
CS 3733 Operating Systems: Assignment 5 - new -HELP
MainThread

 process command line args and get the simulation parameters (e.g., ALG, QUANTUM, InputFile)

 create/initialize the necessary data structures (Ready_Q and IO_Q (double linked lists of PCB),

 file_read_done=0, cpu_sch_done = 0, io_sys_done = 0, cpu_busy=0, io_busy=0, sem_cpu=0, sem_io=0)

 create start the following three threads with appropriate parameters

 wait until all threads are done

 print performance metrics

FileRead thread

 get the file name, open it; currPID=0;

 while(not EOF)

 read a line

 if proc, create a PCB structure withPID=++currPID,

read other parameters into it,

 insert PCB into Ready_Q

 sem_post(&sem_cpu)

 if sleep, simply let this thread usleep for the given ms

 if stop, break

 file_read_done = 1

CPU scheduler thread

 while(1) // This is for FIFO. Similarly, You need to develop other algorithms SJF, RR, PR

 if Ready_Q is empty && !cpu_busy && IO_Q is empty && !io_busy && file_read_done is 1, then break!

 if (ALG is FIFO)

 res = sem_timedwait(&sem_cpu, &atimespec /* say 1 sec */);

 if(res==-1 && errno==ETIMEDOUT) continue;

 cpu_busy = 1

 get (remove) the first PCB from Ready_Q

 usleep for PCB->CPUBurst[PCB->cpuindex] (ms)

 PCB->cpuindex++

 if PCB->cpuindex >= PCB->numCPUBurst // this is the last cpu burst

 terminate this PCB; cpu_busy = 0

 else

 insert PCB into IO_Q

 cpu_busy = 0

 sem_post(&sem_io)

 cpu_sch_done = 1

I/O system thread

 while(1) // this is always FIFO

 if Ready_Q is empty && !cpu_busy && IO_Q is empty && file_read_done is 1, then break!

 res = sem_timedwait(&sem_io, &atimespec /* say 1 sec */);

 if(res==-1 && errno==ETIMEDOUT) continue;

 io_busy = 1;

 get (remove) the first PCB from IO_Q

 usleep for PCB->IOBurst[PCB->ioindex] (ms)

 PCB->ioindex++

 insert PCB into Ready_Q

 io_busy = 0

 sem_post(&sem_cpu)

 io_sys_done = 1

struct PCB {

 int PID, PR;

 int numCPUBurst, numIOBurst;

 int *CPUBurst, *IOBurst; /* to create

 dynamic arrays to store cpu and io burst times */

 int cpuindex, ioindex;

 struct timespec ts_begin, ts_end;

 struct PCB *prev, *next;

 // more fields for performance measures

// use the system time to determine how much waited etc.

}

clock_gettime(

CLOCK_MONOTONIC,

&PCB->ts_begin);

clock_gettime(CLOCK_MONOTONIC,&BPC->ts_end);

elapsed = PCB->ts_end.tv_sec –

 PCB->ts_begin.tv_sec;

elapsed += (PCB->ts_end.tv_nsec –

 PCB->ts_begin.tv_nsec) / 1000000000.0;

printf("turnaround = %f ms\n", elapsed*1000);

You need to figure out how to synchronize/coordinate these threads, protect critical sections, how to collect

data to report performance metrics, and other implementation details error/exception handlings....

Note1: Some students asked about a possible case of deadlock when waiting on Ready_Q or IO_Q.
An easy way to deal with that would be to use sem_timedwait() rather than sem_wait(…); which, I have included as a
possible solution along with some other coordination mechanisms in the above high-level solution.

Note2: To implement sleep for some ms, you can use usleep(); please see its man page and the sample program below.

Note3: I did not do anything about critical sections in the above high-level solution, you need to identify and protect them!
Also, you need to figure out how to collect data!

Note4: When collecting data, simply use the system time to measure delays, round around, and waiting in ready queue
times etc. For example, when a PCB is put into Ready_Q save the system time (e.g., PCB->timeEnterReadyQ =
getsystemtime();) then later when CPU gets that PCB from Ready_Q, we can simply determine waiting time by wait_time =
getsystemtime() - PCB->timeEnterReadyQ; Of course, you need to accumulate all the wait_times for a process to find its
total waiting time! Also at the end, we need to keep track of all total waiting times to the average waiting time! I used
getsystemtime(); as a generic name here is a sample program showing how you can get system time!

// s2.c test program to illustrate how to get system time.

// gcc s2.c -o s2

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <sys/times.h>

int main(int argc, char *argv[]){

 struct timespec ts_begin, ts_end;

 double elapsed;

long sleep_time_ms;

 if (argc < 2) {

 printf("Usage: %s sleep_time_ms \n", argv[0]); return 0;

 }

 sleep_time_ms = atoi(argv[1]);

 printf("sleep %ld ms...\n", sleep_time_ms);

 clock_gettime(CLOCK_MONOTONIC, &ts_begin); // getsystemtime();

 usleep(sleep_time_ms*1000);

 clock_gettime(CLOCK_MONOTONIC, &ts_end); // getsystemtime();

 elapsed = ts_end.tv_sec - ts_begin.tv_sec;

 elapsed += (ts_end.tv_nsec - ts_begin.tv_nsec) / 1000000000.0;

 printf("elepsed time = %.3lf ms\n\n", elapsed*1000);

 return 0;

}

