_data(): called 
by rdt to deliver data to 

upper 

From Computer Networking by Kurose and Ross. 
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General mechanisms for RDT 

 Error detection  

 Checksum or CRC to detect bit errors 

 Receiver feedback: control msgs (ACK,NAK) 

 Timeout to detect packet loss 

 Retransmissions  

 but can’t just retransmit: possible duplicate 

 add sequence number to each pkt 

 Error correction 

 Add so much information redundancy that corrupted 

packets can be automatically corrected; CRC codes 

 From Computer Networking by Kurose and Ross. 
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RPC SEMANTICS WITH 

FAILURES 

What may go wrong?  

What to do when there is a failure? 
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What may go wrong during RPC? 

2: request lost 
4: reply lost 

3: Server down 

  X 

1: Client unable to locate server 

  X 

5: Client down 
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What to do? 
RPC Semantics with Failures 

1: Client unable to locate server 

 Relatively simple – just report back to client (exception) 

 But having to write exception handling destroys 

transparency  

2: Request lost 

 Just resend message upon timeout 

 How to set timeout value? 

 Use sequence numbers to detect duplicate requests 
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What to do? 
RPC Semantics with Failures (cont’d) 

3: Server down 

 Client does not know which is which? 

 

 

 
 

 What should we do or expect from server? 

 Ideally, exactly once (but it is not easy to realize) 

 At-least-once-semantics: The server guarantees that it will 

carry out an operation at least once, no matter what 

 At-most-once-semantics: The server guarantees that it will 

carry out an operation at most once 

 Guarantee nothing (perform rpc 0 to  times) 

 

 

(a) The normal case.     (b) Crash after execution.    (c) Crash before execution. 
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What to do? 
RPC Semantics with Failures (cont’d) 

4: Reply lost 

 Detecting lost replies can be hard, because it can also 

be that the server had crashed. You don’t know whether 

the server has carried out the operation 

 Try to structure all the operations as idempotent 

 idempotent: repeatable without any harm done if it happened to 

be carried out before  

 But some are not idempotent (e.g., money transfer):  

client assigns a sequence number to each request and server 

keep tracks of these request 

Server refuses to perform the same request a second time 

Server stores the results from first time and send it back to the 

client (but how long?) 
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What to do? 
RPC Semantics with Failures (cont’d) 

5: Client down 

 The server is doing work and holding resources for 

nothing (orphan computation) 

Waste CPU cycles 

Lock files or other valuable resources 

 To do deal with orphan computation 

Extermination: client stub logs its requests, and upon reboot, 

explicitly kills orphans 

Re-incarnation:  Broadcast new epoch number when recovering 

⇒ servers kill orphans 

Gentle Re-incarnation : server tries to locate the owner before it 

kills orphans 

Expiration: Require computations to complete in a T time units. 

Old ones are simply removed 
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Example: Server Crashes (1) 

Three events that can happen at the server:  

• Send the completion message  (M),  

• Print the text     (P),  

• Crash       (C).  

 

• ___ M ____ P ____ 

• ___ P ____ M ____ 
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Example: Server Crashes (2) 

 These events can occur in six different orderings: 

1. M →P →C: A crash occurs after sending the completion 
message and printing the text. 

2. M →C (→P): A crash happens after sending the completion 
message, but before the text could be printed. 

3. P →M →C: A crash occurs after sending the completion 
message and printing the text. 

4. P→C(→M): The text printed, after which a crash occurs 
before the completion message could be sent. 

5. C (→P →M): A crash happens before the server could do 
anything. 

6. C (→M →P): A crash happens before the server could do 
anything. 
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Example: Server Crashes (3) 

 Different combinations of client and server  

strategies in the presence of server crashes. 
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RELIABLE GROUP 

COMMUNICATION 
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Reliable Multicasting 

 Model: We have a multicast channel c with two (possibly 

overlapping) groups 

 The sender group SND(c) of processes that submit messages to 

channel c 

 The receiver group RCV(c) of processes that can receive 

messages from channel c 

 Basic Reliable Multicast: 

 If process P ∈ RCV(c) at the time message m was 

submitted to c, and P does not leave RCV(c), m should be 

delivered to P 

 Atomic multicast:  

 How can we ensure that a message m submitted to 

channel c is delivered to process P ∈ RCV(c)? Only if m is 

delivered to all members of RCV(c) 
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Basic Reliable-Multicasting 

 Let the sender broadcast the messages to channel 

c and log them 
 If P sends message m, m is stored in a history buffer 

 Each receiver acknowledges the receipt of m, or 

requests retransmission from P when noticing msg lost  

 Sender P removes m from history buffer when everyone 

has acknowledged receipt 



1.20 TS Distributed Systems 

Basic Reliable-Multicasting Improvements 

Basic scheme is not scalable 

Improvements: 

 Piggyback ACKs 

 Just send Neg ACK 

 Use point-to-point reliable channels for re-

transmission 

 Sender may keep all sent msg in buffer (worst case) 

 Different schemes are proposed to reduce number 

of feedbacks 

 Feedback suppression: report only missing msg and 

multicast neg-ACK to all so they will not generate neg-

ACK if they miss the same msg 
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Atomic Multicast 

 Formulate reliable multicasting in the presence of 

process failures in terms of process groups and 

changes to group membership. 

 

 

 

 

 

 

 A message is delivered only to the nonfaulty 

members of the current group.  

 All members should agree on the current group 

membership  Virtually synchronous multicast. 
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Atomic Multicast 
Why is this important? 

 Consider a replicated database  

 All replicas need to get updates in the same order and all 

must get them or not at all. 

 If we have just reliable multicast support, 

 Then the replicas that are down will miss some updates 

and cause inconsistency 

 But if we have atomic multicast support, then 

 Either all replicas perform the same updates or none at 

all, so all replicas will be consistent  

 Faulty process can be taken out of group, so non-faulty 

ones can continue to provide consistent replication 

 When faulty ones come back, they first try to join the 

group and sync themselves with the rest of the group  
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DISTRIBUTED COMMIT 

Have an operation to be performed by each member of a process 

group or none at all. 

Atomic multicast is an example of this more general problem 
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One-Phase Commit Protocol 

 Establish distributed commit by means of a 

coordinator 

 Simply tell all processes to (or not to) locally 

perform an operation 

 + simple 

 - but if one did not perform the operation, there is 

no way to tell this to the coordinator  

 Accordingly, two-, three-phase protocols are 

introduced 
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Two-Phase Commit (1) 
Assume there is no failure 

 The client who initiated the computation acts as coordinator; 

processes required to commit are the participants 

 Phase 1a: Coordinator sends vote-request to participants (also called 

a pre-write) 

 Phase 1b: When participant receives vote-request it returns either 

vote-commit or vote-abort to coordinator. If it sends vote-abort, it 

aborts its local computation 

 Phase 2a: Coordinator collects all votes; if all are vote-commit, it 

sends global-commit to all participants, otherwise it sends global-abort 

 Phase 2b: Each participant waits for global-commit or global-abort and 

handles accordingly 
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Two-Phase Commit (2) 
 Problems arise  when there is failure 

 Coordinator (a) and participants (b) may wait one 

another forever…  

 Introduce timeouts 

??? 
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Two-Phase Commit (3) 
 Problems arise  when there is failure 

 Simplest sol: Wait until the coordinator recovers! 

 Better sol: Check state of other participants Q  

no need to log coordinator’s decision. 

What if all are in READY? 
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Two-Phase Commit (4) 
 Problems arise  when there is failure 

 Actions for participant crashes in state S, and 

recovers to S 

 Initial state: No problem: participant was unaware of 

protocol 

 Ready state: Participant is waiting to either commit 

or abort. After recovery, participant needs to know 

which state transition it should make  log the 

coordinator’s decision 

 Abort state: Merely make entry into abort state 

idempotent, e.g., removing the workspace of results 

 Commit state: Also make entry into commit state 

idempotent, e.g., copying workspace to storage. 
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Two-Phase Commit (5) 
 Problems arise  when there is failure 

 Figure 8-20. Outline of the steps taken by the  

coordinator in a two-phase commit protocol. 

. . . 
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Two-Phase Commit (6) 
 Problems arise  when there is failure 

 If coordinator fails, participants may not reach a 

final decision…  

 If all participants are in the READY state, the 

protocol blocks.  

 Apparently, the coordinator is failing.  

 Participants need to be blocked until the 

coordinator recovers… 

 To avoid blocking (in case of fail-stop),  

 Let a participant multicasts a received msg 

 Use three-phase commit …. 
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Three-Phase Commit (1) 

Model (Again: the client acts as coordinator) 
 Phase 1a: Coordinator sends vote-request to participants 

 Phase 1b: When participant receives vote-request it returns either vote-commit or vote-abort 

to coordinator. If it sends vote-abort, it aborts its local computation 

 Phase 2a: Coordinator collects all votes; if all are vote-commit, it sends prepare-commit to all participants, 

otherwise it sends global-abort, and halts 

 Phase 2b: Each participant waits for prepare-commit, or waits for global-abort after which it halts 

 Phase 3a: (Prepare to commit) Coordinator waits until all participants have sent ready-commit, 

and then sends global-commit to all 

 Phase 3b: (Prepare to commit) Participant waits for global-commit  
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Three-Phase Commit (2) 

To make the protocol non-blocking, the states of the coordinator and each 

participant satisfy the following two conditions: 

1. There is no single state from which it is possible to make a transition 

directly to either a COMMIT or an ABORT state. 

2. There is no state in which it is not possible to make a final decision, and 

from which a transition to a COMMIT state can be made. 
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FAULT RECOVERY 

Bring the system in an error-free state… 
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Fault Recovery 

 Backward recovery 

 Bring the system back into a previous error-free state 

 E.g., packet retransmission 

 Forward recovery 

 Find a new future state from which system can 

continue operation 

 E.g., Error-correction codes 

 In Practice:  

 Use backward error recovery, requiring that we 

establish recovery points (checkpoints) 
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Stable Storage 
Designed to survive anything? 

 Main idea: replicate all data on at least two disks, and 

keep one copy “correct” at all times 

 What if both fail? Probability? 

After a crash 

 If both disks are 
identical: you’re in 
good shape. 

 If one is bad, but the 
other is okay 
(checksums): choose 
the good one. 

 If both seem okay, 
but are different: 
choose the main disk. 

 If both aren’t good: 
you’re not in a good 
shape. 
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Recovery in Distributed Systems 

 Recovery in distributed systems is complicated by 

the fact that processes need to cooperate in 

identifying a consistent state from where to recover 

 For this, each process saves its state time to time to 

a local stable storage (called checkpoint) 

 In case of failure, get the most recent consistent 

global state  or recovery line 
 If P has recorded the receipt of a msg, then there should be Q recorded 

the sending of this msg 
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Independent Checkpointing 

 Each process independently takes snapshot! 

 Easy, but it might be hard to find a recovery line 

 Cascaded rollback may lead to domino effect 

 If checkpointing is done at the “wrong” instants, the 

recovery line may lie at system startup time 
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Independent Checkpointing 

 Each process independently takes checkpoints 

 Let CP[i](m) denote mth checkpoint of process Pi and  
INT[i](m) the interval between CP[i](m − 1) and CP[i](m) 

 When process Pi sends a message in interval INT[i](m), it 
piggybacks (i,m)  

 When process Pj receives a message in interval INT[j](n), it 
records the dependency INT[i](m)→INT[j](n) 

 The dependency INT[i](m)→INT [j](n) is saved to stable 
storage when taking checkpoint CP[j](n) 

 If process Pi rolls back to CP[i](m), Pj must roll back 
to CP[j](n). 

 Risk: cascaded rollback to system startup 
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Coordinated Checkpointing 

 Each process takes a checkpoint after a globally 
coordinated action 

 Simple solution: two-phase blocking protocol 

 A coordinator multicasts a checkpoint request message 

 When a participant receives such a message, it takes a 
checkpoint, stops sending (application) messages, and 
reports back that it has taken a checkpoint 

 When all checkpoints have been confirmed at the 
coordinator, the latter broadcasts a checkpoint done 
message to allow all processes to continue 

 Observation: consider processes that depend on 
coordinator, and ignore the rest  incremental  
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Message Logging 

 Instead of taking an (expensive) checkpoint, try to 

replay your (communication) behavior from the most 

recent checkpoint   
 store messages in a log ⇒  replay your (communication) 

behavior from the most recent checkpoint 

 Assumption:  

 Assume a piecewise deterministic execution model: 
 The execution of each process can be considered as a 

sequence of state intervals 

 Each state interval starts with a nondeterministic event 

(e.g., message receipt)  

 Execution in a state interval is deterministic 

 If we record nondeterministic events (to replay them later), we obtain a 

deterministic execution model that will allow us to do a complete replay. 
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EXTRAS 
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Summary 

 Terminology: fault, error and failures 

 Fault management and failure models 

 Fault tolerance (agreement) with redundancy 

 Level of redundancy vs. failure models 

 Fault recovery techniques 

 Checkpointing and stable storage 

 Recovery in distributed systems:  

 Consistent checkpointing 

 Message logging 
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Virtual Synchrony (1) 

 The logical organization of a distributed 
system to distinguish between message 
receipt and message delivery. 
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Implementing Virtual Synchrony (1) 

 Six different versions of virtually synchronous reliable 

multicasting. 
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Implementing Virtual Synchrony (2) 

 (a) Process 4 

notices that 

process 7 has 

crashed and 

sends a view 

change.  

 (b) Process 6 

sends out all its 

unstable 

messages, 

followed by a 

flush message.  

 (c) Process 6 

installs the new 

view when it has 

received a flush 

message from 

everyone else. 
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Message Ordering (1) 

Four different orderings are distinguished: 

Unordered multicasts 

FIFO-ordered multicasts 

Causally-ordered multicasts 

Totally-ordered multicasts 
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Message Ordering (2) 

 Three communicating processes in the same group.  

The ordering of events per process is shown along 

the vertical axis. 
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Message Ordering (3) 

 Four processes in the same group with two different 

senders, and a possible delivery order of messages 

under FIFO-ordered multicasting 
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Message Logging Schemes 

 HDR[m]: message m’s header contains its source, 
destination, sequence number, and delivery number 

 A message m is stable if HDR[m] cannot be lost (e.g., 
because it has been written to stable storage) 

 The header contains all information for resending a 
message and delivering it in the correct order (assume 
data is reproduced by the application) 

 DEP[m]: set of processes to which message m has 
been delivered, as well as any message that causally 
depends on delivery of m 

 COPY[m]: set of processes that have a copy of 
HDR[m] in their volatile memory 
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Message Logging Schemes (cont.) 

 Orphan: If C is a collection of crashed processes, 

then Q   C is an orphan if there is a message m 

such that Q ∈ DEP[m] and COPY[m] ⊆ C 

 If for each message m, DEP[m] ⊆ COPY[m]  

 no orphans; 

 

 Pessimistic protocol: for each non-stable 

message m, there is at most one process 

dependent on m, that is |DEP[m]| ≤ 1 

 An unstable message in a pessimistic protocol must be 

made stable before sending a next message 



1.53 TS Distributed Systems 

Message Logging Schemes (cont.) 

 Optimistic protocol: for each unstable 

message m, we ensure that if COPY[m] ⊆ C, 

then eventually also DEP[m] ⊆ C, where C 

denotes a set of processes that have been 

marked as faulty; 

 To guarantee that DEP[m] ⊆ C, we generally 

rollback each orphan process Q until Q  DEP[m] 

 More complicated to implement 


