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Abstract—Federated Learning (FL) enables multiple
agents to collaboratively train a global model without
sharing local data, preserving privacy. However, this dis-
tributed setting introduces vulnerabilities to backdoor at-
tacks, where malicious agents can poison the model by
embedding trigger patterns into a subset of training data.
Existing defenses such as robust aggregation, adversarial
training, or pruning-based techniques either incur high
computational overhead, degrade model accuracy, or fail
under non-i.i.d. data distributions. Their effectiveness also
diminishes for lightweight models.

In this paper, we propose a lightweight and effective de-
fense strategy that detects and mitigates backdoor attacks
via partial model inspection. By analyzing the bias updates
of the final layer, our method identifies statistical outliers
indicative of malicious behavior. This approach reduces
both computational cost and privacy risk, as it inspects only
a small part of model updates. Experimental results show
that our method significantly outperforms existing defenses
such as MKrum, RLR, and Lockdown. When combined
with RLR, it achieves robust defense under varying attack
intensities in both i.i.d. and non-i.i.d. settings.

I. INTRODUCTION

Federated Learning (FL) is a privacy-preserving ma-
chine learning approach where multiple devices (referred
to as clients or agents) collaboratively train a model
under the coordination of a central server, while keeping
the data decentralized. Instead of sending training data to
a central server, each agent processes its data locally and
sends only the model updates (e.g., learned weights and
biases of neural network) to the FL server. The server ag-
gregates these updates to improve the global model. This
decentralized approach is valuable in privacy-sensitive
or bandwidth-constrained computer vision applications,
such as surveillance and healthcare [1], [2].

A critical vulnerability of FL stems from its privacy-
preserving feature, which inadvertently creates a poten-
tial attack surface leading to model poisoning attacks.
A malicious FL agent (attacker) can alter its training
data to embed a hidden vulnerability (i.e. backdoor) into
the global model. This backdoor allows the attacker to
manipulate the model by providing a specific input that
triggers the model to behave in a way that is beneficial to

the attacker [3]–[6]. These attacks remain elusive since
the FL server does not have access to agents’ training
data, the backdoors may trigger only with specific input
conditions, and the malicious agents may manipulate
their model updates to resemble those of benign agents.

Traditional defense techniques using Byzantine-robust
aggregation rules such as Krum [7], and coordinate-wise
median [8] address untargeted model poisoning attacks
that aim to reduce the model accuracy indiscriminately.
However, they are not effective against targeted backdoor
attacks. Recent works defensively adjust the server’s
learning rate based on agents’ model updates [9] or
detect malicious agents based on behavioral discrepan-
cies among agents’ models [10]–[12]. However, these
techniques are less effective when a substantial number
of FL agents are malicious or the agents’ local datasets
are not independent and identically distributed (non-
i.i.d). Furthermore, many defense techniques [11]–[13]
require the FL server to have unrestricted access to
each agent’s model updates, which increases the risk of
privacy leakage [14].

Backdoor defense techniques, such as certified ro-
bustness [15] and adversarial training [16], incur high
computational overhead. For example, certified robust-
ness requires multiple inference passes, while adversarial
training involves costly inner-loop optimization. These
inefficiencies hinder their deployment in real-world
resource-constrained FL settings. A recent pruning-based
defense, Lockdown [17], uses isolated subspace training
to decouple and prune suspicious parameters based on
client consensus. Although effective, its performance
degrades significantly for lightweight models.

In this paper, we present an efficient and robust
method for detecting and mitigating backdoor attacks
in FL. Our approach enables the FL server to perform
anomaly detection on client updates through partial
inspection, focusing on select model parameters to iden-
tify malicious behavior. We demonstrate that analyzing
model updates at a fine granularity, such as the weights
and biases of an individual neural network layer, reveals
distinguishing features of malicious agents. In particular,



we detect outliers among the bias updates in the last
layer of the neural network. Agents predicted as ma-
licious during an FL training round are excluded from
aggregation by the FL server. Our approach reduces both
the computational burden on the FL server and the risk of
privacy leakage, as only partial information from model
updates needs to be inspected.

Experiments in the i.i.d. setting show that our
approach outperforms existing defenses including
MKrum [7], robust learning rate (RLR) [9], and Lock-
down [17] by effectively mitigating backdoor attacks
without compromising accuracy on clean validation data.
In the non-i.i.d. setting, a hybrid strategy that integrates
our method with RLR achieves substantially greater
effectiveness than RLR alone. Notably, the hybrid ap-
proach delivers consistently robust performance across
both i.i.d. and non-i.i.d. scenarios, even when a large
fraction of FL clients are malicious. Further analysis
shows that our method introduces minimal computa-
tional overhead, making it well-suited for deployment
in resource-constrained FL environments.

The rest of the paper is organized as follows. Section II
discusses the related works. Section III presents our
defense technique. Section IV describes the experimental
setup and Section V shows the evaluation results. Finally,
Section VI concludes the paper.

II. RELATED WORK

A. Backdoor Attacks

FL model poisoning attacks can be targeted or un-
targeted. Untargeted attacks, which aim to make the
model converge to a sub-optimal minimum or completely
diverge, are often detectable by observing the model’s
accuracy on validation data [7]. On the other hand, tar-
geted or backdoor attacks aim to cause misclassification
of specific inputs while preserving the model’s overall
performance [3], [4], [18]. For instance, an adversary
might insert a small sticker, such as a cartoon icon, onto
traffic sign images and label them as speed limits. At in-
ference time, presenting a stop sign with the same sticker
triggers the backdoor, causing it to be misclassified as a
speed limit sign. Because the model continues to classify
clean images correctly, the attack remains undetected on
standard validation datasets.

B. Existing Defense Techniques

Traditional defense techniques against FL model poi-
soning attacks predominantly rely on robust aggregation
methods such as Krum [7], coordinate-wise median [8]
etc. Sun et al. [5] proposed to clip an agent’s model
update if its L2 norm exceeds a specified threshold,
by dividing it with an appropriate scalar. The server
then aggregates clipped updates and adds Gaussian noise
to the aggregation. These methods can limit the extent

to which modifications in global model parameters are
influenced by malicious agents in the case of untargeted
attacks. However, they are ineffective against backdoor
attacks [3], [9], [19].

FLTrust [20] improves robustness by assigning trust
scores to clients based on their alignment with a ref-
erence update derived from a clean validation dataset.
However, this approach assumes the server has access
to representative, clean data, which is unrealistic in
practical FL deployments, particularly under non-i.i.d.
conditions. DeFL [13] detects malicious clients by ana-
lyzing the internal structure of the entire model through
a federated gradient norm vector, capturing fine-grained
differences in client updates. FLDetector [12] measures
the consistency between each client’s update and a
predicted update generated by the server using historical
trends. Similarly, FedDefender [11] employs differential
testing to expose behavioral discrepancies among client
models. While these methods show promise, they require
unrestricted access to complete model updates from each
client, which increases the risk of privacy leakage [14].
Moreover, their effectiveness degrades significantly in
non-i.i.d. settings [17].

Certified robustness methods like weight smooth-
ing [21], group ensemble [22], and adversarial train-
ing [16]—improve robustness against backdoor attacks
but incur high computational costs, limiting their practi-
cality in resource-constrained FL settings. Robust Learn-
ing Rate (RLR) [9] was proposed to defensively ad-
just the server’s learning rate based on agents’ model
updates. While RLR effectively mitigates backdoor at-
tacks, it inadvertently reduces the validation accuracy
of the trained model, a drawback that becomes more
pronounced in non-i.i.d settings. Furthermore, RLR fails
to defend against backdoor attacks when a substantial
number of FL agents are malicious.

Lockdown [17] is a pruning-based defense that miti-
gates the poison-coupling effect in FL through isolated
subspace training. It assigns random subspaces to clients
and employs subspace pruning and recovery to separate
benign from malicious updates. A quorum consensus
mechanism is then used to filter suspicious parameters
from the global model. While Lockdown demonstrates
strong defense performance and enhances communica-
tion efficiency, our study shows that its effectiveness
degrades significantly for smaller models, where the
consensus mechanism becomes less reliable.

In contrast, we present an efficient defense technique
that reduces both computational overhead and privacy
risks by inspecting a small fraction of model updates.
Notably, when combined with RLR, our method out-
performs state-of-the-art defenses across both i.i.d. and
non-i.i.d. settings, even in the presence of a large number
of malicious agents.



(a) i.i.d. setting

(b) non-i.i.d. setting

Fig. 1: Scatter plots of minimum and maximum bias
updates from each FL agent during one training round.
Red and blue indicate malicious and benign agents.

III. EFFICIENT DETECTION AND MITIGATION OF
BACKDOOR ATTACKS

A. Model Update Analysis

We first analyzed the feasibility of detecting backdoor
attacks from model updates in an FL setting. Using the
Flower [23] library, we trained a CNN model across
K agents, 10% of which were malicious. These agents
poisoned 50% of base class samples with a trojan pattern
and relabeled them as the target class. We adopted two
experimental setups based on [9].

1) I.I.D Setting: We uniformly distributed the
CIFAR10 dataset among 40 agents to train an
AlexNet-style model [9]. We analyzed the parameter
updates from both a malicious and a benign agent in each
training round, which included 536,768 weights and 842
biases. Notably, the final 10 values, corresponding to the
output layer biases, showed clear differences between the
two agents. We found that the minimum and maximum
values of these bias updates are effective features for
identifying malicious agents, as illustrated in Figure 1a.
This finding was validated over 50 repeated runs.

2) Non-I.I.D Setting: Next, we used the Federated
EMNIST dataset from the LEAF benchmark [24], where

digits 0–9 are distributed across 3,383 agents with non-
i.i.d. data distributions. In each FL round, 10% of the
agents were selected to train a LeNet-style model [9],
each producing updates with 1,199,648 weights and 234
biases. Unlike the i.i.d. case, distinguishing between bias
updates from malicious and benign agents proved more
difficult. This challenge is reflected in the scatter plot
of the minimum and maximum bias values (Figure 1b),
which illustrates one of the most difficult cases observed
across 50 runs. Despite this, Section V shows that our
hybrid method, combining statistical outlier detection
with RLR [9], performs robustly in non-i.i.d. settings.

B. Outlier Detection with Partial Model Inspection

We developed a Bias Outlier Detection (BOD) tech-
nique that uses statistical features to characterize each
agent’s bias updates in the final neural network layer.
Outliers are detected using percentile-based thresholds
computed across all agents in each FL round. An agent
is classified as benign if its bias update’s minimum and
maximum fall within specified percentile bounds and
either its standard deviation or skewness remains below
the threshold; otherwise, it is flagged as malicious.

Algorithm 1 Bias Outlier Detection (BOD)

Require: Model updates U ∈ Rd×N from N agents,
percentiles p1, p2, p3, p4 for threshold calculation.

Ensure: Predicted benign set B, malicious set M
1: for j = 1 to N do
2: Compute xmin

j , xmax
j , xstd

j , xskew
j from U [:, j]

3: end for
4: Compute thresholds θmin, θmax, θstd, θskew as the

p1th, p2th, p3th, and p4th percentiles of the sets
{xmin

j }, {xmax
j }, {xstd

j }, and {xskew
j }, respectively.

5: Initialize benign set B ← ∅, malicious set M ← ∅
6: for j = 1 to N do
7: if xmin

j > θmin and xmax
j < θmax and (xstd

j <
θstd or xskew

j < θskew) then
8: B ← B ∪ {j}
9: else

10: M ←M ∪ {j}
11: end if
12: end for
13: return (B,M)

In our outlier detection algorithm (Algorithm 1), d
denotes the dimension of each client’s update vector,
specifically, the number of bias parameters in the final
layer of the model. Let N represent the number of par-
ticipating agents, each contributing a d-dimensional up-
date. We compute thresholds for four statistical features:
minimum, maximum, standard deviation, and skewness
across all updates. The 75th percentile is used as a



TABLE I: FL Experiment Hyperparameters

Data
distribution

i.i.d. i.i.d. non-i.i.d.

Dataset CIFAR10/ CIFAR10 Federated
FMNIST EMNIST

Models AlexNet-style,
ResNet-9,
LeNet-style

AlexNet-
style

LeNet-
style

Attack type Backdoor DBA Backdoor
Total agents 10 40 3,383
Agents selected 10 40 33
Local epochs 2 2 10
Batch size 256 256 64

lower bound for the minimum feature to exclude agents
with abnormally large negative values, often indica-
tive of malicious behavior. For the other features, 50th
percentile thresholds capture the central tendency of
benign updates. This percentile-based approach balances
sensitivity and robustness, enabling dynamic detection of
statistical outliers in heterogeneous update distributions.
The method is computationally efficient, model-agnostic,
and well-suited for real-world FL systems.

C. Backdoor Mitigation

In each FL training round, the server applies BOD to
filter out potentially malicious updates before performing
federated averaging. While this may exclude some be-
nign updates due to false positives, our experiments (Sec-
tion V) show that training remains robust and achieves
high validation accuracy. To better handle non-i.i.d. data
and reduce the impact of false negatives, we introduce
a hybrid strategy (BOD-hybrid) that combines BOD
with the RLR method [9]. After BOD filters suspect
updates, RLR adjusts the server’s learning rate based on
the sign of each remaining update. For each parameter,
the server sums the signs and compares the result to
a threshold θ; if the sum is below θ, suggesting low
consensus, the learning rate is inverted to steer training
away from adversarial directions.

IV. EXPERIMENT SETUP

Datasets and Models: We conducted our experiments
using an FL setup implemented with Flower [23], a
flexible, framework-agnostic platform for building FL
systems. All models were built in PyTorch and trained
for 200 FL rounds using SGD (local learning rate =
0.1, server learning rate = 1.0). We evaluated AlexNet-
style CNN and ResNet-9 on the CIFAR-10 dataset,
and used LeNet-style CNN for both FMNIST and Fed-
erated EMNIST. CIFAR-10 and FMNIST were i.i.d.-
partitioned, while Federated EMNIST (from the LEAF
benchmark [24]) followed a non-i.i.d. distribution. Addi-
tional experimental settings are summarized in Table I.
All experiments were conducted on an NVIDIA DGX
A100 system using a single NVIDIA A100 GPU (40

TABLE II: Validation accuracy (Acc.) and attack Success
Ratio (ASR) in percentage, evaluated under a 10% attack
ratio with i.i.d. partitioned datasets.

Aggregation CIFAR10/ CIFAR10/ FMNIST/
AlexNet-style ResNet-9 LeNet-style

Acc. ASR Acc. ASR Acc. ASR

FedAvg (baseline) 79.5 91.0 85.1 43.2 93.4 100.0
RLR 54.1 3.6 57.5 8.0 92.5 0.0
Lockdown 53.7 69.5 85.1 6.3 89.9 69.0
Mkrum 79.5 99.8 76.1 47.7 93.3 99.5
BOD 73.7 8.3 77.9 12.4 92.2 0.7
BOD-hybrid 74.2 7.3 78.2 8.3 91.9 1.8

GB), AMD EPYC 7742 64-core CPUs, and 503 GB of
system RAM. Our implementation is publicly available
at https://github.com/cloudsyslab/federated-learning.

Attack Methods: As in prior studies [9], [17], each
malicious agent poisons 50% of its local data. By default,
10% of the agents in the system are adversarial, and
we also study the impact of increasing this attack ratio
on defense performance. For the Federated EMNIST
dataset, the backdoor attack causes the model to mis-
classify digit 1s as 7s (target class) by adding a plus
sign to the top-left corner of images. For FMNIST, the
attack maps sandals to sneakers using the same pattern.
For CIFAR10, the attack causes the model to misclassify
dogs as horses. We evaluate both standard Backdoor
Attacks and Distributed Backdoor Attacks (DBA), where
the plus pattern is split across 4 malicious agents.

Competing Defense: We compare BOD and BOD-
hybrid against the baseline FedAvg and state-of-the-
art defense methods, including Mkrum [7], RLR [9],
and Lockdown [17]. For RLR, the learning threshold
parameter θ is set to 4 for CIFAR10/FMNIST with 10
agents, 8 for CIFAR10 with 40 agents, and 7 for Fed-
erated EMNIST with 33 agents. These values offer the
best balance between backdoor mitigation and validation
accuracy [9]. Following the Lockdown [17] paper, we set
the quorum consensus threshold to half the number of
agents participating in each FL round.

Evaluation Metrics: These include (1) validation ac-
curacy, which measures the percentage of clean samples
correctly classified by the global model, and (2) attack
success ratio (ASR), which measures the percentage
of trojaned samples misclassified as the target label.
Although our method may exclude some benign updates
due to false positives, we focus primarily on validation
accuracy and ASR, as these best reflect the real-world
effectiveness of the defense.

V. RESULTS

A. With I.I.D Setting

The results presented in Table II highlight the ef-
fectiveness of our BOD and BOD-hybrid methods in



mitigating backdoor attacks under i.i.d. settings. Across
all models and datasets, our methods consistently achieve
low attack success ratios (ASR) while maintaining high
validation accuracy. FedAvg performs poorly in all cases
failing to defend against backdoor attacks, with ASRs
greater than 90%. The performance of RLR varies
notably across datasets. On FMNIST, it achieves an
ASR of 0% while maintaining high validation accuracy.
However, on CIFAR10, despite achieving low ASRs of
3.6% (AlexNet) and 8.0% (ResNet-9), it significantly
degrades the validation accuracy, dropping it to as low
as 54.1%. In contrast, our BOD-hybrid method delivers
comparable ASRs of 7.3% and 8.3%, while preserving
substantially higher validation accuracy at 74.2% and
78.2% for the AlexNet and ResNet-9 models, respec-
tively. Mkrum fails across all scenarios, with ASRs
exceeding 99%, indicating an inability to defend against
backdoor attacks. Lockdown shows strong performance
with larger models such as ResNet-9 but is ineffective
with smaller models, yielding high ASRs. Both BOD
and BOD-hybrid maintain a strong balance between
robustness and utility across all model configurations.

B. With non-I.I.D Setting and Varying Attack Ratios

We evaluated our defense methods under non-i.i.d.
data distributions using the Federated EMNIST dataset
and the LeNet-style CNN model. Figures 2a and 2b show
validation accuracy and attack success ratio (ASR) over
training rounds for attack ratios of 10% and 30%. At
the end of 200 rounds of FL training, RLR achieves a
low ASR of 0.16% at 10% attack ratio, while sacrificing
validation accuracy, which drops to 87.27%. RLR per-
forms much worse at 30% attack ratio, with ASR rising
to 99.89%. In contrast, BOD-hybrid shows consistent
performance across both settings, maintaining low ASR
(1.6% at 10% attack ratio, 1.5% at 30% attack ratio)
and high validation accuracy (92.6% and 93.2%, respec-
tively), demonstrating robustness to increased adversarial
presence. While BOD performs best at 10% attack ratio
(94.2% accuracy, 0.84% ASR), ASR rises to 98.7% at
30% attack ratio, indicating vulnerability under higher
attack pressure. Overall, BOD-hybrid provides the most
reliable defense in non-i.i.d. settings.

C. Distributed Backdoor Attack

Table III shows the performance of various defense
methods under a distributed backdoor attack using the
CIFAR10 dataset and the AlexNet-style CNN model.
The baseline FedAvg method fails to defend against the
attack, with a high ASR of 66.0%. RLR achieves an ASR
of 8.5% but at the cost of reduced accuracy (71.8%).
Mkrum maintains relatively high accuracy (77.0%) and
a reasonable ASR of 4.9%. Lockdown performs worst
among all methods, with a severe drop in validation
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Fig. 2: Validation Accuracy and Attack Success Ratio
(ASR) over FL training rounds in a non-i.i.d. setting
(Federated EMNIST) under varying attack ratios.

TABLE III: Validation Accuracy and Attack Success
Ratio (ASR) under a distributed backdoor attack.

Aggregation Validation Accuracy (%) ASR (%)
FedAvg (baseline) 78.7 66.0
RLR 71.8 8.5
Lockdown 13.6 84.2
Mkrum 77.0 4.9
BOD 72.8 4.5
BOD-hybrid 72.6 3.8

accuracy to 13.6% and an ASR of 84.2%, indicating that
it fails entirely in this setting. Our BOD method provides
a better balance, reducing ASR to 4.5% while preserving
72.8% accuracy. Notably, BOD-hybrid achieves the best
overall defense, lowering ASR to 3.8% and maintaining
72.6% accuracy, demonstrating strong resilience against
sophisticated distributed attacks.

D. Overhead Analysis

Figure 3 compares the average time per FL training
round using various defense methods on AlexNet-style
and ResNet-9 models with the CIFAR10 dataset. FedAvg
incurs the least overhead as it performs simple aggrega-
tion with no defense. Mkrum requires O(N2d) pairwise
distance computations for N agents (d is the total model
dimension). Lockdown’s subspace training, pruning, and
consensus checks make the method most costly. In
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Fig. 3: Impact of defense methods on training efficiency.

contrast, RLR and our methods are significantly more
efficient. RLR’s sign aggregation runs in O(Nd) time,
while BOD only inspects the b ≪ d bias parameters
in the final layer. It computes client-level statistics in
O(Nb) and sorts them in O(N logN), yielding a total
complexity of O(Nb + N logN), with Nb dominating
in practice. The BOD-hybrid approach introduces only
a minor additional cost of O(N ′d), where N ′ < N since
RLR is applied only to the subset of agents, which are
not filtered out by BOD. Overall, BOD and BOD-hybrid
provide greater efficiency while preserving robustness,
making them well-suited for practical FL deployments.

VI. CONCLUSION

We developed a lightweight and effective defense
against backdoor attacks in federated learning based on
partial inspection of model updates. By analyzing sim-
ple statistics of final-layer bias parameters, our method
efficiently identifies malicious agents with minimal over-
head. We also introduced a hybrid strategy, which syn-
ergistically integrates a robust learning rate method to
enhance robustness in non-i.i.d. and high-attack rate
scenarios. While we do not provide formal guarantees,
empirical results demonstrate strong robustness across
datasets and attack intensities. Importantly, our methods
are computationally efficient and practical for real-world
deployments. Future work will explore dynamic defense
adaptation and broader attack classes.
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