
1.1 TS Distributed Systems

Chapter 8: FAULT TOLERANCE II

Thanks to the authors of the textbook [TS] for providing the base slides. I made several changes/additions.
These slides may incorporate materials kindly provided by Prof. Dakai Zhu.

So I would like to thank him, too.
Turgay Korkmaz

korkmaz@cs.utsa.edu

Continue to operate even when something goes wrong!

1.2 TS Distributed Systems

Chapter 8: FAULT TOLERANCE

 INTRODUCTION TO FAULT TOLERANCE
 Basic Concepts, Failure Models

 PROCESS RESILIENCE
 Design Issues, Failure Masking and Replication

 Agreement in Faulty Systems, Failure Detection

 RELIABLE CLIENT-SERVER COMMUNICATION
 Point-to-Point Communication, RPC Semantics -- SELF-STUDY

 RELIABLE GROUP COMMUNICATION
 Basic Reliable-Multicasting Schemes, Scalability

 Atomic Multicast

 DISTRIBUTED COMMIT
 Two-Phase Commit, Three-Phase Commit

 RECOVERY
 Introduction

 Checkpointing

 Message Logging

 Recovery-Oriented Computing

1.3 TS Distributed Systems

Objectives

 To understand failures and their implications

 To learn about how to deal with failures



1.4 TS Distributed Systems

RELIABLE COMMUNICATION

In addition to faulty processes, we need to consider communication

failures…

1.5 TS Distributed Systems

Reliable Communication

 Previous models equally apply to communication

channels, too
 Crash connection is lost

 Omission lost or corrupted msg

 Timing response outside the expected time frame

 Arbitrary (both non- and malicious) duplicate packets

 How can we mask the above errors to provide

Reliable Data Transfer (RDT)

 In practice, most techniques focus on crash and

omission faults

 TCP tries to hide omission, but it cannot hide crash

 To hide crash, middleware tries to re-establish

connections

1.6 TS Distributed Systems

Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above,

(e.g., by app.). Passed data to

deliver to receiver upper layer

udt_send(): called by rdt,

to transfer packet over
unreliable channel to

receiver

rdt_rcv(): called when packet

arrives on rcv-side of channel

deliver_data(): called
by rdt to deliver data to

upper

From Computer Networking by Kurose and Ross.

1.7 TS Distributed Systems

General mechanisms for RDT

 Error detection

 Checksum or CRC to detect bit errors

 Receiver feedback: control msgs (ACK,NAK)

 Timeout to detect packet loss

 Retransmissions

 but can’t just retransmit: possible duplicate

 add sequence number to each pkt

 Error correction

 Add so much information redundancy that corrupted

packets can be automatically corrected; CRC codes

 From Computer Networking by Kurose and Ross.

1.8 TS Distributed Systems

RPC SEMANTICS WITH

FAILURES

What may go wrong?

What to do when there is a failure?

1.9 TS Distributed Systems

What may go wrong during RPC?

2: request lost
4: reply lost

3: Server down

 X

1: Client unable to locate server

 X

5: Client down

1.10 TS Distributed Systems

What to do?
RPC Semantics with Failures

1: Client unable to locate server

 Relatively simple – just report back to client (exception)

 But having to write exception handling destroys

transparency

2: Request lost

 Just resend message upon timeout

 How to set timeout value?

 Use sequence numbers to detect duplicate requests

1.11 TS Distributed Systems

What to do?
RPC Semantics with Failures (cont’d)

3: Server down

 Client does not know which is which?

 What should we do or expect from server?

 Ideally, exactly once (but it is not easy to realize)

 At-least-once-semantics: The server guarantees that it will

carry out an operation at least once, no matter what

 At-most-once-semantics: The server guarantees that it will

carry out an operation at most once

 Guarantee nothing (perform rpc 0 to  times)

(a) The normal case. (b) Crash after execution. (c) Crash before execution.

1.12 TS Distributed Systems

What to do?
RPC Semantics with Failures (cont’d)

4: Reply lost

 Detecting lost replies can be hard, because it can also

be that the server had crashed. You don’t know whether

the server has carried out the operation

 Try to structure all the operations as idempotent

 idempotent: repeatable without any harm done if it happened to

be carried out before

 But some are not idempotent (e.g., money transfer):

client assigns a sequence number to each request and server

keep tracks of these request

Server refuses to perform the same request a second time

Server stores the results from first time and send it back to the

client (but how long?)

1.13 TS Distributed Systems

What to do?
RPC Semantics with Failures (cont’d)

5: Client down

 The server is doing work and holding resources for

nothing (orphan computation)

Waste CPU cycles

Lock files or other valuable resources

 To do deal with orphan computation

Extermination: client stub logs its requests, and upon reboot,

explicitly kills orphans

Re-incarnation: Broadcast new epoch number when recovering

⇒ servers kill orphans

Gentle Re-incarnation : server tries to locate the owner before it

kills orphans

Expiration: Require computations to complete in a T time units.

Old ones are simply removed

1.14 TS Distributed Systems

Example: Server Crashes (1)

Three events that can happen at the server:

• Send the completion message (M),

• Print the text (P),

• Crash (C).

• ___ M ____ P ____

• ___ P ____ M ____

1.15 TS Distributed Systems

Example: Server Crashes (2)

 These events can occur in six different orderings:

1. M →P →C: A crash occurs after sending the completion
message and printing the text.

2. M →C (→P): A crash happens after sending the completion
message, but before the text could be printed.

3. P →M →C: A crash occurs after sending the completion
message and printing the text.

4. P→C(→M): The text printed, after which a crash occurs
before the completion message could be sent.

5. C (→P →M): A crash happens before the server could do
anything.

6. C (→M →P): A crash happens before the server could do
anything.

1.16 TS Distributed Systems

Example: Server Crashes (3)

 Different combinations of client and server

strategies in the presence of server crashes.

1.17 TS Distributed Systems

RELIABLE GROUP

COMMUNICATION

1.18 TS Distributed Systems

Reliable Multicasting

 Model: We have a multicast channel c with two (possibly

overlapping) groups

 The sender group SND(c) of processes that submit messages to

channel c

 The receiver group RCV(c) of processes that can receive

messages from channel c

 Basic Reliable Multicast:

 If process P ∈ RCV(c) at the time message m was

submitted to c, and P does not leave RCV(c), m should be

delivered to P

 Atomic multicast:

 How can we ensure that a message m submitted to

channel c is delivered to process P ∈ RCV(c)? Only if m is

delivered to all members of RCV(c)

1.19 TS Distributed Systems

Basic Reliable-Multicasting

 Let the sender broadcast the messages to channel

c and log them
 If P sends message m, m is stored in a history buffer

 Each receiver acknowledges the receipt of m, or

requests retransmission from P when noticing msg lost

 Sender P removes m from history buffer when everyone

has acknowledged receipt

1.20 TS Distributed Systems

Basic Reliable-Multicasting Improvements

Basic scheme is not scalable

Improvements:

 Piggyback ACKs

 Just send Neg ACK

 Use point-to-point reliable channels for re-

transmission

 Sender may keep all sent msg in buffer (worst case)

 Different schemes are proposed to reduce number

of feedbacks

 Feedback suppression: report only missing msg and

multicast neg-ACK to all so they will not generate neg-

ACK if they miss the same msg

1.21 TS Distributed Systems

Atomic Multicast

 Formulate reliable multicasting in the presence of

process failures in terms of process groups and

changes to group membership.

 A message is delivered only to the nonfaulty

members of the current group.

 All members should agree on the current group

membership  Virtually synchronous multicast.

1.22 TS Distributed Systems

Atomic Multicast
Why is this important?

 Consider a replicated database

 All replicas need to get updates in the same order and all

must get them or not at all.

 If we have just reliable multicast support,

 Then the replicas that are down will miss some updates

and cause inconsistency

 But if we have atomic multicast support, then

 Either all replicas perform the same updates or none at

all, so all replicas will be consistent

 Faulty process can be taken out of group, so non-faulty

ones can continue to provide consistent replication

 When faulty ones come back, they first try to join the

group and sync themselves with the rest of the group

1.23 TS Distributed Systems

DISTRIBUTED COMMIT

Have an operation to be performed by each member of a process

group or none at all.

Atomic multicast is an example of this more general problem

1.24 TS Distributed Systems

One-Phase Commit Protocol

 Establish distributed commit by means of a

coordinator

 Simply tell all processes to (or not to) locally

perform an operation

 + simple

 - but if one did not perform the operation, there is

no way to tell this to the coordinator

 Accordingly, two-, three-phase protocols are

introduced

1.25 TS Distributed Systems

Two-Phase Commit (1)
Assume there is no failure

 The client who initiated the computation acts as coordinator;

processes required to commit are the participants

 Phase 1a: Coordinator sends vote-request to participants (also called

a pre-write)

 Phase 1b: When participant receives vote-request it returns either

vote-commit or vote-abort to coordinator. If it sends vote-abort, it

aborts its local computation

 Phase 2a: Coordinator collects all votes; if all are vote-commit, it

sends global-commit to all participants, otherwise it sends global-abort

 Phase 2b: Each participant waits for global-commit or global-abort and

handles accordingly

1.26 TS Distributed Systems

Two-Phase Commit (2)
 Problems arise when there is failure

 Coordinator (a) and participants (b) may wait one

another forever…

 Introduce timeouts

???

1.27 TS Distributed Systems

Two-Phase Commit (3)
 Problems arise when there is failure

 Simplest sol: Wait until the coordinator recovers!

 Better sol: Check state of other participants Q 

no need to log coordinator’s decision.

What if all are in READY?

1.28 TS Distributed Systems

Two-Phase Commit (4)
 Problems arise when there is failure

 Actions for participant crashes in state S, and

recovers to S

 Initial state: No problem: participant was unaware of

protocol

 Ready state: Participant is waiting to either commit

or abort. After recovery, participant needs to know

which state transition it should make  log the

coordinator’s decision

 Abort state: Merely make entry into abort state

idempotent, e.g., removing the workspace of results

 Commit state: Also make entry into commit state

idempotent, e.g., copying workspace to storage.

1.29 TS Distributed Systems

Two-Phase Commit (5)
 Problems arise when there is failure

 Figure 8-20. Outline of the steps taken by the

coordinator in a two-phase commit protocol.

. . .

1.30 TS Distributed Systems

Two-Phase Commit (6)
 Problems arise when there is failure

 If coordinator fails, participants may not reach a

final decision…

 If all participants are in the READY state, the

protocol blocks.

 Apparently, the coordinator is failing.

 Participants need to be blocked until the

coordinator recovers…

 To avoid blocking (in case of fail-stop),

 Let a participant multicasts a received msg

 Use three-phase commit ….

1.31 TS Distributed Systems

Three-Phase Commit (1)

Model (Again: the client acts as coordinator)
 Phase 1a: Coordinator sends vote-request to participants

 Phase 1b: When participant receives vote-request it returns either vote-commit or vote-abort

to coordinator. If it sends vote-abort, it aborts its local computation

 Phase 2a: Coordinator collects all votes; if all are vote-commit, it sends prepare-commit to all participants,

otherwise it sends global-abort, and halts

 Phase 2b: Each participant waits for prepare-commit, or waits for global-abort after which it halts

 Phase 3a: (Prepare to commit) Coordinator waits until all participants have sent ready-commit,

and then sends global-commit to all

 Phase 3b: (Prepare to commit) Participant waits for global-commit

1.32 TS Distributed Systems

Three-Phase Commit (2)

To make the protocol non-blocking, the states of the coordinator and each

participant satisfy the following two conditions:

1. There is no single state from which it is possible to make a transition

directly to either a COMMIT or an ABORT state.

2. There is no state in which it is not possible to make a final decision, and

from which a transition to a COMMIT state can be made.

1.34 TS Distributed Systems

FAULT RECOVERY

Bring the system in an error-free state…

1.35 TS Distributed Systems

Fault Recovery

 Backward recovery

 Bring the system back into a previous error-free state

 E.g., packet retransmission

 Forward recovery

 Find a new future state from which system can

continue operation

 E.g., Error-correction codes

 In Practice:

 Use backward error recovery, requiring that we

establish recovery points (checkpoints)

1.36 TS Distributed Systems

Stable Storage
Designed to survive anything?

 Main idea: replicate all data on at least two disks, and

keep one copy “correct” at all times

 What if both fail? Probability?

After a crash

 If both disks are
identical: you’re in
good shape.

 If one is bad, but the
other is okay
(checksums): choose
the good one.

 If both seem okay,
but are different:
choose the main disk.

 If both aren’t good:
you’re not in a good
shape.

1.37 TS Distributed Systems

Recovery in Distributed Systems

 Recovery in distributed systems is complicated by

the fact that processes need to cooperate in

identifying a consistent state from where to recover

 For this, each process saves its state time to time to

a local stable storage (called checkpoint)

 In case of failure, get the most recent consistent

global state or recovery line
 If P has recorded the receipt of a msg, then there should be Q recorded

the sending of this msg

1.38 TS Distributed Systems

Independent Checkpointing

 Each process independently takes snapshot!

 Easy, but it might be hard to find a recovery line

 Cascaded rollback may lead to domino effect

 If checkpointing is done at the “wrong” instants, the

recovery line may lie at system startup time

1.39 TS Distributed Systems

Independent Checkpointing

 Each process independently takes checkpoints

 Let CP[i](m) denote mth checkpoint of process Pi and
INT[i](m) the interval between CP[i](m − 1) and CP[i](m)

 When process Pi sends a message in interval INT[i](m), it
piggybacks (i,m)

 When process Pj receives a message in interval INT[j](n), it
records the dependency INT[i](m)→INT[j](n)

 The dependency INT[i](m)→INT [j](n) is saved to stable
storage when taking checkpoint CP[j](n)

 If process Pi rolls back to CP[i](m), Pj must roll back
to CP[j](n).

 Risk: cascaded rollback to system startup

1.40 TS Distributed Systems

Coordinated Checkpointing

 Each process takes a checkpoint after a globally
coordinated action

 Simple solution: two-phase blocking protocol

 A coordinator multicasts a checkpoint request message

 When a participant receives such a message, it takes a
checkpoint, stops sending (application) messages, and
reports back that it has taken a checkpoint

 When all checkpoints have been confirmed at the
coordinator, the latter broadcasts a checkpoint done
message to allow all processes to continue

 Observation: consider processes that depend on
coordinator, and ignore the rest  incremental

1.41 TS Distributed Systems

Message Logging

 Instead of taking an (expensive) checkpoint, try to

replay your (communication) behavior from the most

recent checkpoint
 store messages in a log ⇒ replay your (communication)

behavior from the most recent checkpoint

 Assumption:

 Assume a piecewise deterministic execution model:
 The execution of each process can be considered as a

sequence of state intervals

 Each state interval starts with a nondeterministic event

(e.g., message receipt)

 Execution in a state interval is deterministic

 If we record nondeterministic events (to replay them later), we obtain a

deterministic execution model that will allow us to do a complete replay.

1.43 TS Distributed Systems

EXTRAS

1.44 TS Distributed Systems

Summary

 Terminology: fault, error and failures

 Fault management and failure models

 Fault tolerance (agreement) with redundancy

 Level of redundancy vs. failure models

 Fault recovery techniques

 Checkpointing and stable storage

 Recovery in distributed systems:

 Consistent checkpointing

 Message logging

1.45 TS Distributed Systems

Virtual Synchrony (1)

 The logical organization of a distributed
system to distinguish between message
receipt and message delivery.

1.46 TS Distributed Systems

Implementing Virtual Synchrony (1)

 Six different versions of virtually synchronous reliable

multicasting.

1.47 TS Distributed Systems

Implementing Virtual Synchrony (2)

 (a) Process 4

notices that

process 7 has

crashed and

sends a view

change.

 (b) Process 6

sends out all its

unstable

messages,

followed by a

flush message.

 (c) Process 6

installs the new

view when it has

received a flush

message from

everyone else.

1.48 TS Distributed Systems

Message Ordering (1)

Four different orderings are distinguished:

Unordered multicasts

FIFO-ordered multicasts

Causally-ordered multicasts

Totally-ordered multicasts

1.49 TS Distributed Systems

Message Ordering (2)

 Three communicating processes in the same group.

The ordering of events per process is shown along

the vertical axis.

1.50 TS Distributed Systems

Message Ordering (3)

 Four processes in the same group with two different

senders, and a possible delivery order of messages

under FIFO-ordered multicasting

1.51 TS Distributed Systems

Message Logging Schemes

 HDR[m]: message m’s header contains its source,
destination, sequence number, and delivery number

 A message m is stable if HDR[m] cannot be lost (e.g.,
because it has been written to stable storage)

 The header contains all information for resending a
message and delivering it in the correct order (assume
data is reproduced by the application)

 DEP[m]: set of processes to which message m has
been delivered, as well as any message that causally
depends on delivery of m

 COPY[m]: set of processes that have a copy of
HDR[m] in their volatile memory

1.52 TS Distributed Systems

Message Logging Schemes (cont.)

 Orphan: If C is a collection of crashed processes,

then Q  C is an orphan if there is a message m

such that Q ∈ DEP[m] and COPY[m] ⊆ C

 If for each message m, DEP[m] ⊆ COPY[m] 

 no orphans;

 Pessimistic protocol: for each non-stable

message m, there is at most one process

dependent on m, that is |DEP[m]| ≤ 1

 An unstable message in a pessimistic protocol must be

made stable before sending a next message

1.53 TS Distributed Systems

Message Logging Schemes (cont.)

 Optimistic protocol: for each unstable

message m, we ensure that if COPY[m] ⊆ C,

then eventually also DEP[m] ⊆ C, where C

denotes a set of processes that have been

marked as faulty;

 To guarantee that DEP[m] ⊆ C, we generally

rollback each orphan process Q until Q  DEP[m]

 More complicated to implement

