next up previous
Next: Polynomial Reduction Up: NON DETERMINISTIC ALGORITHM Previous: NON DETERMINISTIC ALGORITHM

Graph Coloring

1. Guess a coloring
tex2html_wrap_inline298
tex2html_wrap_inline300 is the color of node w

2. Verify that the guess is correct
for all tex2html_wrap_inline304

Step 1 tex2html_wrap_inline306
Step 2 tex2html_wrap_inline308
Total tex2html_wrap_inline310

What if one allows ability to guess correctly, if there exists a correct guess?

tex2html_wrap_inline285 Non Deterministic Algorithm will be polynomial time if verification is polynomial.

Definitions

Problem tex2html_wrap_inline314 : Coloring
Instance I: a graph G and number of colors k

figure126

No Instances tex2html_wrap_inline316

Polynomially Bounded Non-Deterministic algorithm is whose tex2html_wrap_inline318 is polynomial for all yes instances.

NP: a class of decision problems which have polynomially bounded non-deterministic algorithms.

NP contains those problems whose guesses are polynomial time verifiable.

Coloring tex2html_wrap_inline278 NP

Clique tex2html_wrap_inline278 NP

SAT tex2html_wrap_inline278 NP
guess: a truth assignment
T: tex2html_wrap_inline326

check: verify that each clause is satisfied
for all c tex2html_wrap_inline328 c has at-least one true literal.

time analysis
guess tex2html_wrap_inline330
check tex2html_wrap_inline332
total tex2html_wrap_inline334 is bounded by a polynomial in length of input O(nm)

Clique tex2html_wrap_inline278 NP

Sorting tex2html_wrap_inline278 NP, but no guess needed



Sushil Prasad
Thu May 13 13:03:52 EDT 1999